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Abstract: In this study, we develop a method to estimate corn yield based on remote sensing data
and ground monitoring data under different water treatments. Spatially explicit information on
crop yields is essential for farmers and agricultural agencies to make well-informed decisions. One
approach to estimate crop yield with remote sensing is data assimilation, which integrates sequential
observations of canopy development from remote sensing into model simulations of crop growth
processes. We found that leaf area index (LAI) inversion based on unmanned aerial vehicle (UAV)
vegetation index has a high accuracy, with R2 and root mean square error (RMSE) values of 0.877 and
0.609, respectively. Maize yield estimation based on UAV remote sensing data and simple algorithm
for yield (SAFY) crop model data assimilation has different yield estimation accuracy under different
water treatments. This method can be used to estimate corn yield, where R2 is 0.855 and RMSE is
692.8kg/ha. Generally, the higher the water stress, the lower the estimation accuracy. Furthermore,
we perform the yield estimate mapping at 2 m spatial resolution, which has a higher spatial resolution
and accuracy than satellite remote sensing. The great potential of incorporating UAV observations
with crop data to monitor crop yield, and improve agricultural management is therefore indicated.
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1. Introduction

The goal of precision agriculture is to optimize the inputs and outputs of field oper-
ations to maximize economic profits while maintaining environmental sustainability [1].
The variation of crop yield in spatial information is very important for precision agriculture.
Solving the problem of low-productivity areas in a field can lead directly to an increase in
agricultural profits. Remote sensing technology has long been considered as an effective
means to support precision agriculture, as it can provide multitemporal information on a
large area of crop growth [2–5]. For example, a vegetation spectral index and crop model
are used to monitor crop growth during a whole growing season using MODIS, Landsat
and Rapid Eye Optical Satellite data [6–9]. However, the spatial and temporal resolution of
satellite images mean that they still cannot provide timely detailed information on field
changes for business applications [10].

In recent years, the development of an unmanned aerial vehicle (UAV)system has
overcome the space-time limitations of satellite data in precision agriculture [11–15]. High-
resolution spatiotemporal images based on UAVs can provide important information for
monitoring changes in the field during the growing season [16,17]. High-quality and real-
time UAV data can better solve precision agriculture management problems such as crop
canopy leaf area index (LAI), nitrogen status, water stress, weed stress, and aboveground
dry biomass [18,19].
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Generally, two approaches are widely utilized for remote estimation of crop yield [20].
The earliest and simplest method to estimate output is the empirical model, which is
still used by many researchers [21–25]. The basic idea of this method is to establish a
regression between observed yield and remote sensing data [26,27]. For example, Peng
et al. used hand-held devices to measure LAI, and then used UAV multispectral vegetation
index to invert the LAI of rapeseed, and finally established a relationship between LAI
and yield [28]. In addition to the simplest linear mathematical models, in recent years
some studies have attempted to use machine learning algorithms to establish a regression
between crop yield and remote sensing data [29,30]. However, these empirical models are
easily influenced by time, place and crop type. In the process of expanding the application
scope of this method, the empirical model has poor adaptability to different kinds of crops
and different geographical regions [31].

Another approach is to use remote sensing data and crop growth models to estimate
yields. The crop growth model was calibrated and initialized using remote sensing data.
The crop growth model simulates crop growth and estimates crop yield by combining
crop and environmental parameters [32,33]. Currently, there is a lot of research on remote
sensing data and crop models. Common crop growth models, such as AquaCrop [34]
and World Food Studies (WOFOST), have achieved good results in crop yield estimation.
The main challenge with this approach is that the parameters required are large and
difficult to obtain. These models require a set of comprehensive parameters to simulate
crop growth. For example, WOFOST requires 40 parameters, and the data collection is
time-consuming and laborious, which are challenges in practical applications. In addition,
due to environmental factors, the acquisition of remote sensing data will also involve a
certain amount of error. Therefore, there will be greater uncertainty in the calibration of the
model.

In general, crop models can simulate the process of crop growth with strong theoretical
properties. Crop models require more complex calculations than empirical yield estimates.
The simple algorithm for yield (SAFY) model is a semiempirical crop model, that combines
the theory of crop light use efficiency (LUE) [35] and leaf allocation function [36] to estimate
the daily increase in LAI and biomass. Compared with other crop models, SAFY is
relatively simple and requires fewer parameters. However, SAFY can still simulate the
physiological process of leaf growth and senescence [37,38]. The input parameters for
SAFY include effective light utilization rate (ELUE), effective net radiation, water stress
index, meteorological data, etc.

LAI of remote sensing is usually used for model calibration. Therefore, the accurate
acquisition of LAI in a large area is crucial for the accurate estimation of crop yield. Since
the 1970s, LAI model calibration from satellite images has been widely applied to predict
yields at different geographical locations and scales [39,40]. However, the spatial and
temporal resolution of the satellite data is not ideal [41,42]. It is difficult for satellite data to
obtain the LAI of crops accurately and timely. In recent years, the development of sensor
technology has greatly promoted the application of UAVs in data acquisition [12,43,44].
Compared with airborne and satellite platforms, UAV have higher spatial and temporal
resolution. The UAV platform has the advantages of versatility and cost-effectiveness in
terms of high-throughput crop phenotypes [45] and precision agriculture [46]. LAI using
the UAV crop remote sensing platform has unique advantages.

A data assimilation algorithm is needed for crop model modification and initialization
using remote sensing data [47–49]. Data assimilation is an analytical technique that uses
physical properties and the consistency constraints of the law of time evolution to add
observation information [50] to the pattern state. Ensemble Kalman Filter (ENKF) is used
serial data assimilation algorithm most widely used for yield estimation. It intervenes in
the model simulation by updating state variables based on remote sensing observations,
such as LAI and soil moisture. ENKF takes into account both observational and simulation
errors to provide a more accurate estimate. Compared with many other data assimilation
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algorithms, ENKF is also mathematically simple, computationally efficient and prone to
nonlinearity in the model [51,52].

In this work, we are committed to solving the problem of rapid and accurate yield
estimation of crops at the farmland scale. The objectives of this study were to (i) use a
high-resolution UAV remote sensing platform to establish a high-precision inversion model
of crop LAI; (ii) use the data assimilation method to combine the SAFY model with the
high-precision LAI of crops in the time series to estimate the crop output at the farm scale;
(iii) evaluate the robustness and adaptability of the corn yield estimation model based on a
combination of the crop model and LAI under different water treatments.

2. Materials and Methods

In this section, the materials and methods related to this research are presented
including the study site and experimental design, the UAV camera system for multispectral
image acquisition, Pix4D software for image preprocessing (e.g., image calibration, stitching
and VIs calculation), and the crop growth model.

2.1. Study Site and Experimental Design

This study was conducted in a 1.13 ha research field (40◦26′0.29′ ′N, 109◦36′25.99′ ′E;
elevation: 1010 m), located in Zhaojun Town, Dalate Banner, Ordos, Inner Mongolia, China.
The study area was divided into five different water treatment zones (TRTs). Each TRT had
15 sampling plots, with an area of 3× 3 m2. Three LAI sampling plots were selected for data
collection in each experimental area, as shown in Figure 1. The field moisture capacity was
measured at different depths using the cutting ring method. The field moisture capacity
(volumetric) of soil samples with sampling depths of 30, 60, and 90cm were 20.3, 22.4 and
24.2%, respectively. At the effective rooting depth (0–90 cm), the average field moisture
capacity (volumetric) of soil was 23%. The average permanent wilting point of soil profile
was 5.6% (volume) and the bulk density was 1.56 g·cm−3. Other soil characteristics were
estimated using mixed soil samples in 30, 60 and 90cm layers. According to the USDA Soil
Classification, the soil type is loamy sand (80.7% sand, 13.7% silt, and 5.6% clay). The soil
pH was 9.27, the organic matter content was 47.17 g/kg, and the C content was 27.35 g/kg.
Corn (Junkai 918) was sown on May 4, 2019 (DOY, Day of Year, 124) with a row spacing
of 0.58 m and a plant spacing of 0.25 m, with a row direction of east to west. The corn
sprouted on May 11, 2019, was harvested on September 10, and had a life span of 122 days.
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The study was divided into five processing regions (Figure 1). Calculation of irrigation
was based on the evaporation and transpiration (ET). The crop coefficient method and
FAO-56 were used to calculate ET [53]. The total amount of irrigation in late vegetative,
reproductive and mature stages of the crop was 250 mm. Among them, TRT1 was fully
irrigated, with a total irrigation amount of 256.2 mm. In this study, the control variable
method was adopted for deficit irrigation. Different TRTs were subjected to different levels
of deficit irrigation in the late vegetative and reproductive stages. Therefore, the percentage
of water depth applied to different degrees of deficit irrigation is described for TRT1 crops
in the late vegetative and reproductive stages. For example, the applied water depth of
TRT 4 was 74% at the end of the vegetation period (Table 1).

Table 1. Experimental treatments and total applied water depth (percentage of full irrigation treat-
ment in parentheses) which includes the amount of irrigation in the late vegetative, reproductive and
maturation stages in 2019.

Treatment

Applied Water Depth (mm)

Late Vegetative
(07.04–07.27)

Reproductive
(07.28–08.18)

Maturation
(08.19–09.4) Total

TRT1 98.2 (100%) 86.3 (100%) 71.7 (100%) 256.2 (100%)
TRT2 98.2 (100%) 63.9 (74%) 71.7 (100%) 233.8 (91%)
TRT3 98.2 (100%) 46.6 (54%) 71.7 (100%) 216.5 (85%)
TRT4 72.6 (74%) 63.9 (74%) 71.7 (100%) 208.2 (81%)
TRT5 72.6 (74%) 86.3 (100%) 71.7 (100%). 230.6 (90%)

2.2. Field Data Collection

Figure 2 shows the field data collection, including weather (Figure 2a), soil water
content (SWC, Figure 2b), leaf area index (LAI, Figure 2c), and yield (Figure 2d). Crop
growth model simulations require daily weather observations and soil water charac-
teristics. The weather variables include daily solar radiation, precipitation, and maxi-
mum/minimum/mean temperature. Weather data were collected from surface weather
stations. SWC was measured by using TDR-315L (Acclima, USA) at the center of each TRT
(Figure 1). The soil profile was divided into six layers, with depths of 10, 25, 50, 100, 120,
and 150 cm, and each layer had a time domain reflectometer (TDR).
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The maize biological parameters of LAI were measured before sunset for 2 h in order
to avoid the influence of direct sunlight. The time to collect UAV data is the same as the
time to collect LAI. There are three LAI sampling points in each TRT (Figure 1). A total of
15 sets of samples (LAI) were obtained per day. LAI was measured by using LAI-2000C
(LI-COR, USA). The upper side of fully sunlit leaves was chosen to perform three repeated
measurements at each sample site. At each sampling site, the radiation value was first
measured at the top of canopy, and then at four marking points under the canopy.

The 75 sampling plots were all harvested on 10 September 2019. In each plot, all of the
aboveground plant materials (around 9 m2) were cut for destructive measurements of final
yield. The harvested materials were exposed to the sun for 10 days before the seed was
threshed. The seeds were then cleaned and put into an oven at 80 ◦C until their weights
did not change (after around four days). All the dry seeds were weighed together and the
plot yield was calculated as the ratio of this total weight to the ground area (kg/ha).

2.3. UAV Camera System for Multispectral Imagery and Data Collection

In this work, a commercial aircraft DJI Spreading Wings S1000 Multirotor UAV (DJI
Company, Shenzhen, China) and a five-band multispectral camera (RedEdge, MicaSense
Inc., Seattle, WA, USA), as displayed in Figure 3, constituted the platform of a low-altitude
UAV camera system. The diameter, height, take-off weight, and hovering time of DJI
S1000 were 1045 mm, 386 mm, 6.0 kg, 11.0 kg and 30 min, respectively. The weight,
dimensions and image resolution of the RedEdge camera were 135 g, 5.9 cm 4.1 cm 3.0 cm
and 1280 × 960 pixels, respectively. The RedEdge camera, equipped with GPS, can capture
five spectral images simultaneously, where the spectral information is displayed in Table 2.
Multispectral images were acquired at several key maize developmental stages including
vegetative stages and reproductive stages (01 July 2019, 12 July 2019, 20 July 2019, 7 August
2019, 12 August 2019, 25 August 2019, 4 September 2019), respectively.
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(b), remote control (c) and RedEdge camera (d).

During each flight, the RedEdge camera was mounted on the gimbal and pointed
vertically downwards to ensure aerial image quality. The flight was set at an altitude of
70 m above the ground, providing images with spatial resolutions of 5.5 cm/pixel on the
ground. An iPad with a remote control was used to plan, monitor and control drone flights.
The flight path was planned, and speed and camera triggers were designed so as to obtain
continuous images with overlaps and side overlaps of up to 75% for accurate generation.
The image was calibrated with a standard reflectivity black and white cloth. Each UAV
aerial image contains information needed for camera calibration and image stitching, such
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as camera information (e.g., exposure time, ISO speed, focal length, and black level), GPS,
and IMU (e.g., latitude, longitude, altitude, yaw, pitch, and roll).

Table 2. Spectral information of the RedEdge camera.

Band No. Name Center Wavelength Bandwidth Panel Reflectance

1 Blue 475 nm 20 nm 0.57
2 Green 560 nm 20 nm 0.57
3 Red 668 nm 10 nm 0.56
4 NIR 840 nm 40 nm 0.51
5 RedEdge 717 nm 10 nm 0.55

Pix4DMapper software (commercial version 4.2.27) was used for image preprocessing
to generate corrected and geo-referenced spectral reflectance, including initial processing,
conformal generation and exponential calculation (with reflectance correction). The output
of each layer was a single high-resolution TIFF image. The TIFF image was further post-
processed in MATLAB to determine the sample map of each image layer for subsequent
analysis.

2.4. Crop Growth Model

In the data assimilation framework, we used a modified version of the SAFY model [32].
SAFY is a simple crop growth simulation model that has been successfully applied to eval-
uate crop growth and yield for maize, wheat and soybeans [54–56]. This model can well
summarize the biomass accumulation, allocation and phenology. Compared to popular
crop growth models such as DSSAT and WOFOST, SAFY has few free parameters to specify,
which makes it attractive for large-area practical applications. It also allows investigations
to understand the feedback between ENKF and crop model behavior.

In SAFY, the aboveground dry biomass production is driven by incoming photosyn-
thetically active radiation (PAR) and constrained by air temperature. Two phenological
stages (vegetative and grain) controlled the allocation of accumulated carbon to leaves
and grains. The environmental stress of crops was compensated for by the field-specific
effective light use efficiency (ELUE) parameter. Water stress is an important factor limiting
crop yield. Therefore, in this study, we used soil water content (SWC) to simulate the crop
water stress dynamics. The crop water stress coefficient was calculated by SWC, and SWC
was measured by the time domain reflectometry (TDR) soil moisture sensor. Finally, the
crop water stress coefficient (calculated as a ratio of actual transpiration to potential tran-
spiration) decreased the daily accumulation of new biomass in primary growth modules
accordingly.

The modified SAFY model, hereafter referred to as SAFYswc, has six free parameters:
the day of emergence (D0 ), ELUE, and four coefficients (PLa, PLb, SenA, and SenB)
describing the crop phenological stages (Table 3) as reported in the original SAFYswc
paper [32]. The four phenological parameters are related to the genetic characters of
specific crop type and cultivar, while the emergence day and ELUE are dependent on
the environment. Other parameters, such as those related to soil water dynamics and
temperature stress are assumed to be constant (Table 3). Our decisions of which parameters
to fix and which to free were based on a number of previous studies [6,55,57]. The SAFYswc
model was calibrated and validated using the long-term crop observations in official
government data (2008–2018) to make sure the simulations matched the observations of
the biomass, LAI and soil moisture, and evapotranspiration.
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Table 3. List of parameters and description for the modified simple algorithm for yield (SAFYswc) model.

Parameter Description Notation Unit Initial Value or
Range a

Fixed Climatic efficiency
Ratio of incoming

photosynthetically active
radiation to global radiation

ε - 0.48

Light-interception coefficient Coefficient in Beer’s Law K - 0.5
Optimal temperature for crop

growth
The optimal temperature for crop

functions Topt
◦C 30

Minimum temperature for
crop growth

The minimum temperature below
which crop growth stops Tmin

◦C 10

Maximum temperature for
crop growth

The maximum temperature above
which crop growth stops Tmax

◦C 47

Specific leaf area The ratio of leaf area to dry leaf
mass SLA m2/g 0.024

Initial aboveground biomass The aboveground mass at
emergence DAM0 g/m2 3.7

Root growth rate Increase of root depth over time Rgrt cm·◦C−1·Day−1 0.22

Root length/weight ratio The ratio of root length to root
dry weight Rrt cm/g 0.98

Bare soil albedo Albedo of bare soils SALB - 0.16

Free Day of Emergence The day of the year when the dry
biomass of the crop is 2.5 g/m2 D0 day 120–160

Leaf Partitioning Coefficient 1

Initial fraction of daily
accumulated dry biomass
partitioned to leaf at the

emergence

PLa - 0.1–0.4

Leaf Partitioning Coefficient 2
PLa and PLb together determine
the cumulated GDD when LAI

reaches peak value
PLb - 0.001–0.01

Leaf Senescence Coefficient 1 Cumulated GDD when leaf
senescence starts (LAI decreases) SenA ◦C·Day 500–1200

Leaf Senescence
Coefficient 2

Determines the rate of leaf
senescence SenB ◦C·Day 2000–15,000

Effective Light Use
Efficiency

The ratio between produced dry
biomass and APAR ELUE g/MJ 2.5–5

2.5. Data Assimilation and Technical Processes

In this study, the data assimilation method adopted is the Ensemble Kalman Filter
(EnKF). The Kalman filter is an analytic solution to the general state estimation problem
defined by data assimilation, where two complementary sources of information simulations
and observations are synthesized to provide a better estimate that has no bias and minimum
variance. The Kalman filter recursively estimates the model states with a step followed by
an analysis step. In the forecast step, model states and error covariance evolve over time
without interruption.

As shown in Figure 4, on the left is the model recalibration phase. On the right is
the EnKF data assimilation phase at the field level. On the left, it also tells how SAFYswc
works. SAFY is driven by meteorological data and simulates the growth process of crops
in steps by day. UAV remote sensing images were used as modified data in the simulation
of the crop model. Ei is the forecast and analysis state vectors for ensemble member i. N is
the total number of ensemble members. There are a total of T time steps. At the different
forecast steps, each ensemble member propagates independently using SAFYswc and the
parameter set. When an observation of LAI is available, the ensemble stops propagating
and performs the analysis step that updates the simulated LAI (analysis step).
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2.6. Vegetation Index Calculation and Model Evaluation

In this study, four models were tested for LAI estimation using canopy reflectance
data. VI is the transformations of two or more reflectance bands to enhance the vegetation
features. The VIs tested in this study are summarized in Table 4. The 105 samples were
divided into a training set and a verification set. The training set is 70, and the verification
set is 35. The coefficient of determination (R2) and the root mean square error (RMSE) were
used to evaluate the model fit.

Table 4. Vegetation indices used in this study.

Vegetation Indices Equation

Normalized difference vegetation index NDVI = (NIR − R)/(NIR + R)
Optimized soil-adjusted vegetation index OSAVI = (NIR − R)/(NIR + R + X) (x = 0.16)

Green normalized difference vegetation index GNDVI = (NIR − G)/(NIR + G)
Enhanced vegetation index without a blue band EVI2 = 2.5 (NIR − R)/(NIR + 2.4R + 1)

Modified secondary soil adjusted vegetation index MSAVI2 = 0.5×
[
(2NIR + 1)−

√
(2NIR + 1)2 − 8(NIR− R)

]
Enhanced vegetation index EVI = 2.5 (NIR − R)/(NIR + 6.0R − 7.5B + 1)

3. Result
3.1. LAI Estimation Using Vegetation Indices

In this work, data from two sample plots (70 groups) in each TRT were selected for
modeling, and data from the other sample plot (35 groups) in each TRT were selected
for verification. LAI was the only observation to be assimilated into the SAFYswc model.
Therefore, the important step is to estimate LAI using remotely sensed data for remote
prediction of yield. Some widely used Vis (Table 4), obtained from UAV cameras, are
related to LAI measurements. The vegetation index was taken as the independent variable
and the leaf area index as the dependent variable. The linear model, exponential model,
logarithmic model and quadratic polynomial model were constructed, and the optimal
model was selected as the estimation model of leaf area index. The optimal estimation
model of LAI inversion regression equation is shown in Table 5.
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Table 5. The estimation and validation models of leaf area index (LAI) based on vegetation index.

Vegetation Index
Optimal Model Validation Models

R2 RMSE R2 RMSE

NDVI 0.823 0.646 0.784 0.659
OSAVI 0.799 0.669 0.772 0.682
GNDVI 0.792 0.697 0.743 0.718

EVI2 0.724 0.774 0.690 0.791
MSAVI2 0.741 0.728 0.734 0.742

EVI 0.877 0.609 0.795 0.621

There was a significant regression relationship between most vegetation indices and
leaf area indices. The regression equation R2 of each model was estimated to be greater
than 0.724, which reached significance. Among all the indexes involved in this experiment,
the inversion results, from high to low, are EVI, NDVI, OSAVI, GNDVI, MSAVI2, and EVI2.
The regression model of leaf area index estimation equation based on EVI2 has a lower
determination coefficient R2=0.724. The estimation model and validation results of LAI are
shown in Figure 5. The R2 of the four models based on EVI inversion LAI were all higher
than 0.8. The leaf area index model was inverted by EVI with the highest determination
coefficient (R2 = 0.877).
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Figure 5. The estimation model of LAI on EVI.

The validation accuracy of the LAI inversion model constructed by EVI is also gener-
ally high, with a maximum R2 of 0.795 (Figure 6). In conclusion, LAI inversion accuracy
based on vegetation index EVI and a linear model is the highest. EVI has the highest
inversion accuracy and the best verification effect, so EVI is selected as the inversion index
of LAI.
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3.2. Comparison of Observation Yield and Estimated Yield

The yield of crops is greatly affected by water. The yields of crops in different irrigation
treatment regions vary greatly, as shown in Figure 7. The highest average yield of the
treatment region (TRT1) was 6439.9 kg/ha. The lowest average yield of the treatment
region (TRT4) was 2193.2 kg/ha. The estimation accuracy of different treatment regions is
also different. Among them, the highest estimation accuracy is TRT2, whose R2 is 0.877.
The lowest estimated accuracy is TRT3, whose R2 is only 0.355. The applied water depth,
from high to low, is TRT1, TRT2, TRT5, TRT3, and TRT4. The estimated yield accuracy,
from high to low is TRT2, TRT5, TRT1, TRT4, and TRT3. As shown in Figure 7, treatment
regions with moderate water deficit (TRT2 and TRT5) have the highest accuracy when
estimating yield. The yield estimation accuracy is poor in treatment regions with saturated
irrigation (TRT1). However, the yield estimation accuracy for severe deficit irrigation (TRT3
and TRT4) was the lowest.

Figure 7f shows the maximum/minimum of the observed yield and the maximum/
minimum of the estimated yield. The yield distribution gradient of moderate deficit
irrigation is large. The yield distribution gradient of severe deficit irrigation is small. This
may be due to the spatial heterogeneity of soil water content. The spatial heterogeneity of
soil water content includes the imbalance of soil water holding capacity and soil fertility in
different places. Under the conditions of saturated irrigation and severe deficit irrigation,
the spatial heterogeneity of soil water content was not obvious. However, under moderate
water deficit, the imbalance of spatial heterogeneity of soil water content was obvious. We
used different irrigation treatments for different experimental areas. Yield gradients were
higher in different irrigation treatments than in natural conditions. The applicability of
this method can be better examined with a high yield gradient. Soil imbalance can lead
to different crop yields at the same level of irrigation. Under different irrigation levels,
the imbalance of soil will aggravate the difference of yield. As shown in Figure 8, we
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compared the measured and estimated average yields at five different irrigation levels.
The measured average yield and the estimated average yield at five different irrigation
levels were basically the same. We compared the observed and estimated yields at all
sample points and at five different irrigation levels. As shown in Figure 8, the yield
estimation accuracy was generally good at different irrigation levels, with R2 = 0.855 and
RMSE = 692.8 kg/ha.
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3.3. Yield Mapping

At different growth stages, we took multispectral images with 5 cm spatial resolution.
If we used data assimilation at 5 cm spatial distribution, the computational burden would
become huge. In order to get a better sense of the mapped maize yield with data assimi-
lation, we obtained the yield estimate mapping at 2 m spatial resolution. We compared
the distributions of yield estimated by the data assimilation approach with different levels
of irrigation (Figure 9). The yield (data assimilation) ranged from 2000 to 10,000 kg/ha.
Different irrigation treatments result in a larger yield gradient, which is well represented in
the yield histogram. Water is the main factor affecting yield. The effect of water on yield
can be clearly seen from the figure. With the help of spatially explicit LAI input, the data
assimilation yield estimates present both between- and within-field variability.
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4. Discussion
4.1. Accuracy of LAI Inversion and its Influence on Yield Estimation Accuracy

Compared with DASST and WOFOST, SAFY is relatively simple. Therefore, SAFY
has a poor capability of correcting LAI. The accuracy of yield estimation by SAFY and LAI
through data assimilation depends on the inversion accuracy of LAI. Moreover, in the late
growth stage of crops, there will be a phenomenon of vegetation supersaturation. This will
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lead to a decrease in the accuracy of LAI inversion for crops. Especially in the linear model,
the actual LAI of crops would be higher than the inversion LAI. This will affect the accuracy
of production estimation. To solve this problem, LAI inversion can be changed from single
multispectral image inversion to multisource remote sensing inversion. Inversions can also
be carried out through nonlinear models. The influence of vegetation supersaturation on
inversion accuracy should be minimized.

4.2. Uncertainties in the Estimated Crop Yield

Figure 7 shows the difference between observed and estimated yields. During the
experiment, no pests or diseases were found in the experimental area. Therefore, crop
yield is mainly affected by temperature, soil water content, and nutrients. LAI is the only
variable assimilated by remote sensing data and crop models. The main factor affecting
crop yield estimation may be the estimation accuracy of LAI. Especially in the fully irrigated
experimental area (TRT1), the low estimation accuracy is mainly due to the phenomenon
of supersaturation in the later growth stage of maize.

The spatial heterogeneity of soil water content can also affect the accuracy of the
experiment. The spatial heterogeneity of soil water content may be the main factor affecting
the accuracy of the deficit irrigation experiment area. The treatment areas with different
irrigation levels are adjacent to each other, and the different soil water content will cause
a difference in the water potential. Horizontal water movement can be caused by water
potential difference. There is only one measuring point of SWC in each TRT. In this study,
the measuring points of SWC are not sufficient to represent the spatial heterogeneity
of soil water content. Increasing the number of SWC measurement points can improve
the accuracy of estimation. However, this is costly and difficult to carry out in actual
production. In the future, remote sensing can be used to measure soil moisture.

The higher the resolution of yield estimation, the greater the influence of random error
of soil equilibrium on the accuracy of yield estimation. As shown in Figure 8a, the accuracy
of the yield estimate is greatly improved by lowering the resolution of the yield estimate.
In the future, the accuracy of production estimation can be improved by appropriately
reducing the resolution of production estimation.

In addition, the defects of the SAFY model itself also affect the results. SAFY is a
relatively simple crop model, that only considers soil water content and temperature stress.
The method of yield estimation based on multispectral effects and coupling of crop models
can effectively show the imbalance. It can provide some guidance for precision agriculture.
However, in the case of saturated irrigation and severe water deficits, which may be caused
by the mechanism of the crop model itself, the applicability of the model still needs to
be improved. In the future, we can improve the yield estimation accuracy by further
improving the relevant modules of the crop model.

4.3. Yield Estimation and Data Assimilation

The empirical model is the simplest and most common way to estimate yield. Maimaiti-
jiang et al. used machine learning to estimate soybean yield [58]. The objective of this study
was to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral,
and thermal sensors to estimate soybean (Glycine max) grain yield within the framework
of a Deep Neural Network (DNN). However, empirical models lack physiological expla-
nations for crops, and the generalizability of the models is often poor. There have been
successful operational applications using data assimilation and crop growth models such
as DSSAT for crop yield estimation [49,59]. Yanghui et al. estimated crop yield, at the
county scale, by using satellite remote sensing and the SAYF model [60]. This method
was validated by multiple field-level maize yield datasets across major production states
in the US Midwest. However, most studies have focused on district or regional level
crop yield forecasting, likely due to a lack of robust high-resolution LAI (or other state
variables) retrievals and field-level validation data. This work reduces the research area
to the farmland scale and makes more accurate yield estimations through high-resolution
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LAI and accurate and controllable field data. The accuracy of this study is significantly
improved compared to large-scale production estimates based on satellite remote sensing.
The principle of this research is similar to that of Song et al. [15]. Crop models detail
the complex interactions between environmental factors and management practices, but
they also require clear information about soil characteristics and weather variables, as
well as specific breed parameters that are difficult to obtain at a large scale, making them
unusable for large-scale yield estimation applications. Most previous studies have used
complex crop growth models, such as DSSAT and WOFOST, for data assimilation to esti-
mate yields [61,62]. When data assimilation is applied, LAI is the only correction quantity,
but complex models are less affected by LAI correction. For this reason, simpler crop
models such as SAFY can be a better choice at the field scale.

5. Conclusions

In this paper, we assimilated remote sensing data from UAVs into crop models to
effectively estimate corn yield at the farmland scale. In this study, we developed a method
to estimate corn yield based on remote sensing data and ground monitoring data under
different water treatments. We chose five common vegetation indexes to estimate the LAI
inversion based on UAV vegetation index. A linear model, exponential model, logarithmic
model, and quadratic polynomial model were constructed. Furthermore, the optimal
model was selected as the estimation model of leaf area index. The study found that LAI
inversion based on EVI vegetation index and linear model had the highest accuracy, where
R2 and RMSE are 0.877 and 0.609, respectively. Maize yield estimation based on UAV
remote sensing data and SAFY crop model data assimilation had different yield estimation
accuracy under different water treatments. Generally, the higher the water stress, the lower
the estimation accuracy. Moreover, the estimated yield is often higher than the observed
yield in the treatment area with severe water stress. This method can be used to estimate
corn yield, where R2 is 0.855 and RMSE is 692.8kg/ha. We also performed yield estimate
mapping at 2 m spatial resolution, which offered higher spatial resolution and accuracy
than satellite remote sensing. The great potential of UAV observations incorporated in crop
data to monitor crop yield and improve agricultural management is therefore indicated.
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