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Abstract: This study aimed to generate a near real time composite of aerosol optical depth (AOD)
to improve predictive model ability and provide current conditions of aerosol spatial distribution
and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely
by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, dif-
ferences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric
calibration, and cloud-screening procedures create significant variability among AOD products.
Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal
comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on
data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager
(GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer
Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using
measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET
point-specific error, coefficients of each satellite were calculated using inverse distance weighting.
Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on
the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC,
2017) using the regression equation derived from the comparison of the composite AOD error statis-
tics to AERONET measurements, and the results showed that the correlation coefficient and RMSE
values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS).
The methodology and the resulting dataset derived here are relevant for the demonstrated successful
merging of multi-sensor retrievals to produce long-term satellite-based climate data records.

Keywords: composite aerosol optical depth (AOD); cumulative distribution function (CDF); North-
east Asia; AERONET; data fusion; retrieval algorithm

1. Introduction

Aerosols play an important role in the global energy budget, and atmospheric aerosol
loading along with associated absorption and scattering properties is integral to the radia-
tive forcing behind Earth’s changing climate [1–4], while also modifying cloud properties
and lifetimes [5,6]. This effect on the radiative energy balance is important for both esti-
mating climate change and weather prediction [7,8]. Additionally, aerosols exhibit strong
spatial and temporal variation and are generally concentrated in source regions [9,10].
In many developing countries, particulate matter (PM) accounts for the majority of air pol-
lutants. In particular, fine PM with diameters that are generally 2.5 micrometers and smaller
(PM2.5) are associated with adverse human health impacts, and their high-concentration
emissions from anthropogenic activities significantly increase haze events, deleteriously af-
fecting both public health and traffic safety [11–14]. In Northeast Asia, the traffic associated
with rapidly urbanizing and expanding cities is a major regional source of anthropogenic
PM emissions [15]. Furthermore, aerosol events, characterized as having very high PM
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concentrations from diverse sources, are increasing in frequency in the region [16–18].
Consequently, accurately assessing the progression of aerosols in Northeast-Asia is critical
to monitoring of emissions locally and modeling to predict climate according to real-time
satellite information, thus quickly avoiding direct and indirect damage and controlling
human health and life.

Satellite-based remote sensing measurements allow systematic retrieval of optical
aerosol properties at a local, regional, and global scales [1–20]. Aerosol optical depth
(AOD) is defined as the integral of the amount of sunlight prevented from reaching the
ground due to the absorbing and scattering of aerosols [21,22] and correlates strongly with
aerosol amount [23]. AOD is a key parameter for various aerosol-related studies, such as
radiative forcing and atmospheric correction of remote sensing imagery [24]. AOD es-
timates collected via satellite observation have the advantages of large spatial coverage
and reliable, continuous measurements compared to ground-based data; therefore, the use
of satellite-based imagery is an encouraging approach to monitor the aerosol pathways
and loadings [1,10,25–27]. The primarily regional emissions and distributions of aerosols
can affect the weather, air quality, and other regional effects with global consequences
such as volcanic ash, forest fires [13,28]. Consequently, it is imperative that aerosol mon-
itoring be consistent, with high spatial resolution and accuracy sufficient for resolving
regional trends [29]. However, AOD retrievals are overall overestimated, especially East
Asia because of the uncertainty. In particular, retrieval of the AOD using the MODIS latest
Collection 6.1 data is uncertain in East Asia due to low signal-to-noise ratio as a result
of high surface reflectivity in the spectral bands used by the algorithm. It is related to
varying surface and atmospheric aerosol conditions, which become larger with increases in
surface reflectance, especially wintertime basins, snow cover, desert surfaces [30,31]. Fur-
thermore, the differences in the vertical distribution of scattering and absorbing aerosols
within the same column may also cause −15% (scattering > absorbing) to 15% errors
(scattering < absorbing) [32].

For air quality assessments, calculating AOD based on satellite imagery is optimal
to monitor rapid changes in aerosol distribution caused by weather systems or human
activities [33]. However, the present AOD products from single satellite sensors are in-
sufficient due to the limited spatial coverage, in addition to sporadic cloud presence
preventing aerosol detection. Multi-sensor AOD products are therefore imperative for
monitoring aerosol distribution. It is worth noting that discrepancies exist among AOD
products derived from different satellite sensors [34] caused by inconsistencies in retrieval
assumptions, sensor viewing angles, spectral channels, spatial and temporal resolutions,
polarizations required for atmospheric data, cloud filtering, etc. [35]. Although no two
satellite AOD products yield consistent values of aerosol properties [36], different AOD
products can be complementary for accuracy and spatiotemporal completion. Geosyn-
chronous equatorial orbit (GEO) satellites are advantageous for their ability to observe a
specific area continuously with high temporal resolution. Alternatively, low Earth orbit
(LEO) satellites have relatively poor temporal resolution but contain higher accuracy. Thus,
merging AOD products derived from both GEO and LEO satellite sensors could yield more
comprehensive results [37]. Therefore, the spatiotemporal differences between different
AOD products should be minimized to ensure a more comprehensive representation of
natural phenomenon [38]. However, retrieving high-resolution AOD at varying scales is
still a challenging task due to the low signal-to-noise ratio in sensing, algorithmic synthesis
constraints, downscaling issues, and data gaps resulting from adverse impacts such as
cloud contamination [39,40].

Accordingly, this study conducts a cumulative distribution function (CDF) fitting
method [41] to merge AOD measurements. This method has several advantages, in-
cluding that it does not require identification of independent and background data [42].
Reference data, however, are necessary as they are collocated with the satellite products and
used to adjust the observational data in a straightforward process that corrects nonlinear
differences by rescaling the target data towards the reference data and then fitting the
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observational CDF data accordingly [43]. The method of merging GEO and LEO satellite
observations was initially developed to provide users with a comprehensive tool to monitor
long-range aerosol transport with potential forecasting applications. In the near future,
these products will also be used for data assimilation, such as improving aerosol-affected
satellite radiance values into operational weather forecast models.

In the present study, we examine the effect of merging the Aerosol Robotic Network
(AERONET)-based correction and fitting correction to improve AOD products and present a
spatiotemporal data composite framework for merging multisensory data. The CDF fitting
method was used to compile satellite product data, with AERONET measurements serving
as the reference. Section 2 describes the satellite and reference data used, the CDF fitting,
the inverse distance weighting (IDE), and inverse composite weighting (ICW) methods
adopted in this study. The explanation of the composite AOD and mapping images
obtained, their validation results, and limitations are described in Section 3, and Section 4
presents a brief conclusion.

2. Data and Methods

Table 1 provides a detailed summary of the different satellites, sensors, and datasets
used in generating the near real time (NRT), hourly composite AOD from 00:00 UTC to
09:00 UTC.

Table 1. Summary of satellites and instruments used in producing the composite AOD product.

Satellite Instrument/Orbit Scientific Dataset Name Resolution Repeat Coverage

Himawari-8 AHI/GEO Hourly aerosol product at 500 nm 00:00–09:00 UTC, 5 km 10 min

COMS GOCI/GEO GOCI Yonsei Aerosol V2
product at 500 nm 00:00–07:00 UTC, 0.5 km 1 h

Aqua·Terra MODIS/LEO
Deep_Blue_Aerosol_
Optical_Depth_550_
Land_Best_Estimate

01:30/04:30 UTC, 10 km 2× day−1

Suomi-NPP VIIRS/LEO VIIRS_Aeros_EDR_GEO_ALL 04:30 UTC, 6 km 1× day−1

2.1. Satellite Data
2.1.1. Himawari-8/AHI

Himawari-8, a GEO meteorological satellite, was launched on 7 October 2014, and has
been operational since 7 July 2015 [44–46]. It utilizes the Advanced Himawari Imager
(AHI) instrument, equipped with 16 spectral bands at center wavelengths ranging from
470 to 1330 nm and with a spatial resolution of 0.5–2 km. Particularly, the three visible
bands (blue, green, and red; 470, 510, and 640 nm, respectively) and one near-infrared
band (NIR, 860 nm) are sensitive to aerosol scattering and absorption and thus enable
the retrieval of aerosol optical properties, including AOD and the Angstrom exponent
(AE), over wide areas of Asia and Oceania with unparalleled frequency [47]. Its recent
products have the ability to minimize cloud contamination in the retrieval of AHI Level 2
(L2) Version 2.0 10-min aerosol products [48,49]. The AHI-based AOD products have been
under development with the most recent release of the Earth Observation Research Center
(EORC) of the Japan Aerospace Exploration Agency (JAXA) P-tree monitoring system
(http://www.eorc.jaxa.jp/ptree/index.html accessed on 10 March 2021) on L2, Level 3
(L3), and Level 4 (L4) AOD products. Himawari-8/AHI performs full-disk observations
at 10-min intervals, and the Himawari-8 L2 AOD product is derived from these full-disk
observations conducted during the daytime. The AHI product has undergone continuous
evaluations with clear uncertainty ranges: [∆τ = −0.66τ + 0.02, −0.34τ + 0.16] over land
and [∆τ = −0.24τ + 0.03, 0.10τ + 0.11] over ocean [50]. In the present study, 10-min
interval L2 products provided by JAXA during 2016 (training data) and 2017 (analysis,
validation data) were used.

http://www.eorc.jaxa.jp/ptree/index.html
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2.1.2. COMS/GOCI

The Geostationary Ocean Color Imager (GOCI) on the Communication, Ocean, and Me-
teorological Satellite (COMS) was launched in 2010 as the first ocean color imager in geo-
stationary orbit. Its observation domain is East Asia, and it takes measurements eight
times per day from 00:30 UTC to 07:30 UTC [51]. GOCI collects data across eight visible
channels (412, 443, 490, 555, 600, 680, 745, and 865 nm) at a spatial resolution of 0.5 km.
Recently, the GOCI Yonsei aerosol retrieval (YAER) algorithm Version 2 was developed
to improve the accuracy of aerosol detection, surface reflectance, and wind speed using
a climatological database from the multi-year GOCI dataset and reanalysis wind speed
data [52]. The GOCI AOD product has an expected error of ∆τ = ±0.137τ + 0.073 overland
and ∆τ = ±0.185τ + 0.037 over ocean [53]. The hourly GOCI data from 2016 (training data)
and 2017 (analysis, validation data) were used for this study.

2.1.3. Terra, Aqua/MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a LEO sensor with
the ability to characterize the spatiotemporal global aerosol fields. Unlike previous satellite
sensors discussed above in this paper with insufficient spectral diversity, MODIS has
the ability to retrieve aerosol optical depth and aerosol size parameters with great accu-
racy [54]. MODIS data on the Aqua and Terra satellites have 36 spectral bands, with center
wavelengths between 410–1450 nm [55]. MODIS-based AOD products have been under
constant development, and the most recently released is the Collection 6 L2 AOD prod-
uct [56–58]. In general, AOD values are retrieved by comparing the reflectance from the
solar bands to a reference table of measured reflectance based on sun-satellite geometry,
surface reflectance, and aerosol type [59]. The MODIS AOD product has a predicted un-
certainty of ∆τ = ±0.05 ± 0.15τ (Dark Target, DT), ∆τ = ±0.20 ± 0.05τ (Deep Blue, DB)
overland [55,59–61], ∆τ = 0.03 ± 0.05τ over ocean [59]. The L2 MOD04 and MYD04 data
from 2016 (training data) and 2017 (analysis data) were used for this study [62].

2.1.4. Suomi-NPP/VIIRS

The heritage polar-orbital sensors, MODIS and Multi-angle Imaging Spectroradiome-
ter (MISR), are nearing the end of their lifespans. To continue their legacy of global
observation, the Suomi National Polar-orbiting Partnership (S-NPP) launched the Joint
Polar Satellite System (JPSS), the first LEO satellite in the series of the United States
next generation polar-orbiting operational environmental satellite system, on 28 Octo-
ber 2011 [63–66]. Daily global aerosol products, similar to those traditionally provided
by MODIS at near-daily global coverage, are produced from observations of the visi-
ble infrared imaging radiometer suite (VIIRS), one of the instruments onboard. Due to
its wider swath width, VIIRS does not have the orbital gaps near the equator that oc-
cur with MODIS, and it captures aerosol plumes more accurately along the edges of
the scan that MODIS occasionally misses. The VIIRS aerosol products are derived pri-
marily from the radiometric channels covering the visible spectrum through the short-
wave infrared (SWIR) wavelengths (412–2250 nm). The product includes pixel-level AOD
(~750 m) values and is considered an intermediate product (IP) to the AOD Environmen-
tal Data Record (EDR) at ~6 km resolution, as aggregated from the finer-resolution IP
products. The VIIRS product has undergone continuous evaluations with uncertainty
ranges: [∆τ = −0.470τ − 0.01(lower bound), −0.0058τ + 0.09(upper bound)] overland and
[∆τ = −0.238τ + 0.01(lower bound), 0.194τ + 0.048(upper bound)] over ocean [63]. In this
study, EDR data from 2016 (training data) and 2017 (analysis, validation data) were used.

2.1.5. AERONET

The network of ground-based AERONET sun–sky radiometers provide long-term
observations of aerosol products, including spectral AOD [67,68], particle size distribution,
and complex refractive indices for the atmospheric column across remote locations [69].
It uses Cimel sun/sky radiometers that take measurements of the direct sun and dif-
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fused sky radiances across 340–1020 nm and 440–1020 nm spectral ranges, respectively [70].
AERONET provides columnar AODs over both land and ocean, but the values are restricted
to point observations [71,72]. Despite the limited spatial coverage of ground-based aerosol
remote sensing, its wide angular and spectral measurements of solar and sky radiation
provide reliable and continuous data on aerosol optical properties [73]. Due to strong pro-
cessing standards and low levels of uncertainty [24,74,75], AERONET AOD measurements
have been considered as “ground truth” for calibrating and verifying satellite-based AOD
retrieval products [61,76]. There are three levels of AERONET standard AOD products:
Level 1.0, unscreened with possible cloud contamination; Level 1.5, cloud screened; and,
Level 2.0, cloud screened and quality assured [18]. The AERONET provides a spectral AOD
with low uncertainty (~0.01–0.02) under cloud-free conditions, by observing [67]. In this
study, AERONET Level 2.0 AOD measurements from 27 sites located in East-Asia (Figure 1)
were collected from January 2016 to July 2017 (http://aeronet.gsfc.nasa.gov/ accessed on
10 March 2021) to evaluate satellite-based AOD retrievals. AERONET site-specific details
are listed in Table 2.
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Table 2. AERONET site details. 
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(m) 

Anmyon 126.330 36.539 47 
Baengnyeong 124.630 37.966 136 
Beijing-CAMS 116.317 39.933 106 

Beijing 116.381 39.754 36 
Bhola 90.750 22.167 3 
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Dalanzadgad 104.419 43.577 1470 
Dhaka_Univ. 90.398 23.728 34 

Dongsha-Island 116.729 20.699 5 

Figure 1. Locations of the 27 selected Aerosol Robotic Network (AERONET) sites used for compar-
isons of satellite AOD.

2.2. Methods

CDFs were used to estimate error statistics of satellite data compared to AERONET
information across Northeast Asia. The range was extended across Northeast Asia by
applying IDW using coefficients for each satellite, derived from the CDF. To increase
accuracy, the root mean square error (RMSE) generated in each error range was composited
using ICW.

2.2.1. Cumulative Distribution Function

CDFs were used to adjust GEO-LEO satellite AOD values according to AERONET
ground measurements. This method is particularly useful for approximating and facilitat-
ing data analysis of information obtained from different sources [77]. In previous studies,
CDFs have been used for fitting correction between satellite products and standardized
data. The fitting technique enhances the performance of the output using a nonlinear,
linear fitting method, threshold modification, and boundary value adjustment for the
coefficients [34,77–81].

The application of CDFs for composite AOD data with satellite observation analysis
is described by the flowchart in Figure 2. The observational and reference data for 2016
were selected to ensure sufficient information for applying the CDF [80]. CDF fitting
was applied to each of the 27 AERONET site datasets for 2016, and an example of the
results is shown in Figure 3, which displays CDF curves of AOD estimates from AHI,
GOCI, MODIS, and VIIRS. It was expected that the curves from different products are
more readily comparable than raw data values. The sequence of this method divided the

http://aeronet.gsfc.nasa.gov/
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piece-wise polynomial CDF curve into several segments, performing polynomial regression
analysis for each segment, and finally using the cubic equation to rescale the data falling
into different segments (Equation (1)):

AOD CDF Regression = a0 + a1 AOD + a2 AOD2 + a3 AOD3 (1)

where the regression coefficients a0, a1, a2, and a3 are obtained through the fitting procedure,
and new AOD values were calculated (Tables A1–A4).

Table 2. AERONET site details.

AERONET Sites Longitude (Degree) Latitude (Degree) Elevation (m)

Anmyon 126.330 36.539 47
Baengnyeong 124.630 37.966 136
Beijing-CAMS 116.317 39.933 106

Beijing 116.381 39.754 36
Bhola 90.750 22.167 3

Chen-Kung_Univ. 120.217 23.000 50
Chiang_Mai_Met_Sta 98.972 18.771 312

Dalanzadgad 104.419 43.577 1470
Dhaka_Univ. 90.398 23.728 34

Dongsha-Island 116.729 20.699 5
Doi-Ang-Khang 99.045 19.932 1536

EPA-NCU 121.185 24.968 144
Fukuoka 130.475 33.524 30

Gangneung-WNU 128.867 37.771 60
Gosan_SNU 126.162 33.292 72

Hongkong_PolyU 114.117 22.483 40
Irkutsk 103.087 51.800 670

NGHIA_DO 105.800 21.048 40
Noto 137.137 37.334 200

Omkoi 98.432 17.798 1120
Seoul_SNU 126.951 37.458 116
Shirahama 135.357 33.693 10

Son_La 103.905 21.332 683
Taipei_CWB 121.500 25.030 26

Ussuriysk 132.163 43.700 280
XiangHe 116.962 39.754 36

Yonsei_Uni. 126.935 37.564 88

AOD values of the CDF curves were divided into 0.1 intervals from 0 to 4 to define
40 segments. The AOD values from AHI, GOCI, MODIS and VIIRS curves were plotted
against the reference AERONET data, and then the scaling polynomial equations for each
segment were obtained. Next, the segmented CDF curves of AHI, GOCI, MODIS and VIIRS
were rescaled against the AERONET data for all satellite-derived data outside the range of
the CDF curves. The results indicated that the rescaling process did not affect the variations
of satellite-based products but rather imposed the value ranges of AERONET data.

2.2.2. Inverse Distance Weighting (IDW)

The IDW method is based on Tobler’s First Law of Geography, where closer points are
given larger weights [82,83]; thus, the influence of a known point declines with increasing
distance. Weights are inversely proportional to the square of the distance [84–86], and the
IDW was calculated according to Equation (2):

X(x0) =
∑N

i=1 X(xi)ωi

∑N
i=1 ωi

(2)
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where x0 is the location of an estimated point, xi (i = 1, . . . , N) are the locations of known
points (i.e., satellite data), and the estimated value X(x0) is the weighted average of N
measured values, X(xi). The weight or influence of each known data point was calculated
as, wi = d0,i

−p, where w is weight, d is the Euclidian distance between the estimated and
known points (i), and p is exponential power parameter. Lloyd [87] found that as the
value of p increases, the estimation results become more similar to the value of the closest
known point. Since the coefficient of the AERONET site produced using the CDF is a point
coefficient, it does not represent the values of Northeast Asia. Therefore, the coefficients of
Northeast Asia were reproduced using IDW with the CDF coefficients.
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2.2.3. Inverse Composite Weighting (ICW)

Errors between satellite and reference AERONET data remained after applying CDFs.
The delta value of each satellite refers to the RMSE value obtained through error analysis
after applying the IDW method. It is performed the error correction to merge more accurate
values. In order to reduce this issue, statistical errors were estimated by ICW according to
Equation (3):

ICW =

(
1

∆1
2 AHI + 1

∆2
2 MODIS + 1

∆3
2 VIIRS + 1

∆4
2 GOCI

)
(

1
∆1

2 +
1

∆2
2 +

1
∆3

2 +
1

∆4
2

) (3)

where ∆1 = 0.80, ∆2 = 0.90, ∆3 = 0.91, ∆4 = 0.85.

2.2.4. Composite AOD

In order to generate a NRT composite of AOD, we used the corrected GEO (AHI and
GOCI) and LEO (MODIS, VIIRS) AOD products processed from 00:00 UTC to 09:00 UTC
each day. LEO AODs were generated when they passed through Northeast Asia and
merged with GOCI values obtained during daytime (GOCI data was acquired from 00:00
to 07:00 UTC at 1 h intervals for the region from 21.615◦–46.971◦N, 111.37◦–148.548◦E).
AHI is the only data source available from 08:00 to 09:00 UTC, so the corresponding com-
posites contained only the corrected AHI AOD (1 h interval, centered at 10.00◦–60.00◦N,
90.0◦–150.0◦E). AOD products from GEO and LEO sensors were rearranged and averaged
across Northeast Asia. To that end, each satellite product was remapped on a unified grid
since the sensors had different spatial resolutions and coordinate systems. Each satellite
product was interpolated based on the 2 km spatial resolution of AHI. A nearest neighbor
approach was used to interpolate all AOD retrievals on GEO product grids. These compos-
ite AOD maps were then merged and used to generate hourly final products.

2.2.5. HYSPLIT Trajectory

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model is a
computer model developed by the National Oceanic and Atmospheric Administration
(NOAA) Air Resources Laboratory used to compute atmospheric transportation via air
parcel trajectories and deposition or dispersion of atmospheric pollutants [88–98]. One of
its most common applications is a back-trajectory analysis to determine the origin of
air masses and locate source-receptor relationships, and it was used here to generate a
probability map of the areas around a receptor site for selected aerosol episodic events.
The meteorological input for the trajectory model was the GDAS (Global Data Assimilation)
dataset (reprocessed from National Centres for Environmental Prediction (NCEP) by Air
Resources Laboratory). These trajectories were computed at 1500 m altitudes for dust event
in 2017.

3. Results and Discussion
3.1. CDF Fitting

For merging products of AHI, GOCI, MODIS, and VIIRS, CDFs were applied to the
27 AERONET sites for the entirety of 2016. The 2016 data were used for error analysis
and the derivation of the regression equations, while the 2017 data were used for applica-
tion and verification of the composite field for independent experimentation. CDFs were
also applied to individual grid cells for increasing the accuracy of AOD. An example of
the AOD CDF curve for the Anmyondo site (36.539◦N, 126.33◦W) is shown in Figure 3.
The regression coefficients for each of the 27 points were calculated, and Figure 4 shows
a piece-wise linear CDF fitting at Anmyondo across all satellite imagers analyzed for
2016. The satellite-based regression results revealed the same patterns as the observation
data. GEO satellites are capable of constant observation at fixed locations on hourly or
sub-hourly timescales [99], while LEO satellites have a return time of 1–2 times per day
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for a specific area, translating into large differences in observation number. Thus, there is
a lack of collocation data for LEO satellites. Nevertheless, the same polynomials were
used to minimize the variability effect of aerosols and maintain the identity of the com-
posite field in this study. The validation data for the AERONET sites were individually
analyzed to compile the results for each site in 2016 (training data). The spatial distribution
of the statistical evaluations is presented in Table 3, including pre- and post-CDF RMSE
values (Figure 5). Overall, analysis results across all AERONET sites showed a post-CDF
statistical error less than those of the original data. Error statistics of the satellite-based
products were larger than those of the ground-based, and the CDF application decreased
estimated AOD concentrations, effectively reducing error [100]. In terms of satellite prod-
ucts, LEO (MODIS and VIIRS) AOD estimates underwent insignificant changes with CDF
application (Figure 5c,d, respectively), whereas GEO (AHI and GOCI) products benefitted
greatly from the CDF, particularly over southern China (Figure 5a,b, respectively). How-
ever, the RMSE of collocated AHI data compared to AERONET AOD values was greatest
across the Chinese sites, including Beijing and XiangHe. RMSE values of MODIS and VIIRS
were higher than those of the Korean and Japanese AERONET sites. Due to the relatively
narrow observation domain of GOCI, only 15 AERONET sites were collocated, and the
error statistics show a good match with ground measurements for all locations, except the
Chinese sites [101–105].
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Table 3. Statistical error analysis (RMSE) for each satellite imager based on the selected AERONET
sites, before/after applying the CDF method.

AERONET Sites AHI GOCI MODIS VIIRS

Anmyon 0.22/0.17 0.15/0.09 0.13/0.09 0.11/0.10
Baengnyeong 0.21/0.16 0.11/0.09 0.12/0.11 0.12/0.11
Beijing-CAMS 0.32/0.28 0.28/0.27 0.19/0.18 0.18/0.18

Beijing 0.32/0.28 0.28/0.27 0.19/0.18 0.18/0.18
Bhola 0.23/0.21 - 0.18/0.15 0.17/0.15

Chen-Kung_Uni. 0.16/0.09 0.21/0.09 0.09/0.08 0.09/0.08
Chiang_Mai_Met_Sta 0.24/0.18 - 0.16/0.14 0.14/0.13

Dalanzadgad 0.22/0.09 - 0.07/0.07 0.08/0.07
Dhaka_Uni. 0.32/0.28 - 0.13/0.11 0.13/0.12

Dongsha-island 0.14/0.12 - 0.08/0.08 0.07/0.07
Doi-Ang-Khang 0.16/0.15 - 0.19/0.15 0.17/0.14

EPA-NCU 0.28/0.18 0.22/0.08 0.09/0.09 0.09/0.09
Fukuoka 0.09/0.08 0.09/0.07 0.08/0.08 0.08/0.08

Gangneung-WNU 0.12/0.11 0.16/0.14 0.13/0.11 0.12/0.10
Gosan_SNU 0.13/0.11 0.17/0.14 0.06/0.05 0.08/0.06

Hongkong_PolyU 0.22/0.15 0.20/0.17 0.17/0.11 0.17/0.12
Irkutsk 0.19/0.09 - 0.04/0.04 0.04/0.04

NGHIA_DO 0.17/0.14 - 0.15/0.12 0.14/0.12
Noto 0.09/0.09 0.05/0.05 0.07/0.07 0.07/0.07

Omkoi 0.16/0.13 - 0.14/0.12 0.14/0.12
Seoul_SNU 0.22/0.16 0.18/0.09 0.11/0.08 0.07/0.07
Shirahama 0.08/0.08 0.06/0.06 0.09/0.08 0.07/0.06

Son_La 0.11/0.07 - 0.15/0.12 0.16/0.13
Taipei_CWB 0.11/0.10 0.21/0.18 0.18/0.15 0.17/0.16

Ussuriysk 0.11/0.09 0.09/0.08 0.09/0.09 0.08/0.08
XiangHe 0.34/0.30 0.29/0.28 0.26/0.24 0.26/0.24

Yonsei_Uni. 0.21/0.17 0.08/0.07 0.09/0.08 0.08/0.07

3.2. Performance of Composite AOD Products
3.2.1. Composite Temporal Variability and Satellite Retrieval Accuracy

The temporal variations of composite and satellite AOD accuracy were explored on a
seasonal scale. The dominant aerosol types differ from spring (March, April, May; MAM),
summer (June, July, August; JJA), fall (September, October, November; SON), and winter
(December, January, February; DJF). In the spring, dust storms are a significant factor,
and biomass burning in the summer contributes heavily to the aerosol load. Moreover,
stable weather conditions in the winter can induce the accumulation of aerosols and al-
low severely polluted air to settle for several days at a time. Seasonal changes in surface
reflectance can also affect the performance of aerosol retrievals [106]. Therefore, it was
essential to account for the effect of seasonal variation on satellite and composite AOD
estimates. (Figure A1). Quantitative metrics of accuracy, including the number of satel-
lites and AERONET colocations (N), root mean square error (RMSE), mean bias (MB),
mean absolute error (MAE), and the correlation coefficient (R) were used to assess satellite
performance, and Table A5 summarizes these statistics across the seasons. VIIRS showed
strong agreement with AERONET AOD values in the summer, with the highest R value
observed, and an RMSE of 0.15. VIIRS also showed high correlations in the fall and spring,
producing the highest overall accuracy values of all satellites. These VIIRS seasonal AOD
accuracies were ranked as summer > fall > spring > winter, similar to the results found
previously [107]. MODIS comparisons yielded a linear regression slope of 0.69 in the fall,
and 0.68 in the winter and, along with the negligible intercept, put the relationship very
close to the one-to-one line. The high R, low RMSE, and low MB demonstrated that MODIS
AOD estimates are consistent with AERONET site measurements. Contrarily, AHI fall
performance was worse than the other seasons. Additionally, AHI wintertime performance
also yielded a low R value, and the same is true for winter GOCI AOD products. Al-
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ternatively, AHI and GOCI performed better in summer than in the other three seasons.
The analysis thus indicated that AHI and GOCI aerosol retrievals are significantly influ-
enced by seasonal variations of surface reflectance and aerosol types [108], and the change
of single scattering albedo led to large MB [109]. The composite AOD model developed in
this study showed lower overall accuracies than MODIS and VIIRS but higher than AHI
and GOCI, and these patterns appeared more clearly when performance was analyzed by
season. In addition, it was confirmed that the composite AOD model had more collocated
pixels than the GEO or LEO satellites. Therefore, the composite AOD not only improved
accuracy but helped compensate for the lack of aerosol information collected by the GEO
satellites. Overall, the composite model acquired more aerosol information compared to
the products of individual satellites.
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3.2.2. Composite Spatial Variability and Satellite Retrieval Accuracy

The spatial variability of the modeled composite and the accuracy of satellite AOD
products were explored at regional scales. In recent years, many Asian cities have suffered
severe deterioration in air quality, with significant contributions from both natural and
anthropogenic particulate sources. In particular, due to combined influences of arid dust
production, large urban populations, and increasing fossil fuel usage, the Northeast Asian
region often experiences very high concentrations of tropospheric aerosols. The resulting
aerosols of Northeast Asia consist of a complex mixture of coarse and fine particulates,
with both light-absorbing and scattering characteristics [49], so comparing local AOD
concentrations is critical to know the main causes and sources of aerosols in different
regions and to address them accordingly. In this study, regions were divided into Korea
(Anmyondo, Gangneung_WNU, Seoul-University, Yonsei-University), China (Beijing, Xi-
angHe), Japan (Fukuoka, Noto), and Taiwan (Chiang_Mai, Dahka-university, Dalanzadgad,
Dongsha, EPA, Hongkong_PolyU, Taipei). Focusing on these fifteen AERONET sites,
Figure A2 and Table A6 summarize the regional variations of composite and satellite AOD
retrieval accuracy. The composite AOD performed better over China than Korea or Taiwan,
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with a higher slope, lower intercept and a standard deviation very close to that of the
AERONET data. Moreover, the composite AOD had a greater number of collocated sites
over any single satellite and was vastly superior to that of GEO satellites in Taiwan region.
Composite AOD values had a large number of collocations in China as well, suggesting
that more aerosol information can be obtained by merging satellite data products than by
single types of imagery. In China, R for the GEO satellites AHI and GOCI was 0.18 and
0.3, respectively, whereas this value in the composite increased to 0.75 from the inclusion
of LEO satellite data (MODIS and VIIRS). The statistics show that AHI AOD values were
significantly underestimated when aerosol loading was high, and slightly overestimated
when aerosol loading was low. The decreased accuracy of AHI is likely attributable to the
combined effects of complex effects of surface characterization and cloud contamination,
resulting in a diminished retrieval quality. Moreover, the GOCI AOD values showed simi-
lar results to AHI AOD. On the other hand, the VIIRS AOD products performed slightly
better over China and Korea than Japan and Taiwan. The R value for VIIRS AOD was the
highest observed among the satellite-based AODs. The slopes and intercepts of the linear
regression were 0.99 and 0.02, respectively, supporting what can be seen visually where
VIIRS underestimates certain high-AOD events, and overestimates relatively low-AOD
conditions. Moreover, the MODIS AOD showed a similar trend to VIIRS, but the accuracy
was low.

3.2.3. Case Studies: Composite Accuracy and Air Pollution Source Tracking

Dust storms in the deserts of Northeast Asia can cause major aerosol events, spread-
ing beyond the continental borders [110]. After applying the coefficients derived from the
2016 training dataset to each satellite, the composite field was calculated and analyzed for
representative cases of these “yellow dust events” occurring in 2017.

Case 1: 18–19 April 2017
On 16–17 April 2017, two intense dust storms were generated over the Gobi Desert,

Inner Mongolia, by springtime low pressure fronts descending from the northwest. Af-
ter originating in the Gobi Desert, the dust storm shifted to the Loess plateau, impacting the
southwestern part of the Korean peninsula during the afternoon of 17 April. The second
dust storm was similarly generated over Inner Mongolia, and traveled through northeast
China, affecting the whole Korean Peninsula on 18–19 April. The 72-h (three day) back
trajectories were selected because it was deemed sufficient to determine the probable
locations of regional emission sources and explain regional transport pathways [111–114].
Indeed, Figure 6k shows that nearly all of the HYSPLIT modeled trajectories originated
from East China on 15–17 April; in particular, most of the modeled trajectories originated
from Shanghai and Nanjing, while a portion had their beginnings in Inner Mongolia
on 18–19 April. Figure 6a–j displays the hourly composite AOD for the 18 April case
study. Figure 6a presents the hourly composite AOD with only GEO (i.e., AHI, GOCI)
satellite retrievals, while Figure 6b utilized both GEO and Terra/MODIS satellite data.
Figure 6c,d presents the hourly composite AOD with only GEO data. Figure 6e is an exam-
ple of the 04:00 UTC composite utilizing all GEO and LEO (including Suomi-NPP/VIIRS)
data examined. When producing the composite AOD field, LEO AOD values were merged
with MODIS, VIIRS product derived from observations passing over Northeast Asia.
Since only the GEO AOD values are available from 05:00 to 07:00 UTC, the composite AOD
field is produced by combining the AHI and GOCI products (Figure 6f–h). As the GOCI
observation is scheduled up to 07:00 UTC, only AHI AOD corrected by CDF fitting method
is used from 08:00 to 09:00 UTC (Figure 6i,j). The GEO coverage has better spatial resolution,
thus introducing GEO sensors into the composite AOD maps lead to considerable increases
in spatial coverage. The greatest number of satellites are blended for the composite at
04:00 UTC (Figure 6e), which was able to obtain aerosol information from the Northeast
China through with the inclusion of previously unobservable regions using a single GEO
source. It is important to note that the composited GEO and LEO satellite retrievals used
for Figure 6b,e merged rather well due to the overall good agreement in the spatial patterns
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of GEO AOD values; therefore, the composited AOD field provided more detailed infor-
mation on yellow dust events than any of its components could alone, offering a greater
opportunity to understand flow patterns which can further help to monitor and model
aerosol plumes.
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Case 2: 5–6 May 2017
The events of 5–6 May 2017 were chosen owing to the high AOD levels recorded at the

regional background stations of the Korean Peninsula. The dust storm originated in eastern
Mongolia and moved towards Korea. In particular, the northern part of the Korean Penin-
sula was affected by significant cloud cover, and the concentration of AOD > 2 on 4 May.
In addition, the dust force was strengthened when the pressure trough developed from
the low atmospheric pressure and front. Clouds in northern China prevented the sensors
from collecting imagery, but AOD levels were high and arc-shaped along the cloud edge.
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Figure 7 displays the hourly composite AOD acquired through the same process as in Case
1 (Section 3.2.3). The AOD values from AHI and GOCI (Figure 7a,c,d,f–h) were blended
to contain spatial aerosol information from Northeast Asia as well. Moreover, it was pos-
sible to acquire additional information over the ocean by including LEO AOD products
(Figure 7b,e). Compared to other times, the largest spatial coverage of aerosol information
was obtained at 04:00 UTC (Figure 7e), when VIIRS data was included. The composite data
from the Manchurian province on 5 May confirmed the aerosol concentration and proved
useful to track the movement of the yellow dust event.
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Specifically, on 5 May, yellow dust spread widely throughout Southeast Asia, affect-
ing all areas of the Korean Peninsula with relatively low AOD levels between 0.5 and 1.
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Additionally, aerosols that had stalled in southeastern China for two days impacted the
Korean Peninsula as they joined the northwest dust storm winds. The composite AOD also
was able to identify high AOD at Shanghai and Nanjing in southeastern China, with the
aerosol flow pattern gaining detail over time (Figure 7a–j). The HYSPLIT model’s 72 h back
trajectories (Figure 7k) on 3–4 May revealed that the air mass was stalled, and the high-
pressure state lasted a significant period time. When high pressure remained stationary,
ground-level air flow was mainly controlled by local circulation, providing optimal condi-
tions for the accumulation of air pollutants [111]. It was also found that the high aerosol
conditions observed in the Korean Peninsula originated from natural and anthropogenic
sources. Therefore, when either yellow or fine dust events occur, the composited AOD
offers greater information on aerosols and can be used for aerosol tracking and detailed
monitoring along with air trajectory information.

3.3. Long-Term Accuracy of AOD Composite
3.3.1. Evaluation of Composite and Satellite AOD

The comparisons of composite and satellite information with AERONET AOD values
at 500 nm for 15 sites in Northeast Asia over 2017 are presented in Figure 8. To validate
the data, we calculated the average of all available AERONET AOD retrieval data for
each site during the hourly observation periods of the composite. The nearest-neighbors
approach was then employed to find the closest composite grid to each AERONET site.
To investigate the influence of each satellite AOD product on the merged AOD accuracy,
statistical metrics were compared. Figure 8d,e, presents R, RMSE, and MB for VIIRS (0.75,
0.23, and 0.084, respectively) and for MODIS (0.69, 0.28, and 0.11, respectively). The high R
values indicate a strong correlation with AERONET data, as does the low bias compared
to the slope of the linear regression. Additionally, as aerosol loading increased (AOD >
1), the values closed in on the one-to-one line, indicating that LEO satellites are superior
at detecting high aerosol concentration plumes. Alternatively, R, RMSE, and MB for the
AHI data (Figure 8b) were 0.28, 0.39, and 0.105, respectively; and GOCI data (Figure 8c)
produced values of 0.39, 0.36, and 0.096, respectively. Thus, the results for GEO satellites
showed a poor correlation with AERONET data, and the hourly composites including only
GEO contained the greatest level of uncertainty [115]. The strength of underestimation
of the composite gradually increased with greater aerosol concentrations, likely a result
of inaccurate characterization of surface reflectance and inadequate representation of the
aerosol model [116]; however, the composite AOD achieved a relatively moderate agree-
ment with AERONET measurements (Figure 8e). Additionally, the composite improved
LEO overestimation from 0 < AOD < 0.5, and GEO underestimation AOD > 0.5. Moreover,
it increased the number of collocations. It was thus concluded that the composite AOD
values are strongly dependent on the accuracy of LEO satellite products and the number of
GEO pixels.

3.3.2. Regional Composite and Satellites Retrieval Accuracy

Statistical parameters of the composite, MODIS, VIIRS, AHI, and GOCI AOD products
are delineated by AERONET sites in Table 4. These validation results show that the colloca-
tion pixel number in the composite products was consistently greater than any individual
satellite’s product, supporting the value of composite creation; however, the composite
showed variable statistical parameters across regions. For example, the composite over the
Noto, Japan, site had the smallest MB and RMSE compared with the Korean Peninsula and
Chinese sites. In particular, composite RMSE was lower than that of MODIS but not VIIRS.
The composite over the Gangneung, Korean site, had the second smallest MB and RMSE,
and the collocation number of datapoints was the highest. This site was the most reliably
estimated by AHI and occupies the largest area, with a lower RMSE and higher accuracy
than other regions. The results over the Taipei site in South China had the third smallest MB
and RMSE, primarily driven by the high accuracy of MODIS and VIIRS. Next, the results
from Yonsei University site in Korea had the fourth smallest MB, RMSE, and collocation
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number, indicating that the number of collocations was increased by the GEO satellites and
further reflected the high accuracy of MODIS and VIIRS.
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Table 4. Summary statistics for composite, satellites, and AERONET AOD products during 2017.

Satellite Site AERONET Composite AHI GOCI MODIS VIIRS

Bias

Anmyon

- 0.036 0.054 0.124 0.120 0.095
RMSE - 0.191 0.232 0.353 0.171 0.208

Collocation-number 959 636 226 335 146 148

Linear regression slope - y = 0.615x + 0.088 y = 0.356x + 0.025 y = 0.601x + 0.084 y = 0.714x + 0.076 y = 0.752x + 0.117

R (correlation coefficient) - 0.697 0.353 0.499 0.777 0.807

Bias

Beijing

- 0.156 0.138 0.189 0.010 0.011
RMSE - 0.325 0.372 0.435 0.104 0.105

Collocation-number 1320 763 280 318 180 131

Linear regression slope - y = 0.731x + 0.084 y = 0.156x + 0.242 y = 0.189x + 0.330 y = 0.908x + 0.093 y = 0.970x + 0.003

R (correlation coefficient) - 0.698 0.253 0.268 0.791 0.841

Bias

Chiang_Mai_Met_Sta

- 0.172 0.221 - 0.216 0.216
RMSE - 0.215 0.269 - 0.265 0.264

Collocation-number 1550 730 480 - 135 120

Linear regression slope - y = 0.431x + 0.183 y = 0.479x + 0.134 - y = 0.415x + 0.201 y = 0.401x + 0.186

R (correlation coefficient) - 0.458 0.385 - 0.447 0.402

Bias

Dalanzadgad

- 0.139 0.158 - 0.151 0.150
RMSE - 0.273 0.298 - 0.290 0.187

Collocation-number 1598 682 300 - 249 103

Linear regression slope - y = 0.648x + 0.112 y = 0.221x + 0.104 - y = 0.696x + 0.304 y = 0.717x + 0.097

R (correlation coefficient) - 0.658 0.387 - 0.676 0.754

Bias

Dhaka-University

- 0.214 0.301 - 0.266 0.279
RMSE - 0.263 0.248 - 0.216 0.228

Collocation-number 741 307 191 - 96 56

Linear regression slope y = 0.585x + 0.134 y = 0.196x + 0.171 - y = 0.499x + 0.270 y = 0.270x + 0.304

R (correlation coefficient) 0.638 0.322 - 0.653 0.692
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Table 4. Cont.

Satellite Site AERONET Composite AHI GOCI MODIS VIIRS

Bias

Dongsha-Island

- 0.193 0.195 - 0.192 0.191
RMSE - 0.220 0.241 - 0.238 0.237

Collocation-number 513 165 106 - 100 114

Linear regression slope y = 0.615x + 0.090 y = 0.360 + 0.016 - y = 0.632x + 0.179 y = 0.663x + 0.050

R (correlation coefficient) 0.763 0.396 - 0.641 0.690

Bias

EPA-NCU

- 0.047 0.059 - 0.014 0.043
RMSE - 0.201 0.243 - 0.203 0.207

Collocation-number 573 171 136 - 65 67

Linear regression slope y = 0.579x + 0.117 y = 0.263 + 0.139 - y = 0.617x + 0.159 y = 0.706x + 0.154

R (correlation coefficient) 0.632 0.193 - 0.630 0.689

Bias

Fukuoka

- 0.065 0.027 0.065 0.065 0.010
RMSE - 0.254 0.164 0.255 0.255 0.103

Collocation-number 874 479 173 329 83 55

Linear regression slope y = 0.531x + 0.155 y = 0.266x + 0.141 y = 0.301x + 0.184 y = 0.517x + 0.159 y = 0.708x + 0.154

R (correlation coefficient) 0.529 0.195 0.359 0.529 0.689

Bias

Gang neung

- 0.149 0.057 0.095 0.095 0.095
RMSE - 0.126 0.139 0.208 0.208 0.208

Collocation-number 1556 638 471 574 180 157

Linear regression slope y = 0.659x + 0.072 y = 0.091x + 0.210 y = 0.210x + 0.211 y = 0.639x + 0.159 y = 0.680x + 0.065

R (correlation coefficient) 0.677 0.125 0.233 0.640 0.696

Bias

Hongkong PolyU

- 0.045 0.060 - 0.010 0.011
RMSE - 0.212 0.246 - 0.104 0.105

Collocation-number 115 222 204 - 107 87

Linear regression slope y = 0.851x + 0.001 y = 0.214 + 0.179 - y = 0.789x + 0.051 y = 0.801x + 0.081

R (correlation coefficient) 0.800 0.446 - 0.942 0.952
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Table 4. Cont.

Satellite Site AERONET Composite AHI GOCI MODIS VIIRS

Bias

Noto

- 0.014 0.031 0.045 0.031 0.002
RMSE - 0.120 0.175 0.213 0.176 0.047

Collocation-number 318 314 129 282 126 111

Linear regression slope y = 0.681x + 0.172 y = 0.105x + 0.104 y = 0.205x + 0.201 y = 0.713x + 0.097 y = 0.760x + 0.599

R (correlation coefficient) 0.787 0.218 0.228 0.770 0.788

Bias

Seoul-University

- 0.183 0.053 0.124 0.122 0.035
RMSE - 0.229 0.229 0.252 0.249 0.188

Collocation-number 1500 767 212 589 266 224

Linear regression slope y = 0.625x + 0.154 y = 0.200x + 0.214 y = 0.418x + 0.195 y = 0.741x + 0.143 y = 0.802x + 0.106

R (correlation coefficient) 0.693 0.249 0.440 0.687 0.714

Bias

Taipei_CWB

- 0.057 0.0452 - 0.013 0.014
RMSE - 0.138 0.212 - 0.116 0.118

Collocation-number 895 331 258 - 81 90

Linear regression slope y = 0.643x + 0.178 y = 0.205 + 0.311 - y = 0.683x + 0.193 y = 0.649x + 0.211

R (correlation coefficient) 0.683 0.313 - 0.696 0.647

Bias

XiangHe

- 0.246 0.078 0.124 0.120 0.042
RMSE - 0.296 0.279 0.352 0.247 0.204

Collocation-number 1602 550 277 362 176 257

Linear regression slope y = 0.606x + 0.099 y = 0.300x + 0.111 y = 0.338x + 0.207 y = 0.857x + 0.388 y = 1.089x + 0.037

R (correlation coefficient) 0.722 0.328 0.444 0.844 0.863

Bias

Yonsei-University

- 0.126 0.115 0.129 0.120 0.038
RMSE - 0.154 0.238 0.259 0.147 0.195

Collocation-number 1552 634 488 627 184 164

Linear regression slope y = 0.595x + 0.022 y = 0.401x + 0.021 y = 0.432x + 0.032 y = 0.811x + 0.211 y = 0.901x + 0.051

R (correlation coefficient) 0.68 0.411 0.488 0.811 0.877
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In summary, estimates for 12 sites of the 15 AERONET sites were improved by the
accuracy of the composite AOD: 7 sites were affected by MODIS accuracy (Anmyondo,
Beijing, Dhaka-university, EPA-NCU, Hongkong_PolyU, Taipei, and Yonsei-university),
and the other 5 sites were positively affected by the accuracy of VIIRS (Dalanzadgad,
Fukuoka, Noto, Seoul-university, and XiangHe). Ultimately the accuracy of LEO AOD
values is reflected in the composite, but it is not always possible to attain the same level
accuracy when merging all data sources. Although sometimes less accurate than the
individual LEO AODs, it is expected that the use of composite AOD will be superior
because it improves RMSE and bias over single image GEO AODs. However, the least
accurate composite AOD sites were Chinese, including Beijing and XiangHe, where RMSE
and bias remained high even after CDF fitting. Overall, this validation result showed
that the accuracy of the composite AOD improved from the inclusion of the influence of
LEO AOD products, and the number of data sites increased from the inclusion of GEO
AOD products.

3.3.3. Composite AOD Accuracy Assessment

To validate the composite AOD values and compare them with the accuracy of orig-
inal AHI, GOCI, MODIS, and VIIRS AODs, all satellite and composite AOD data were
spatiotemporally collocated with AERONET AOD site measurements. The satellite and
composite AOD products were averaged over 10 km × 10 km (0.1◦) regions, centered on
each AERONET site. Correspondingly, the AERONET AOD data was averaged within
±1 h of the time each satellite passed over the site. Figure 9 depicts the correlation and
histogram, as well as the scatter plots between AERONET and satellite AODs at AERONET
sites during 2017. The GEO satellite correlation coefficients indicated an underestimation
of AERONET data, mostly allocated from 0.0 to 1.0 in the histogram distribution. Alterna-
tively, the LEO satellites showed consistent accuracy when compared to AERONET site
data, and although the composite AOD developed in this study showed better correlation
than GEOs, the accuracy of LEO satellites was unmatched. Additionally, VIIRS is a heritage
of MODIS, showing a high correlation coefficient, confirming the similar characteristics
of their AOD algorithms. It should be noted that the composite AOD showed good cor-
relation with MODIS and VIIRS, as well as a similar histogram distribution. In other
words, it can be confirmed that the high accuracy of the LEO satellites, and the high
spatial resolution of their orbit are reflected in the composite AOD. This is also evident
in the analysis of the deviation between AERONET, composite and individual satellite
data (Figure 10). Most satellite AOD products tended to overestimate AERONET mea-
surements, especially in 2017. The composite AOD developed in this study applied the
CDF method to reduce the error for each satellite and showed a good ability to reduce
deviation. In particular, when compared with other satellite AOD values, the composite
showed a negative deviation that was alleviated from January to June 2017, and near zero
deviation from July to December, indicating higher overall accuracy. Overall, the statistics
suggest that the composite AOD yielded a highly similar standard deviation to AERONET
measurements and outperformed the GEO satellites. This study has great significance in
that the data of the aerosol optical thickness (L2) of each satellite were blended using CDF,
a statistical method rather than a physical method. By reducing the uncertainty of each
satellite’s AOD algorithm as much as possible and simply calculating it using statistical
techniques, we have developed an algorithm that can not only obtain a large amount of
geostationary orbit information but also reflect the high accuracy of polar orbit satellites.

3.3.4. Limitations of Composite AOD

Extensive ground-based monitoring networks exist in some parts of the world, but ma-
jor portions of the globe remain unmonitored [13]; thus, due to the lack of observation
points, and satellite image using the CDF method is hindered by spatial limitations. North-
east Asia is a large region, and coverage of the AERONET sites is likely insufficient to
adequately monitor and model the entire area. The CDF fitting method used in this study
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forcibly reproduced the coefficients attained from the 27 AERONET stations; therefore,
it induced error because it was calculated assuming a non-AERONET site location. Addi-
tionally, ocean and offshore areas were corrected to a value close to zero since marine areas
far from land are not included due to the absence of AERONET stations (limitations on the
method). Second, in this study, we also produced the composite using Level 2 of satellite
AODs, exhibiting differences in satellite-based product retrieval algorithms, spatial and
temporal resolutions, sampling, radiometric calibration, and cloud-screening mechanisms.
The use of the aerosol retrievals from single satellite sensors alone can contain incomplete
aerosol spatial distributions due to cloud cover, sun glint, and sensor limitations (e.g., spa-
tial resolution, scan coverage) [117]. Particularly, it is difficult to distinguish aerosols above
highly reflective surfaces; for example, MODIS AOD can be retrieved except in highly
uncertain locations (cloudy regions, snow/ice, desert areas). Since the Level 2 product of
aerosols was calculated for each satellite except over cloud regions (cloud, shallow layer
of pollution), the aerosol column may not be observable, even if aerosol concentration is
dense in the clouded area (limitations on the data).
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4. Summary and Conclusions

The primary goal of this study was to generate hourly composite AOD products that
combined GEO and LEO satellite observations, to assist with monitoring the transport
of aerosol plumes over Northeast Asia. A methodology was developed to rescale and
merge GEO and LEO retrievals and produce an improved AOD dataset. Hourly AOD
composites were generated that achieved a wider spatial coverage of AOD domain in
Northeast Asia. The composited AOD results indicated that (a) although the inclusion
of GEO satellite products degraded the accuracy, the composite was improved in terms
of the spatiotemporal resolution of the data; (b) despite the relative infrequency of LEO
data acquisition, the composite AOD accuracy was increased according to the error metrics
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(i.e., R, RMSE, MB, and MAE) and indicated a stronger performance; and (c) the composite
AOD often provided the most aerosol information, supporting that when GEO and LEO
satellite products are rescaled, composite products can offer enhanced AOD data over
Northeast Asia. The complementary features of the AOD products derived from different
satellite sensors in terms of their spatial completion and accuracy made it possible to
produce improved AOD hourly products by merging multisensory satellite products.
Moreover, these products can assist with tracking and modeling the transport of aerosols
over Northeast Asia.

Although the composite AOD product increased spatial coverage, several issues were
noted pertaining to the AOD retrievals. The results showed that the composite AOD
estimates can appear in the ocean due to cloud artifacts impacting GEO and LEO satellite
retrievals when the CDF matching method was applied. The methodology developed here
was also dependent on the availability of the data being composited, and gaps in space or
time may lead to inaccurate estimates of composite AOD distribution. However, the data
fusion approaches for acquiring new data with higher accuracy and temporal and spatial
resolution are encouraged.

The future capability of GEO satellites for monitoring and tracking aerosol plumes
will be enhanced with the GEO-KOMPSAT 2A (GK-2A) satellite launched in December
of 2018. The GK-2A can perform full disk scans every 10 min and carries the Advanced
Meteorological Imager (AMI) consisting of 16 spectral bands between 400–1330 nm. Hence,
its much-improved spatial resolution (2 km) can further enhance the monitoring ability of
aerosol plumes over the Northeast-Asia. It is expected that the high temporal resolution
of GK-2A can lead to a more complete understanding of aerosol spatial distribution over
Northeast Asia which prevented the damage by responding through aerosol forecasts such
as yellow dust and fine dust. Moreover, it will be importantly used to study long-term
climate change by collecting information on aerosols. Furthermore, the findings here will
be utilized for the data assimilation of the Asia Dust Aerosol Model 3 (ADAM3) model
operated by the Korea Meteorological Administration.
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Abbreviations

ADAM3 Asian Dust Aerosol Model 3
AOD aerosol optical depth
CDF cumulative distribution function
EDR environmental data record
GEO geosynchronous equatorial orbit
ICW inverse composite weighting
IDW inverse distance weighting
LEO low earth orbit

Appendix A

Remote Sens. 2021, 13, x FOR PEER REVIEW 24 of 33 
 

 

GEO geosynchronous equatorial orbit 
ICW inverse composite weighting 
IDW inverse distance weighting 
LEO low earth orbit 

Appendix A 

 
Figure A1. Seasonal comparison between AERONET and satellite AOD values for 2017: (a) Composite, (b) Himawari-
8/AHI, (c) COMS/GOCI, (d) Aqua Terra/MODIS, and (e) Suomi-NPP/VIIRS. Blue line is the linear regression fit, and gray 
shading shows the associated error range. 

Figure A1. Seasonal comparison between AERONET and satellite AOD values for 2017: (a) Composite, (b) Himawari-
8/AHI, (c) COMS/GOCI, (d) Aqua Terra/MODIS, and (e) Suomi-NPP/VIIRS. Blue line is the linear regression fit, and gray
shading shows the associated error range.



Remote Sens. 2021, 13, 1096 25 of 33Remote Sens. 2021, 13, x FOR PEER REVIEW 25 of 33 
 

 

 
Figure A2. Regional comparison between AERONET and satellite AOD values for 2017: (a) Composite, (b) Himawari-
8/AHI, (c) COMS/GOCI, (d) Aqua Terra/MODIS, and (e) Suomi-NPP/VIIRS. Blue line is the linear regression fit, and gray 
shading shows the associated error range. 

Table A1. Summary coefficients of Himawari-8/AHI AOD products during 2016 in training data 
(X = AOD). 

AERONET Sites 
Himawari-8 

AHI a0 a1 a2 a3 

Anmyon a0 + a1 X + a2 X2 + a3 X3 0.074 −0.133 0.007 0.018 
Baengnyeong a0 + a1 X + a2 X2 + a3 X3 0.026 −0.072 0.029 −0.119 
Beijing-CAMS a0 + a1 X + a2 X2 + a3 X3 0.035 −0.072 0.005 0.010 

Beijing a0 + a1 X + a2 X2 + a3 X3 0.148 −0.077 0.006 0.096 
Bhola a0 + a1 X + a2 X2 + a3 X3 0.096 −0.351 0.024 0.052 

Chen−Kung_Univ. a0 + a1 X + a2 X2 + a3 X3 0.128 0.023 −0.021 0.019 
Chiang_Mai_Met_Sta a0 + a1 X + a2 X2 + a3 X3 0.287 0.144 −0.043 0.015 

Dalanzadgad a0 + a1 X + a2 X2 + a3 X3 0.205 −0.051 −0.017 0.018 

Figure A2. Regional comparison between AERONET and satellite AOD values for 2017: (a) Composite, (b) Himawari-
8/AHI, (c) COMS/GOCI, (d) Aqua Terra/MODIS, and (e) Suomi-NPP/VIIRS. Blue line is the linear regression fit, and gray
shading shows the associated error range.

Table A1. Summary coefficients of Himawari-8/AHI AOD products during 2016 in training data (X = AOD).

AERONET Sites Himawari-8 AHI a0 a1 a2 a3

Anmyon a0 + a1 X + a2 X2 + a3 X3 0.074 −0.133 0.007 0.018
Baengnyeong a0 + a1 X + a2 X2 + a3 X3 0.026 −0.072 0.029 −0.119
Beijing-CAMS a0 + a1 X + a2 X2 + a3 X3 0.035 −0.072 0.005 0.010

Beijing a0 + a1 X + a2 X2 + a3 X3 0.148 −0.077 0.006 0.096
Bhola a0 + a1 X + a2 X2 + a3 X3 0.096 −0.351 0.024 0.052

Chen−Kung_Univ. a0 + a1 X + a2 X2 + a3 X3 0.128 0.023 −0.021 0.019
Chiang_Mai_Met_Sta a0 + a1 X + a2 X2 + a3 X3 0.287 0.144 −0.043 0.015

Dalanzadgad a0 + a1 X + a2 X2 + a3 X3 0.205 −0.051 −0.017 0.018
Dhaka−Univ. a0 + a1 X + a2 X2 + a3 X3 0.331 −0.697 0.087 0.013

Dongsha_Island a0 + a1 X + a2 X2 + a3 X3 0.001 −0.116 0.022 0.051
Doi_Ang−Khang a0 + a1 X + a2 X2 + a3 X3 0.018 −0.118 −0.002 0.092
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Table A1. Cont.

AERONET Sites Himawari-8 AHI a0 a1 a2 a3

EPA−NCU a0 + a1 X + a2 X2 + a3 X3 0.002 −0.251 0.024 0.058
Fukuoka a0 + a1 X + a2 X2 + a3 X3 0.061 −0.413 0.054 0.068

Gangneung_WNU a0 + a1 X + a2 X2 + a3 X3 0.190 −0.268 0.022 0.045
Gosan_SNU a0 + a1 X + a2 X2 + a3 X3 0.152 −0.334 0.045 −0.058

Hongkong_PolyU a0 + a1 X + a2 X2 + a3 X3 0.156 −0.458 0.062 −0.083
Irkutsk a0 + a1 X + a2 X2 + a3 X3 0.544 −0.012 −0.038 0.041

NGHIA_DO a0 + a1 X + a2 X2 + a3 X3 0.055 −0.194 0.031 −0.033
Noto a0 + a1 X + a2 X2 + a3 X3 0.043 −0.208 0.120 0.063

Omkoi a0 + a1 X + a2 X2 + a3 X3 0.344 −0.375 0.038 0.101
Seoul_SNU a0 + a1 X + a2 X2 + a3 X3 0.082 −0.541 0.081 0.082
Shirahama a0 + a1 X + a2 X2 + a3 X3 0.044 −0.194 0.007 0.027

Son_La a0 + a1 X + a2 X2 + a3 X3 0.091 −0.593 0.102 0.084
Taipei_CWB a0 + a1 X + a2 X2 + a3 X3 0.023 −0.232 −0.004 0.019

Ussuriysk a0 + a1 X + a2 X2 + a3 X3 0.038 −0.162 −0.014 0.012
XiangHe a0 + a1 X + a2 X2 + a3 X3 0.004 0.061 −0.014 0.012

Yonsei_Univ. a0 + a1 X + a2 X2 + a3 X3 0.096 −0.308 0.034 0.057

Table A2. Summary coefficients of COMS/GOCI AOD products during 2016 in training data (X = AOD).

AERONET Sites COMS GOCI a0 a1 a2 a3

Anmyon a0 + a1 X + a2 X2 + a3 X3 0.074 2.703 0.003 0.000
Baengnyeong a0 + a1 X + a2 X2 + a3 X3 0.143 0.044 0.013 0.109
Beijing-CAMS a0 + a1 X + a2 X2 + a3 X3 0.044 0.735 0.021 0.003

Beijing a0 + a1 X + a2 X2 + a3 X3 0.038 0.912 −0.025 1.010
Bhola

Chen−Kung_Univ.
Chiang_Mai_Met_Sta

Dalanzadgad
Dhaka−Univ.

Dongsha_Island
Doi_Ang−Khang

EPA−NCU a0 + a1 X + a2 X2 + a3 X3 0.012 1.296 −0.187 0.001
Fukuoka a0 + a1 X + a2 X2 + a3 X3 −0.143 1.438 −0.147 0.001

Gangneung_WNU a0 + a1 X + a2 X2 + a3 X3 0.058 0.477 0.570 0.001
Gosan_SNU a0 + a1 X + a2 X2 + a3 X3 0.023 0.864 0.056 0.001

Hongkong_PolyU
Irkutsk

NGHIA_DO
Noto a0 + a1 X + a2 X2 + a3 X3 0.175 −0.191 0.021 −0.021

Omkoi
Seoul_SNU a0 + a1 X + a2 X2 + a3 X3 −0.049 0.838 −0.021 0.002
Shirahama a0 + a1 X + a2 X2 + a3 X3 0.023 1.324 −0.431 0.001

Son_La
Taipei_CWB a0 + a1 X + a2 X2 + a3 X3 0.059 1.388 −0.290 0.001

Ussuriysk a0 + a1 X + a2 X2 + a3 X3 0.034 0.793 −0.195 0.000
XiangHe a0 + a1 X + a2 X2 + a3 X3 0.036 0.998 0.135 0.684

Yonsei_Univ. a0 + a1 X + a2 X2 + a3 X3 0.034 0.900 0.059 1.051

Table A3. Summary coefficients of Terra, Aqua/MODIS AOD products during 2016 in training data (X = AOD).

AERONET Sites Terra, Aqua MODIS a0 a1 a2 a3

Anmyon a0 + a1 X + a2 X2 + a3 X3 0.074 2.703 0.003 0.000
Baengnyeong a0 + a1 X + a2 X2 + a3 X3 0.067 −0.007 −0.058 0.009
Beijing-CAMS a0 + a1 X + a2 X2 + a3 X3 2.211 0.081 0.007 0.006

Beijing a0 + a1 X + a2 X2 + a3 X3 2.360 1.924 0.008 0.003
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Table A3. Cont.

AERONET Sites Terra, Aqua MODIS a0 a1 a2 a3

Bhola a0 + a1 X + a2 X2 + a3 X3 1.900 4.394 0.003 0.001
Chen−Kung_Univ. a0 + a1 X + a2 X2 + a3 X3 2.056 2.996 0.004 0.002

Chiang_Mai_Met_Sta a0 + a1 X + a2 X2 + a3 X3 −0.249 3.419 0.002 0.003
Dalanzadgad a0 + a1 X + a2 X2 + a3 X3 −0.134 0.644 0.002 0.003
Dhaka−Univ. a0 + a1 X + a2 X2 + a3 X3 0.891 3.390 0.004 0.000

Dongsha_Island a0 + a1 X + a2 X2 + a3 X3 −0.559 1.871 0.145 0.152
Doi_Ang−Khang a0 + a1 X + a2 X2 + a3 X3 −1.041 3.621 0.005 0.003

EPA−NCU a0 + a1 X + a2 X2 + a3 X3 −0.482 2.302 0.002 0.002
Fukuoka a0 + a1 X + a2 X2 + a3 X3 −1.172 2.937 0.003 0.001

Gangneung_WNU a0 + a1 X + a2 X2 + a3 X3 −1.225 2.614 0.004 0.002
Gosan_SNU a0 + a1 X + a2 X2 + a3 X3 −1.166 3.366 0.003 0.001

Hongkong_PolyU a0 + a1 X + a2 X2 + a3 X3 0.453 2.793 0.003 0.000
Irkutsk a0 + a1 X + a2 X2 + a3 X3 −0.354 1.462 0.001 0.002

NGHIA_DO a0 + a1 X + a2 X2 + a3 X3 0.096 −0.389 0.001 0.150
Noto a0 + a1 X + a2 X2 + a3 X3 0.078 −0.332 0.058 0.098

Omkoi a0 + a1 X + a2 X2 + a3 X3 0.295 2.091 0.002 0.000
Seoul_SNU a0 + a1 X + a2 X2 + a3 X3 2.824 2.907 0.004 0.002
Shirahama a0 + a1 X + a2 X2 + a3 X3 0.880 1.930 0.002 0.000

Son_La a0 + a1 X + a2 X2 + a3 X3 −0.142 2.561 0.034 0.028
Taipei_CWB a0 + a1 X + a2 X2 + a3 X3 2.560 2.795 −1.220 0.001

Ussuriysk a0 + a1 X + a2 X2 + a3 X3 −4.129 4.903 0.081 0.012
XiangHe a0 + a1 X + a2 X2 + a3 X3 3.890 4.613 0.006 0.002

Yonsei_Univ. a0 + a1 X + a2 X2 + a3 X3 3.113 2.958 0.004 0.000

Table A4. Summary coefficients of Suomi-NPP/VIIRS AOD products during 2016 in training data (X = AOD).

AERONET Sites Suomi-NPP VIIRS a0 a1 a2 a3

Anmyon a0 + a1 X + a2 X2 + a3 X3 3.012 2.703 0.003 0.000
Baengnyeong a0 + a1 X + a2 X2 + a3 X3 0.057 −0.330 0.031 0.021
Beijing-CAMS a0 + a1 X + a2 X2 + a3 X3 −1.873 0.988 2.162 1.010

Beijing a0 + a1 X + a2 X2 + a3 X3 −1.870 0.576 1.801 0.003
Bhola a0 + a1 X + a2 X2 + a3 X3 −1.880 0.271 2.783 0.002

Chen−Kung_Univ. a0 + a1 X + a2 X2 + a3 X3 −3.284 0.571 0.187 1.446
Chiang_Mai_Met_Sta a0 + a1 X + a2 X2 + a3 X3 0.115 3.055 0.004 0.009

Dalanzadgad a0 + a1 X + a2 X2 + a3 X3 0.061 0.449 0.003 0.003
Dhaka−Univ. a0 + a1 X + a2 X2 + a3 X3 −3.810 0.310 0.003 0.000

Dongsha_Island a0 + a1 X + a2 X2 + a3 X3 −1.054 2.363 0.003 0.001
Doi_Ang−Khang a0 + a1 X + a2 X2 + a3 X3 2.306 0.886 0.004 0.001

EPA−NCU a0 + a1 X + a2 X2 + a3 X3 −2.434 4.254 0.005 0.001
Fukuoka a0 + a1 X + a2 X2 + a3 X3 −3.952 5.716 0.003 0.001

Gangneung_WNU a0 + a1 X + a2 X2 + a3 X3 1.447 −1.642 −0.532 0.001
Gosan_SNU a0 + a1 X + a2 X2 + a3 X3 −1.665 3.865 0.004 0.001

Hongkong_PolyU a0 + a1 X + a2 X2 + a3 X3 0.487 1.854 0.000 0.010
Irkutsk a0 + a1 X + a2 X2 + a3 X3 −0.419 1.527 0.004 0.002

NGHIA_DO a0 + a1 X + a2 X2 + a3 X3 0.075 −0.577 0.093 0.112
Noto a0 + a1 X + a2 X2 + a3 X3 0.062 −0.412 0.061 0.085

Omkoi a0 + a1 X + a2 X2 + a3 X3 −0.328 2.214 0.003 0.005
Seoul_SNU a0 + a1 X + a2 X2 + a3 X3 −0.729 3.079 0.004 0.002
Shirahama a0 + a1 X + a2 X2 + a3 X3 −2.624 3.674 0.003 0.001

Son_La a0 + a1 X + a2 X2 + a3 X3 0.405 2.245 0.002 0.010
Taipei_CWB a0 + a1 X + a2 X2 + a3 X3 −2.322 0.622 0.004 0.001

Ussuriysk a0 + a1 X + a2 X2 + a3 X3 −0.097 0.883 0.372 0.001
XiangHe a0 + a1 X + a2 X2 + a3 X3 −2.500 −0.561 0.038 0.684

Yonsei_Univ. a0 + a1 X + a2 X2 + a3 X3 −2.670 0.610 0.250 1.051
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Table A5. Seasonal comparison statistics for composite, satellites, and AEORNET AOD products at 500 nm from January to
December 2017.

Comparison Season N R RMSE MB MAE

Composite- AERONET

Spring 1372 0.64 0.24 −0.08 0.14
Summer 800 0.74 0.27 −0.04 0.13

Fall 1860 0.57 0.26 0.00 0.10
Winter 2034 0.71 0.22 −0.06 0.14

AHI-AE RONET

Spring 748 0.22 0.37 −0.10 0.17
Summer 320 0.48 0.34 −0.08 0.11

Fall 669 0.13 0.23 −0.06 0.09
Winter 778 0.17 0.36 −0.11 0.16

GOCI-AERONET

Spring 963 0.28 0.38 −0.09 0.17
Summer 422 0.50 0.35 −0.06 0.12

Fall 786 0.39 0.24 −0.06 0.09
Winter 658 0.22 0.35 −0.12 0.15

MODIS-AERONET

Spring 184 0.60 0.17 −0.14 0.16
Summer 238 0.46 0.15 −0.08 0.11

Fall 736 0.76 0.26 −0.05 0.09
Winter 648 0.75 0.25 −0.12 0.15

VIIRS-AERONET

Spring 150 0.73 0.16 −0.14 0.15
Summer 193 0.83 0.15 −0.08 0.11

Fall 573 0.75 0.24 −0.06 0.09
Winter 467 0.70 0.14 −0.13 0.15

Table A6. Spatial comparison statistics for composite, satellites, and AEORNET AOD products at 500 nm from January to
December 2017.

Comparison Region N R RMSE MB MAE

Composite-AERONET

Korea 2064 0.65 0.23 −0.08 0.14
China 1313 0.74 0.30 −0.06 0.23
Japan 353 0.48 0.18 −0.01 0.06

Taiwan 2336 0.67 0.21 −0.03 0.12

AHI-AERONET

Korea 680 0.13 0.34 −0.12 0.15
China 557 0.18 0.35 −0.17 0.22
Japan 76 0.16 0.17 −0.03 0.05

Taiwan 1202 0.40 0.32 −0.06 0.12

GOCI-AERONET

Korea 2011 0.40 0.35 −0.06 0.16
China 389 0.30 0.37 −0.15 0.25
Japan 401 0.29 0.20 −0.01 0.08

Taiwan 28 0.52 0.31 −0.10 0.10

MODIS-AERONET

Korea 675 0.60 0.14 −0.12 0.15
China 356 0.81 0.29 −0.16 0.23
Japan 130 0.45 0.16 −0.03 0.05

Taiwan 645 0.64 0.21 −0.08 0.11

VIIRS-AERONET

Korea 575 0.70 0.14 −0.13 0.14
China 288 0.85 0.37 −0.17 0.22
Japan 82 0.61 0.16 −0.04 0.05

Taiwan 438 0.66 0.11 −0.09 0.11
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