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Table S1: Summary of US Forest Service Aerial Detection Surveys (ADS) from 1997 to 2019 
[1] in the Southern Rocky Mountains, USA. “Mapped Area” gives the total area within ADS-
mapped perimeters for each insect or pathogen (i.e., “Agent Code”). For this comparison, 
polygons for each agent code were dissolved across survey years, such that areas with 
overlapping polygons representing the same agent were only included once in area calculations. 
Agents with mapped areas < 100 km2 were excluded. Note that surveyed polygons typically 
include some unaffected areas, and therefore the total mapped area typically overestimates the 
area of tree damage or mortality. 
 

Agent 
Codea Agent Name and Damage Type Primary Tree Species Affected 

Mapped 
Area (km2) 

11006 
mountain pine beetle  
(Dendroctonus ponderosae);  
tree mortality 

five-needle pines (Pinus aristata, Pinus flexilis, Pinus 
strobiformis), lodgepole pine (Pinus contorta), 
ponderosa pine (Pinus ponderosa) 

10,614.3 

12040 

western spruce budworm  
(Choristoneura freemani);  
tree defoliation and occasional 
mortality 

Douglas-fir (Pseudotsuga menziesii), subalpine fir 
(Abies lasiocarpa), white fir (Abies concolor), 
occasionally Engelmann spruce (Picea engelmannii) 

9,437.0 

80002 

subalpine fir mortalityb 
(Dryocoetes confusus, Armillaria 
spp., and others);  
tree mortality 

subalpine fir (Abies lasiocarpa) 7,533.2 

11009 
spruce beetle  
(Dendroctonus rufipennis);  
tree mortality 

blue spruce (Picea pungens), Engelmann spruce (Picea 
engelmannii) 

6,071.1 

80001 
aspen defoliation (NA);  
tree defoliation and occasional 
mortality 

aspen (Populus tremuloides) 4,333.4 

11007 
Douglas-fir beetle  
(Dendroctonus pseudotsugae);  
tree mortality 

Douglas-fir (Pseudotsuga menziesii) 2,331.0 

24032 
sudden aspen decline (NA);  
tree dieback and mortality 

aspen (Populus tremuloides) 1,557.5 

11050 
fir engraver (Scolytus ventralis); 
tree mortality 

Douglas-fir (Pseudotsuga menziesii), subalpine fir 
(Abies lasiocarpa), white fir (Abies concolor); 
occasionally Engelmann spruce (Picea engelmannii) 

1,420.5 

11015 
western balsam bark beetle  
(Dryocoetes confusus);  
tree mortality 

subalpine fir (Abies lasiocarpa) 1,333.9 

11019 
pinyon ips (Ips confusus);  
tree mortality 

two-needle pinyon pine (Pinus edulis) 1,248.8 

25036 

marssonina leaf blight  
(Drepanopeziza punctiformis); 
tree defoliation and occasional 
dieback and mortality 

aspen (Populus tremuloides) and cottonwoods 
(Populus angustifolia, Populus deltoides, Populus 
fremontii) 

1,178.5 

11029 
pine engraver (Ips pini);  
tree mortality 

lodgepole pine (Pinus contorta), ponderosa pine (Pinus 
ponderosa) 

689.7 

80004 
pinyon pine mortality (NA);  
tree mortality 

two-needle pinyon pine (Pinus edulis) 666.3 



12094 

western tent caterpillar  
(Malacosoma californicum); 
tree defoliation and occasional 
mortality 

aspen (Populus tremuloides), cottonwoods (Populus 
angustifolia, Populus deltoides, Populus fremontii), 
willows (Salix spp.)  

525.3 

80003 
five-needle pine decline (NA);  
tree mortality 

five-needle pines (Pinus aristata, Pinus flexilis, Pinus 
strobiformis) 

338.9 

11002 
western pine beetle  
(Dendroctonus brevicomis);  
tree mortality 

ponderosa pine (Pinus ponderosa) 314.5 

12050 
needle miner  
(Coleotechnites spp.); 
tree defoliation 

various species, primarily Pinus 289.5 

12180 

tent caterpillars  
(Malacosoma spp.); 
tree defoliation and occasional 
mortality 

various deciduous species (Populus spp., Quercus 
gambelii) 

189.7 

12123 

Douglas-fir tussock moth  
(Orgyia pseudotsugata); 
tree defoliation and occasional 
mortality 

blue spruce (Picea pungens), Douglas-fir (Pseudotsuga 
menziesii), subalpine fir (Abies lasiocarpa), white fir 
(Abies concolor); Engelmann spruce (Picea 
engelmannii) 

185.2 

25034 
Lophodermella needle cast  
(Lophodermella spp.); 
tree defoliation 

various pine species (Pinus spp.) 135.4 

aAgent code corresponds to “DCA_CODE” field in Aerial Detection Survey Polygons 1997-2019. 
bSubalpine fir mortality refers to subalpine fir decline (SFD), a mortality complex that includes western balsam bark 
beetle, Armillaria root rot, and other damage agents. 
 
 
 

Table S2: Damage agent and host combinations used to restrict regional maps of bark beetle 
occurrence and severity in the Southern Rocky Mountains, USA. The study area was limited to 
subalpine forests on US Forest Service lands within 500 m of ADS polygons representing the 
following agent-host combinations. 
 

Agent Name Tree Host Species 

mountain pine beetle (Dendroctonus ponderosae) five-needle pines (Pinus aristata, Pinus flexilis, Pinus 
strobiformis), lodgepole pine (Pinus contorta) 

spruce beetle (Dendroctonus rufipennis) 
 

blue spruce (Picea pungens), Engelmann spruce (Picea 
engelmannii), spruce species (Picea spp.) 

subalpine fir mortality (Dryocoetes confusus, 
Armillaria spp., and others) 
 

subalpine fir/corkbark fir (Abies lasiocarpa) 

Western balsam bark beetle (Dryocoetes 
confusus, Armillaria spp., and others) 
 

subalpine fir/corkbark fir (Abies lasiocarpa) 

 
 
 
 
 
 



Limiting the Study Area to Subalpine Forests Potentially Affected by Bark Beetles 

We used several spatial datasets to restrict the study area to subalpine forests that may 

have experienced bark beetle-induced tree mortality, and to limit the influence of other forest 

disturbances (e.g., fire, timber harvests). First, we identified areas that could have been affected 

by bark beetle attack in the Southern Rocky Mountains (SRM), USA as all locations within 500 

m of 1997-2019 ADS polygons with agent-tree host combinations described in Table S2 [1,2], a 

total area of 53,827 km2. A 500-m buffer is a conservative threshold adopted in other studies that 

limits the omission of bark beetle-induced tree mortality due to locational errors in ADS data [3]. 

Next, we restricted these sites to locations that were classified as forest in the 1992 National 

Land Cover Dataset (NLCD) [4] and any vegetation class in 2016 NLCD [5], thereby removing 

developed lands, bare ground, and other unvegetated cover types, further limiting the study area 

to 39,573 km2. To constrain our analyses to subalpine forests and account for incorrect agents or 

host codes in ADS data, we used species abundance maps [6] of lodgepole pine, Engelmann 

spruce, subalpine fir, and five-needle species, the dominant coniferous tree species in the 

subalpine zone. We summed values from individual species abundance maps and masked any 

locations in the study area with less than 1 m2 ha-1 basal area combined across species. After 

masking to subalpine forests, the study area was 37,316 km2. To limit the influence of fires and 

timber harvests that occurred 1996-2019, we excluded burned areas in the Monitoring Trends in 

Burn Severity (MTBS) [7] and geospatial multi-agency coordination (GeoMAC) [8] datasets, 

and removed recorded timber harvests, fuels treatments, sanitation treatments, and salvage 

logging in the national Forest Activity Tracking System (FACTS) dataset [9] and a regional fuels 

treatment database [10], reducing the study area to 33,275 km2. Finally, we limited the study area 

to locations within US Forest Service boundaries, where descriptions of timber harvests were 



most reliable. In total, the final study area spanned 25,946 km2 with a 30-m grain size. So, while 

removing fire, timber harvest, and limiting the study area to USFS lands excludes some areas 

that were potentially affected by beetles, it retains 70% of the total area (i.e., subalpine forests 

within 500 m of ADS-mapped bark beetle-induced tree mortality) defined using other criteria, 

and better ensures that our analyses are recording bark beetle attack.’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3: Data contributor, sample size (n = number of plots), plot design, and data collection 
protocol for the 239 field plots used to predict bark beetle presence and severity across the 
Southern Rocky Mountains, USA. Note that while field protocol and plot sizes differed slightly 
among contributors, we found no evidence for prediction bias based on contributor, initial forest 
density, or other potentially meaningful covariates. 
 

Contributor(s) n Plot Design and Collection Protocola 

Andrus 106 Square field plots (20 x 20 m) were established in areas exceeding c. 20% mortality of 
Picea engelmannii and Abies lasiocarpa due to bark beetle attack c. 2000-2012. Field 
data characterized tree species, condition (i.e., live or dead), and diameter for all 
individuals exceeding 4 cm in diameter at breast height (DBH, 1.37 m above ground 
level). For dead stems, tree mortality agent was also recorded. Surveys were completed 
in 2016-2017.  

Chapman 53 Belt transects (4 x 50 m) were established 2010-2012 in areas that were dominated by 
lodgepole pine (Pinus contorta) and had ADS-mapped tree mortality attributed to 
mountain pine beetle. Plots were stratified by stand composition in an effort to capture 
a range of stand types. Field data include records of tree species, condition (i.e., live or 
dead), and diameter for all individuals exceeding 4 cm DBH. For dead individuals, tree 
mortality agent was also recorded.  

Gill 8 At each plot location, three parallel belt transects (each 2 x 50 m) were permanently 
established in the early 2000s in areas that were relatively undisturbed but adjacent to 
areas affected by historical bark beetle outbreaks or fires in 2002. These plots were 
resurveyed in 2014, and they were affected by bark beetles between measurements. 
Field plots characterized species, condition (i.e., live or dead), and diameter for all trees 
exceeding 4 cm in diameter at breast height (DBH, 1.37 m above ground level). 

Hart 20 Square field plots (20 x 20 m) characterized tree species, condition (i.e., live or dead), 
and diameter for all stems exceeding 4 cm DBH. For dead individuals, tree mortality 
agent was also recorded. Surveys were completed 2010-2013. 

Harvey 31 Circular field plots (36-m diameter) were established in areas with ADS-mapped tree 
mortality due to subalpine fir decline or western balsam bark beetle (Dryocoetes 
confusus). Plots characterized tree species, condition (i.e., live or dead), and diameter 
for all individuals taller than 1.37 m above ground level. For dead stems, tree mortality 
agent was also recorded. Surveys were completed in 2016. 

Veblen 21 Rectangular field plots ranging 70-1,764 m2 were permanently established 1982-1986 
and 2016 (only three plots were established in 2016). Smaller “gap” plots were installed 
to characterize forest dynamics in relatively open areas, but the majority of field plots 
(i.e., “large plots” of c. 0.25 ha) were installed in relatively homogeneous, unlogged 
stands. Large plots were allowed to vary in size in an effort to survey at least 250 live 
trees. Field plots characterized tree species, condition (i.e., live or dead), and diameter 
for all exceeding 4 cm in diameter at breast height (DBH, 1.37 m above ground level) 
and were resurveyed at regular intervals for tree mortality. For dead stems, tree 
mortality agent was also recorded. 

a: Visual interpretations of Landsat time series and high-resolution imagery were used at each field plot location to 
ensure that there was no visible mortality that occurred after the time of field surveys but prior to 2019, confirming 
that subsequent disturbances were not present in LandTrendr-derived predictors (i.e., total spectral decline 1997-
2019) that would have been excluded in reference data. 

 
 
 
 



Table S4: Summary of forest structure, tree mortality, and Random Forest model accuracy in 
field plots collected by different data contributors. Pre-outbreak basal area gives the density of 
all species c. late 1990s. Mortality gives the percentage of initial stand basal area that died c. 
1990s-2010s, primarily due to bark beetle attack, though other minor causes were also included 
(e.g., drought, competition, sudden aspen decline). Presence gives the percentage of field plots in 
which bark beetle-induced tree mortality was correctly detected using the Random Forest model 
of bark beetle presence, based on 10-fold cross-validation. Note that ‘Harvey’ and ‘Veblen’ plots 
were detected at lower rates, primarily because they had lower amounts of tree mortality and a 
weaker spectral signal. Severity gives the root-mean-squared error (RMSE) of predicted and 
observed values of percent basal area mortality using Random Forest model of bark beetle 
severity, based on 10-fold cross-validation. 
 

Contributor(s) Dominant 
Mortality 
Agent(s) 

Pre-outbreak 
Basal Area (m2 

ha-1); Mean 
(Min-Max) 

Mortality (% 
BA); Mean 
(Min-Max) 

Presence 
(%ACC) 

Severity 
(RMSE) 

Andrus SB, SFD 53.8 (15.9-104.2) 76.8 (26.2-98.4) 94.3 18.5 

Chapman MPB 63.8 (14.2-107.4) 72.7 (37.7-99.3) 86.8 14.3 

Gill MPB, SB, SFD 59.6 (36.9-80.9) 49.6 (4.5-91) 62.5 11.7 

Hart SB, SFD 58.9 (26.4-113.4) 66.6 (0.7-99.7) 70.0 22.9 

Harvey MPB, SB, SFD 74.3 (45.5-144.9) 27.2 (5.1-66.8) 19.4 18.1 

Veblen MPB, SB, SFD 72.5 (18.5-116.8) 13.1 (1.8-36.3) 33.3 11.3 

All MPB, SB, SFD 60.9 (14.2-144.9) 62.1 (0.7-99.7) 74.5a 17.3 

MPB: Mountain pine beetle (Dendroctonus ponderosae) 
SB: Spruce beetle (Dendroctonus rufipennis) 
SFD: Subalpine fir decline (Dryocoetes confusus, Armillaria spp., and others) 
aPercent classification accuracy for “all” plots does not include control points derived from aerial image 
interpretation and corresponds to specificity (i.e., correct detection given occurrence) of occurrence model. Overall 
accuracy when including control absence points was c. 80%. 

  



Calculation of Winter NDVI 

Many of the spectral bands and indices that we used to develop LTS were calculated 

from growing season imagery collected June 1-September 30. However, imagery from the winter 

season may help to isolate the signals of mortality and growth of evergreen conifers, distinct 

from herbaceous vegetation and deciduous tree species [11,12]. Therefore, we also developed 

annual composites of the Normalized Difference Vegetation Index (NDVI) from December 1focal 

yr to April 1focal yr +1 for use with LandTrendr. Instead of the pre-processing routines typically 

used with imagery collected during the summer growing season [13], we used a separate set of 

pre-processing steps to calculate winter NDVI, following [12,14]. First, we restricted individual 

winter Landsat scenes to areas with “snow-on” conditions (based on a minimum value of 0.4 in 

the Normalized Difference Forest Snow Index [NDFSI]); [15]. After masking areas with the 

absence of snow cover, we developed yearly winter-season composites of NDVI using the 75th 

percentile of NDVI values from all snow-on pixels in a given 30-m cell. The use of the 75th 

percentile of NDVI, in combination with the snow mask developed from NDFSI, ensured that 

some canopy vegetation was visible but that partial snow cover obstructed much of the 

herbaceous vegetation below the forest canopy. 

Spatial Segmentation of Annual Spectral Band and Index Values 

 LandTrendr is a pixel-based algorithm that partitions Landsat time series (LTS) into 

homogeneous periods of vegetation growth, stability, and decline [16]. As such, the spatial 

context surrounding each pixel is not explicitly incorporated into temporal segmentation using 

LandTrendr. However, when objects of interest exceed the area of an individual 30-m pixel (e.g., 

agricultural fields, forest stands), spatial segmentation and object-based image analysis may 

improve the identification of changes in surface cover using LTS [17–21]. Furthermore, spatial 



segmentation can reduce high-frequency noise present in otherwise homogeneous areas, leading 

to more accurate and consistent end products (e.g., [22,23]). To incorporate spatial context in the 

development of LandTrendr products, we used Simple Non-Iterative Clustering (SNIC) [24] to 

develop smoothed annual maps of each band/index prior to temporal segmentation. For each 

spectral band and index (Table 1 in the main text), we applied SNIC at three spatial scales (5-, 

10-, and 20-pixel seed spacing), where scale is defined as the spacing between ‘seed locations’ in 

a uniform grid used to initiate the development of an image object composed of adjacent, 

spectrally similar pixels. Following the identification of objects within each map using SNIC, 

individual pixel values (within a yearly composite) were reassigned to the mean value of all cells 

within the object. Thus, SNIC performed at a 20-cell seed spacing creates relatively large 

homogeneous objects within an annual map, while a 5-cell seed spacing retains greater fine-scale 

detail (Figure S1). Following spatial segmentation of annual maps, we developed four yearly 

time series of each spectral band and index (i.e., 16 spectral bands and indices for a total of 64 

individual time series) within each 30-m voxel using (1) original, unsegmented maps (which is 

common practice when using LandTrendr), as well as the SNIC-smoothed annual maps at (2) 5-, 

(3) 10-, and (4) 20-pixel seed spacings. While LandTrendr temporal segmentation of yearly time 

series was still performed at the pixel-level, the smoothed annual maps used to develop the 

yearly time series in each 30-m voxel incorporate the spatial context of the surrounding area.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S1: A comparison of (a) 2005 NAIP (National Agriculture Imagery Program) aerial 
imagery [25] and Landsat-derived maps of the Normalized Burn Ratio (NBR), with and without 
spatial segmentation. Annual maps of each spectral band and index were spatially segmented at 
multiple scales (5-, 10, and 20-pixel seed spacings) prior to temporal segmentation using 
LandTrendr. In the example scene, NBR for the 2005 growing season is shown (b) without 
spatial segmentation (i.e., raw NBR values), and with spatial segmentation at (c) 5-, (d) 10-, (e) 
20-pixel seed spacings to illustrate the effects of segmentation scale. 
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Landsat ETM+ Data Gaps and Striping Patterns 

 Preliminary analyses suggested that including Landsat ETM+ images acquired after the 

scan-line corrector failure in 2003 led to characteristic striping patterns in regional maps of bark 

beetle occurrence and severity (Figure S2). Therefore, we compared maps with and without the 

inclusion of Landsat ETM+ images collected 2003-2019. The exclusion of Landsat ETM+ 

images from this period eliminated these striping artifacts while maintaining nearly identical 

patterns (Figure S2). Notably, this restriction also leads to a lack of scenes in the 2012 composite 

image for the study area, as ETM+ was the only Landsat sensor that was operational in 2012. 

However, the LandTrendr algorithm can effectively interpolate missing values in these cases by 

using the overall trend in the time series. Comparisons indicated that this data gap did not cause 

issues in final predictions, even when disturbance events (e.g., fire, harvest, bark beetle outbreak) 

occurred 2011-2013. 

 
Figure S2: A comparison of Random Forest-derived maps of bark beetle severity in a portion of 
the study area, developed using Landsat time series products (a) with and (b) without the 
inclusion of Landsat ETM+ imagery acquired following the 2003 scan line corrector failure. 
Note that maps are nearly identical with the exception that striping (created by data gaps in 
individual scenes following the 2003 scan line corrector failure, leading to large within-scene 
variation in the seasonality of imagery) is removed by excluding Landsat ETM+ data 2003-2019 
from annual image composites. 
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Identifying Slope Thresholds to Exclude Other Disturbances and Reduce Spectral Noise 

While we used ancillary data to reduce the influence of fires and timber harvests on 

regional maps of bark beetle presence and severity, these databases are do not include some 

smaller fire events or unrecorded harvests. Thus, we also used a time series segment-level 

classification within LandTrendr to reduce the effect of unrecorded disturbance events unrelated 

to bark beetles. Spectral declines associated with bark beetle-induced tree mortality typically 

happen at a lower rate (i.e., spectral change yr 
-1) than spectral declines due to wildfire or timber 

harvest [29]. Therefore, we excluded individual disturbance segments, identified through 

LandTrendr, that occurred with a greater rate of spectral change than was typical of bark beetle 

attack following [30]. For each spectral band/index and spatial segmentation combination, we 

calculated the rate of change in the largest LandTrendr-identified disturbance segment (hereafter 

“maximum slope”) at each of 239 field plots with bark beetle-induced tree mortality c. 1990s-

2010s. We compared the maximum slope values from these bark beetle plots with the maximum 

slope values in 107 field plots in subalpine forests that experienced wildfire 2012-2013 [31] and 

97 points (located through the interpretation of imagery and LTS) in areas with timber harvest c. 

1990s-2010s. These comparisons indicated that a maximum slope filter based on the common 

definition of statistical outliers (i.e., the 75th percentile + 1.5 * the interquartile range of 

maximum slope values from beetle plots), applied during LandTrendr segmentation of each 

spectral band/index and spatial segmentation combination, removed many high-severity fire and 

timber harvest segments while still allowing the remaining time series to be utilized in a 30-m 

voxel (Fig S3; Table S5). In other words, locations with LandTrendr-identified segments 

exceeding the maximum slope filter were still retained in regional maps, but individual 

disturbance segments that exceeded the maximum slope filter were excluded. 



 

Figure S3: Example of maximum change slopes of largest disturbance identified by LandTrendr 
segmentation of TM-equivalent Band 5 across different disturbance types. As expected, biotic 
disturbances (i.e., bark beetle attack) showed a lower rate of spectral change yr 

-1 than did fire 
and harvest events. The dashed line gives the maximum slope threshold for bark beetle attack 
(257.7 in the case of B5 without spatial segmentation; Table S5), and disturbance segments with 
a rate of change exceeding the slope threshold were excluded from LandTrendr products to 
reduce noise and remove severe tree mortality that was unrelated to bark beetle attack (e.g., 
unidentified fires or harvest events). Note that the locations of known fires and timber harvests 
were also excluded from regional maps.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5: Maximum slope thresholds, specific to each spectral band/index and spatial 
segmentation combination, used to filter disturbances that exceeded the typical rate of change 
(maximum spectral change yr 

-1) for bark beetle attack. Thresholds were identified using the 
common definition of statistical outliers (75th percentile + 1.5 * interquartile range) based on 
spectral change in the largest disturbance segment extracted from 239 field plots with bark 
beetle-induced tree mortality. Numbered subscripts correspond to the spatial scale of 
segmentation used with annual band/index maps (Figure S1) prior to temporal segmentation with 
LandTrendr (band/index values without subscripts were not spatially segmented). 
 

Band/Index 
Slope Threshold 
(change yr-1) Accuracy (%) 

BB Retained 
(%) 

Fire/Harvest 
Removed (%) 

B1 22.3 72 84.5 57.4 

B15 44.3 64.6 85.4 40.2 

B110 25.7 68.6 80.8 54.4 

B120 27.3 65.9 79.9 49.5 

B2 62.5 64.6 84.1 41.7 

B25 100.8 62.3 85.4 35.3 

B210 59.1 64.3 84.1 41.2 

B220 51.8 61.4 82.4 36.8 

B3 115.5 66.6 90.4 38.7 

B35 121.4 64.3 88.7 35.8 

B310 93.4 62.8 83.7 38.2 

B320 95 58.2 81.6 30.9 

B4 212.5 51.2 82 15.2 

B45 223.8 51.2 81.6 15.7 

B410 184.7 52.1 81.6 17.6 

B420 198.2 49.4 80.3 13.2 

B5 257.7 74.3 87 59.3 

B55 258.7 74 90 55.4 

B510 263.3 69.1 90 44.6 

B520 156.8 72.9 86.2 57.4 

B7 196.6 78.8 87.9 68.1 

B75 213.3 78.8 88.3 67.6 

B710 174.2 73.8 83.3 62.7 

B720 171.5 74 84.1 62.3 

EVI 148.8 60.3 82.8 33.8 

EVI5 77.3 62.1 81.2 39.7 

EVI 10 180.2 57.8 83.3 27.9 

EVI 20 170.2 54.6 82.8 21.6 

NBR 159.8 71.3 92.1 47.1 

NBR5 151.9 70 91.6 44.6 

NBR 10 159.9 66.8 89.5 40.2 

NBR 20 122.4 66.4 84.5 45.1 

NDMI 123.1 63.9 86.2 37.7 

NDMI5 149.9 62.8 88.3 32.8 

NDMI 10 144.6 60.5 88.3 27.9 

NDMI 20 161.4 59.8 90.8 23.5 

NDVI 119.9 60 91.6 23 

NDVI5 118.3 60.3 91.2 24 

NDVI 10 71.9 60.7 84.5 32.8 



NDVI 20 136.2 55.5 93.7 10.8 

RGI 75.8 58.2 88.7 22.5 

RGI5 75.9 56.9 90.4 17.6 

RGI 10 81.4 54.9 90.4 13.2 

RGI 20 66.9 55.5 89.5 15.7 

TCA 654.6 64.8 92.5 32.4 

TCA5 472.4 63.9 84.1 40.2 

TCA 10 712.2 62.5 90.4 29.9 

TCA 20 424.6 59.8 82.8 32.8 

TCB 152.1 76.3 83.3 68.1 

TCB5 168.3 73.4 83.3 61.8 

TCB 10 158 75.4 85.8 63.2 

TCB 20 200 67.5 84.9 47.1 

TCG 202.6 56.9 85.4 23.5 

TCG5 239.6 54.2 85.8 17.2 

TCG 10 138 56.9 80.8 28.9 

TCG 20 168.4 57.3 84.9 25 

TCW 400.3 74.5 94.1 51.5 

TCW5 285.3 73.8 90.4 54.4 

TCW 10 345.1 74.5 91.6 54.4 

TCW 20 225.1 72.2 83.7 58.8 

WinterNDVI 107.6 52.4 82 17.6 

WinterNDVI5 99.9 52.4 82 17.6 

WinterNDVI 10 82.5 51.9 78.2 21.1 

WinterNDVI 20 195.3 49.9 86.2 7.4 

 

 

 

 

 

 

 

 

 

 

 

 



Correcting Bias in Random Forest Predictions of Outbreak Severity 

 Ra

ndom Forest (RF) regression can reduce predicted values towards the mean of the response, 

biasing predictions at the tails of the distribution [32,33]. Preliminary analyses indicated that this 

was also a problem in the present study (Figure S4a), where low observed values of outbreak 

severity were overpredicted and high observed values were underpredicted (in 10-fold cross-

validation) by fitted RF models. In the present study, accurate predictions of extreme values of 

outbreak severity were particularly important because low values may help to identify 

disturbance refugia and high values are indicative of near-total loss of the tree canopy. Thus, we 

corrected RF predictions of severity using the following equation, which is based on a common 

method of bias correction used with spatially-explicit climate records [34–36]:

  (1) 

where ŷunc and ŷcor are the predicted pixel values at a given field plot, before and after bias 

correction, respectively. μrf and μobs are the means and σrf and σobs are the standard deviations of 

RF-predicted and observed pixel values across all field plots in 10-fold cross-validation (where 

ten separate RF models were constructed, each trained using 90% of the data and tested on the 

remaining 10%). When bias correction led to predictions above 100 or less than 0, these values 

were truncated at 100 and 0, respectively. Here, μrf was 61.66, μobs was 62.08, σrf was 22.06, and 

σobs was 29.25. These values indicate that the RF model was accurately predicting the mean and 

underpredicting the variance of the distribution. The results of this bias correction are presented 

in Figure S4b and S4c, where corrected values (i.e., ‘predBC’ in Figure S4c) better match the 

statistical distribution of the observed data than do uncorrected values. While bias correction 
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slightly increased the RMSE of RF model predictions (c. 0.6 increase in RMSE), it led to more 

realistic predictions at the ends of the distribution. The correlation between observed and 

predicted values was unaffected because our bias correction scales the predicted values, thus 

maintaining the relative relationships within the predicted and observed values. 

 

Figure S4: A comparison of predicted and observed values of bark beetle outbreak severity (i.e., 
cumulative percent basal area loss 1997-2019) at the 239 field plots in the Southern Rocky 
Mountains, USA. Predicted values were derived from a Random Forest model using predictors 
derived from Landsat time series. Panel (a) gives the relationship between RF-predicted and 
observed values in field plots, based on 10-fold cross-validation. Panel (b) shows this same 
relationship after bias correction. In (a, b), the dashed line represents a 1:1 relationship, while the 
solid line shows a linear fit to the observed relationship. Panel (c) shows the statistical 
distributions of observed (obs) values in field data, RF-predicted values (pred), and RF-predicted 
values following bias correction (predBC).   
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Knitted R Markdown Document Showing Fitting and Evaluation of Final Random Forest Models 

Predicting Tree Mortality Due to Bark Beetle Activity in the 
Southern Rocky Mountains Using Field Data, Landsat Time 

Series, and A Stacked Ensemble Approach 

Bark Beetle Outbreak Presence and Severity in the Southern Rocky 
Mountains 

This markdown document presents analyses used to predict the presence and severity of bark 
beetle attack in the Southern Rocky Mountains (Colorado, southern Wyoming, and northern 
New Mexico), USA. The code below takes products from the LandTrendr temporal 
segmentation algorithm (Kennedy et al. 2010; Remote Sensing of Environment), calculated in 
Google Earth Engine using 16 different Landsat spectral bands and indices sensitive to 
vegetation, as well as different pre- and post-processing techniques, and compares these 
remotely-sensed products with field data to develop predictions of (1) presence/absence 
(occurrence) of disturbance and (2) percent basal area mortality (severity) across the entire 
region. 

Prior to these analyses, we extracted the total disturbance magnitude (i.e., cumulative 
magnitude of spectral change from all disturbances 1997-2019 in each c. 30-m Landsat cell) 
across 64 different layers (i.e., LandTrendr products developed from 16 different bands and 
indices, each without spatial segmentation and with three different scales of spatial 
segmentation) in LandTrendr at each of 239 field plots and 239 “control points” that had no 
evidence of disturbance. Spatial segmentation (simple non-iterative clustering; Achantra and 
Süsstrunk 2017; computer vision and pattern recognition) at 5-, 10-, and 20-cell seed spacing 
used to smooth annual Landsat image composites (reducing noise in local neighborhoods) and 
slope thresholding was used to remove individual disturbance segments that were more severe 
and shorter in duration than we would expect of bark beetle outbreaks (similar to the approach 
used in Meigs et al. 2015; Forest Ecology and Management). We used the VSURF package in R 
to select the most parsimonious subset of LandTrendr-based predictors to predict occurrence 
and severity and created separate .csv files that included only the selected predictors, the 
response variable, and a few additional columns that were not included in the main analyses 
but have the potential to influence results (e.g., site ID, data contributor, pre-disturbance BA, 
field plot size, defoliation). These are imported near the top of this document. 

After performing the analyses below, we used the fitted Random Forest models (in other 
scripts) to predict presence/absence and severity of disturbance throughout the Southern 
Rocky Mountains Ecoregion. Examples of these maps are shown in the main text and 
accompanying markdown document and also included in the data archive file via data dryad. 



Links below go to different sections of the markdown document. 

1) Visualizing Field Data 

2) Occurrence Model Fitting 

3) Occurrence Model Summary 

4) Severity Model Fitting 

5) Severity Model Summary 

So, first bring in relevant packages 

The following packages are used for data cleaning, model tuning, model fitting, and making 
maps/figures. 

## Bring in Necessary Packages 
package.list <- c("ranger", "caret", "ggplot2", "pdp", "here", "RColorBrewer"
,  
                 "sjPlot", "cowplot", "sf", "leaflet", "doParallel", "paralle
l",  
                 "tidyverse", "corrplot", "viridisLite", "rfUtilities") 
 
## Installing them if they aren't already on the computer 
new.packages <- package.list[!(package.list %in% installed.packages()[,"Packa
ge"])] 
if(length(new.packages)) install.packages(new.packages) 
 
## And loading them 
for(i in package.list){library(i, character.only = T)} 

Bring in field data 

The code below brings in the formatted .csv files that include field data and extractions for each 
of the selected predictors derived from LandTrendr. 

## Field data with percent mortality as well as aerial image interpretation  
  # points without evidence of disturbance. Used in RF classification of dist
urbance 
  # presence/absence 
typeData <- read.csv(here("Data", "AnalysisReady", "typePoints_final.csv")) 
  # Reformatting response to 1/0 so that RF can predict numeric value to rast
er maps 
typeData$DisturbanceType <- as.numeric(typeData$DisturbanceType == "BIOTIC") 
 
## Field data with percent mortality and extracted values of LandTrendr produ
ct. 
  # Used in RF regression of disturbance severity 
fieldData <- read.csv(here("Data", "AnalysisReady", "severityPoints_final.csv
")) 



Set global parameters and create functions 

The following code sets some global parameters (i.e., number of folds in cross-validation and 
colors used in plotting), and saves functions for later use. 

## Setting number of folds for cross-validation in hyperparameter tuning and 
  # accuracy assessment 
nfolds <- 10 
 
## Setting colors for plotting 
bbColor <- "#7E03A8FF" 
noDisturbColor <- "#FB8861FF" 
 
## Function to set seeds in parallel processing for caret tuning 
setSeeds <- function(method = "cv", numbers = 1, repeats = 1, tunes = NULL, s
eed = 71) { 
  #B is the number of resamples and integer vector of M (numbers + tune lengt
h if any) 
  B <- if (method == "cv") numbers 
  else if(method == "repeatedcv") numbers * repeats 
  else NULL 
   
  if(is.null(length)) { 
    seeds <- NULL 
  } else { 
    set.seed(seed = seed) 
    seeds <- vector(mode = "list", length = B) 
    seeds <- lapply(seeds, function(x) sample.int(n = 1000000, size = numbers 
+ ifelse(is.null(tunes), 0, tunes))) 
    seeds[[length(seeds) + 1]] <- sample.int(n = 1000000, size = 1) 
  } 
  # return seeds 
  seeds 
} 

Visualizing locations and characteristics of field plots 

The map below shows the locations of field plots with colors scaled from low (yellow) to high 
(purple) mortality during outbreaks c. 1997-2019. The map is interactive and allows 
zooming/panning. If you click on a specific point, it will show the data contributor(s), the 
percentage of tree basal area that died in the outbreak, and the pre-disturbance live basal area 
of the surveyed stand. 

## First, create sf object of plots for mapping 
  # Filter to important columns for map 
sfPlots <- fieldData %>% 
  select(SiteT:percentMortality) 
  # Create SF object 
sfPlots <- st_as_sf(x = sfPlots, coords = c("longitude", "latitude"), 



                        crs = "+proj=longlat +datum=WGS84") 
 
## Create labels for map 
mapLab <- paste0("<strong>Data Contributor: </strong>", sfPlots$contributor, 
"<br>", 
                 "<strong>Basal Area Mortality (%): </strong>",  
                 round(sfPlots$percentMortality, 1), "<br>", 
                 "<strong>Pre-Outbreak Basal Area (sq m): </strong>",  
                 round(sfPlots$preBA_HA, 1)) 
 
## Color palette for points 
pal_fun <- colorBin(viridis(10, direction = -1), NULL, bins = 10) 
 
## Making map 
leaflet(sfPlots) %>% 
  addTiles() %>%   
  addCircleMarkers( 
    color = ~pal_fun(percentMortality), 
    popup = mapLab, 
    stroke = FALSE, fillOpacity = 0.5 
  ) 

## PhantomJS not found. You can install it with webshot::install_phantomjs(). 
If it is installed, please make sure the phantomjs executable can be found vi
a the PATH variable. 

The occurrence model 

Plotting distributions of the different variables in the presence/absence model 

The plots below show the sampled distributions of each of the VSURF-selected predictors used 
to predict occurrence of bark beetle attack. Purple density plots are values of field plots with 
bark beetle-induced tree mortality, and orange density plots are control points that had no 
evidence of disturbance. Though bands and spectral indices have different responses to 
vegetation change (e.g., visible bands often increase in brightness while near-infrared bands 
decline), all of the predictors below are oriented such that higher values are indicative of 
greater decline in vegetation. Note that although VSURF selected six additional predictors for 
this model, they had evidence of overfitting because (1) disturbance occurrence was associated 
with little spectral change (the opposite of what we would expect), or (2) weird patterns in 
partial dependence plots demonstrated that a small number of outliers were causing local 
maxima/minima. The OOB classification error of the model sightly decreased with the removal 
of these six predictors. 

The names of each variable follow the following syntax: (band/spectral index)_(if spatial 
segmentation was used “Seg” or not “Unseg”)(If spatial segmentation was performed, at what 
spatial scale? Higher numbers mean a coarser scale and larger objects)(“SlpFilt”) 



## Getting indices of columns 
start <- which(colnames(typeData) == "DisturbanceType") 
end <- ncol(typeData) 
 
## Making plots of predictors based on presence/absence 
densPlots <- lapply(colnames(typeData)[(start+1):end],  
                   FUN = function(x, data = typeData){ 
   
  ## Plotting 
  p <- ggplot(data, aes(x = data[,colnames(data) == x],  
                        fill = as.factor(DisturbanceType))) + 
    geom_density(color = "black", alpha = 0.5) +  xlab(as.character(x)) +  
    ylab("density") + theme_bw() + theme(legend.position = "none") + 
    scale_fill_manual(values = c(noDisturbColor, bbColor)) 
 
  ## Returning plot 
  return(p) 
}) 
 
## Putting list of plots together 
sjPlot::plot_grid(densPlots, margin = c(0.1,0.1,0.1,0.1)) 



 

Correlation plot of each predictor of disturbance occurrence 

The plot below shows the correlations among all of the predictors from LandTrendr. Because 
the response is binary (presence/absence), we exclude it from the correlation matrix, although 
differences in each predictor for disturbed and undisturbed sites are shown in the density plots 
above. The correlation among predictors isn’t really a concern with the Random Forest model 
we are using for prediction, but it is interesting to see the similarities and differences among 
the different metrics. Note that all correlations are positive, with lower correlations in red, and 
higher correlations as blue. 

## Creating pairwise correlation matrix 
corrMat <- cor(typeData[c(start+1):end]) 
 
## Color ramp - hacky way to get the function below to work is to repeat twic
e 
pal <- brewer.pal(10, name = "RdYlBu"); pal <- c(pal, pal) 



 
## Making correlation plot 
corrplot(corrMat, method = "circle", diag = F, cl.lim = c(0, 1),  
         tl.col = "black", col = pal, bg = "grey90") 

 

Tuning and fitting the Random Forest model of occurrence 

The code chunk below tests to see if any additional variables can be excluded from the final 
model using recursive feature elimination, tunes hyperparameters (i.e., number of variables to 
split at each node and minimum node size), and fits the final model using the optimal 
parameter set. 

## Getting subset of variables with predictors and response 
modData <- typeData[,c(start:end)] 
 
  # Convert response to factor for RF classification 



modData$DisturbanceType <- as.factor(modData$DisturbanceType) 
 
## Testing multicollinearity of predictors 
multi.collinear(modData[,-1]) 

## NULL 

## Creating CV folds for tuning and fitting 
set.seed(589) 
folds <- createFolds(modData$DisturbanceType, k = nfolds, list = TRUE) 
 
## Setting parameters for recursive feature elimination (i.e., backward selec
tion) 
  # First establishing seeds for multi-core processing 
seeds <- setSeeds(numbers = nfolds, tunes = ncol(modData)-1, seed = 341) 
  # And setting parameters 
controls <- rfeControl(method = "cv", number = nfolds,  
                       index = folds, seeds = seeds, functions = rfFuncs) 
  # Initiating parallel processing and setting seed 
cl <- makeCluster(detectCores()-1) 
registerDoParallel(cl) 
 
## Running recursive feature elimination 
set.seed(212) 
caretRFE <- rfe(y = modData$DisturbanceType,  
                x = within(modData, rm(DisturbanceType)), 
                rfeControl = controls,  
                sizes = ncol(modData)-1) 
stopCluster(cl) 
#caretRFE ## Including all terms is the best option here 
 
# Set hyperparameters for tuning 
controls <- trainControl(method = "cv", number = nfolds, 
                         index = folds, 
                         savePredictions = "all") 
tgrid <- expand.grid( 
  mtry = 2:5, 
  splitrule = c("gini"), 
  min.node.size = c(1, 5, 10, 25, 50, 100) 
) 
 
# Running model on tuning grid 
set.seed(312) 
cl <- makeCluster(detectCores()-1) 
registerDoParallel(cl) 
model_caret <- train(y = modData$DisturbanceType,  
                     x = within(modData, rm(DisturbanceType)), 
                     method = "ranger", 
                     trControl = controls, 
                     tuneGrid = tgrid, 



                     importance = "permutation", num.trees = 1000) 
stopCluster(cl) 
 
## Getting optimal hyperparameters from cross-validation above 
optMtry <- as.numeric(model_caret$bestTune[1,1]) 
optSplit <- as.character(model_caret$bestTune[1,2]) 
optMinNode <- as.numeric(model_caret$bestTune[1,3]) 
 
## Getting other variables to track in crossvalidation 
mortAgent <- typeData$domDisturb; baPre <- typeData$preBA_HA 
pctMort <- typeData$percentMortality; sbwTrees <- typeData$sbw_Trees 
contrib <- typeData$contributor 
 
## Getting seeds for crossvalidation 
  # Creating separate folds for accuracy assessment 
set.seed(192) 
folds <- createFolds(modData$DisturbanceType, k = nfolds, list = TRUE) 
set.seed(520) 
cvSeeds <- sample(1:1000, nfolds) 
 
## Performing 10-fold cross-validation of model 
predVals <- c(); obsVals <- c(); domDist <- c() 
prevBA <- c(); bbSev <- c(); sbwSev <- c(); contr <- c() 
for(i in 1:nfolds){ 
  ## Subsetting data 
  testData <- modData[folds[[i]],] ## Subsetting to test set 
  trainData <- modData[-folds[[i]],] ## Subsetting to training set 
   
  ## Getting other tracked values - contributor, mort agent, and previous BA 
  domDist <- c(domDist, as.character(mortAgent[folds[[i]]])) 
  prevBA <- c(prevBA, baPre[folds[[i]]]) 
  bbSev <- c(bbSev, pctMort[folds[[i]]]) 
  sbwSev <- c(sbwSev,  sbwTrees[folds[[i]]]) 
  contr <- c(contr, as.character(contrib[folds[[i]]])) 
 
  ## Fitting model to training data and predicting to test set 
  mod <- ranger(formula = DisturbanceType~., data = trainData, 
                num.trees = 1000, min.node.size = optMinNode, 
                mtry = optMtry, splitrule = optSplit, seed = cvSeeds[i]) 
   
  ## And getting those values 
  obsVals <- c(obsVals, as.character(testData$DisturbanceType)) 
  predVals <- c(predVals, as.character(predict(mod, data = testData)$predicti
ons)) 
} 
 
## Developing final RF model of disturbance severity with selected parameters 
  # and full dataset 
(presMod <- ranger(formula = DisturbanceType~., data = modData, 
                  importance = "permutation", num.trees = 1000,  



                  min.node.size = optMinNode, splitrule = optSplit, 
                mtry = optMtry, seed = 727)) 

## Ranger result 
##  
## Call: 
##  ranger(formula = DisturbanceType ~ ., data = modData, importance = "permu
tation",      num.trees = 1000, min.node.size = optMinNode, splitrule = optSp
lit,      mtry = optMtry, seed = 727)  
##  
## Type:                             Classification  
## Number of trees:                  1000  
## Sample size:                      478  
## Number of independent variables:  9  
## Mtry:                             2  
## Target node size:                 25  
## Variable importance mode:         permutation  
## Splitrule:                        gini  
## OOB prediction error:             20.08 % 

#saveRDS(presMod, here("AnalysisOutputs", "BB_PresenceMod.rds")) 

Summarizing results of the model of disturbance presence/absence 

Overall, the model of occurrence model is performing OK (c. 80% accurate in OOB predictions). 
It is also worth noting that this is restricted to biotic disturbances that have a weaker spectral 
signal than fire/harvest. If we further restrict predictions using ADS data or other ancillary data 
sources, I would expect the accuracy to go up. The code below prints the classification accuracy 
of the model in 10-fold cross-validation and makes diagnostic plots that describe the model 
predictions by contributor, initial stand density, primary mortality agent, by percent tree 
mortality, and across a range of defoliation by spruce budworm. 

## Summarizing classification accuracy in final model 
confusionMatrix(data = as.factor(predVals), reference = as.factor(obsVals)) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction   0   1 
##          0 206  61 
##          1  33 178 
##                                            
##                Accuracy : 0.8033           
##                  95% CI : (0.7648, 0.8381) 
##     No Information Rate : 0.5              
##     P-Value [Acc > NIR] : < 2.2e-16        
##                                            
##                   Kappa : 0.6067           
##                                            
##  Mcnemar's Test P-Value : 0.005355         



##                                            
##             Sensitivity : 0.8619           
##             Specificity : 0.7448           
##          Pos Pred Value : 0.7715           
##          Neg Pred Value : 0.8436           
##              Prevalence : 0.5000           
##          Detection Rate : 0.4310           
##    Detection Prevalence : 0.5586           
##       Balanced Accuracy : 0.8033           
##                                            
##        'Positive' Class : 0                
##  

## Summarizing model results 
preds <- data.frame(observed = obsVals, predicted = predVals,  
                    contr, domDist, prevBA, bbSev, sbwSev) 
  # Subsetting to just look at those with presence to be able to compare dete
ction 
  # based across disturbance severities, initial densities, etc. 
preds <- preds[(preds$domDist != ""),] 
preds$correct <- as.numeric(preds$predicted == "1") 
 
## Creating some diagnostic plots 
# Summarizing by percent mortality 
preds$bin <- cut(preds$bbSev, breaks = seq(0, 100, by = 20)) 
mortSummary <- preds %>% 
  group_by(bin) %>% 
  summarize(percentCorrect = mean(correct)) 
# Classification accuracy by percent mortality 
a <- ggplot(mortSummary, aes(x = bin, y = percentCorrect)) + 
      geom_bar(color = "black", stat = "identity", fill = "grey80") + 
      theme_bw() + xlab("Tree Mortality (% BA)") + ylab("Percent Detected") + 
      theme(legend.position = "none") 
 
# Summarizing by initial density 
preds$bin <- cut(preds$prevBA, breaks = seq(0, 150, by = 30)) 
mortSummary <- preds %>% 
  group_by(bin) %>% 
  summarize(percentCorrect = mean(correct)) 
# Classification accuracy by inital density 
b <- ggplot(mortSummary, aes(x = bin, y = percentCorrect)) + 
      geom_bar(color = "black", stat = "identity", fill = "grey80") + 
      theme_bw() + xlab("Initial Basal Area (sq m/ha)") +  
      ylab("Percent Detected") + 
      theme(legend.position = "none") 
 
# And summarizing by mortality agent 
mortSummary <- preds %>% 
  group_by(domDist) %>% 
  summarize(percentCorrect = mean(correct)) 



 
## Removing empty factor level 
mortSummary$domDist <- factor(as.character(mortSummary$domDist)) 
 
# Classification accuracy by mortality agent 
c <- ggplot(mortSummary, aes(x = domDist, y = percentCorrect)) + 
      geom_bar(color = "black", stat = "identity", fill = "grey80") + 
      theme_bw() + xlab("Dominant Mortality Agent") + ylab("Percent Correctly 
Detected") + 
      theme(legend.position = "none") 
 
# Summarizing by contributor 
mortSummary <- preds %>% 
  group_by(contr) %>% 
  summarize(percentCorrect = mean(correct)) 
 
# Classification accuracy by mortality agent 
d <- ggplot(mortSummary, aes(x = contr, y = percentCorrect)) + 
      geom_bar(color = "black", stat = "identity", fill = "grey80") + 
      theme_bw() + xlab("Data Contributor") + ylab("Percent Correctly Detecte
d") + 
      theme(legend.position = "none") 
 
# And summarizing sbw by presence/absence 
preds <- preds[!is.na(preds$sbwSev),] 
preds$sbwPres <- as.factor(ifelse(preds$sbwSev == 0, "Absent", "Present")) 
mortSummary <- preds %>% 
  group_by(sbwPres) %>% 
  summarize(percentCorrect = mean(correct), percentMortality = mean(bbSev),  
            seMort = sd(bbSev)/sqrt(n())) 
 
# Potential effect of spruce budworm on classification accuracy 
e1 <- ggplot(mortSummary, aes(x = sbwPres, y = percentCorrect)) + 
        geom_bar(color = "black", stat = "identity", fill = "grey80") + 
        theme_bw() + xlab("Spruce Budworm Presence") + ylab("Percent Correctl
y Detected") + 
        theme(legend.position = "none") 
# Next to plot with  
e2 <- ggplot(mortSummary, aes(x = sbwPres, y = percentMortality)) + 
        geom_bar(color = "black", stat = "identity", fill = "grey80") + 
        theme_bw() + xlab("Spruce Budworm Presence") + ylab("BB Mortality (% 
BA)") + 
        theme(legend.position = "none") + 
        geom_errorbar(aes(ymin=percentMortality-seMort, ymax=percentMortality
+seMort),  
                      width=.2, position=position_dodge(.9))  
e <- cowplot::plot_grid(e1, e2, nrow = 1) 
 
cowplot::plot_grid(a, b, c, d, e, nrow = 5) 



 



We can see in the figures above that it is more difficult to identify the presence of disturbance 
in plots that had lower-severity bark beetle activity. This is reflected both in the first plot that 
shows correct classification by bins of mortality, and by the last figure that shows accuracy by 
mortality agent. The model is performing less well on plots that were primarily affected by SFD, 
but these tended to be in the lower-severity range, so I don’t think it is too surprising that they 
are being classified as “no disturbance” in the disturbance presence/absence layer. The trends 
by initial basal area show that there doesn’t appear to be a strong classification bias based on 
this, which is good. Interestingly, plots with spruce budworm (in addition to bark beetle attack) 
are more likely to be detected than those without defoliation, even though tree mortality is 
lower on average. 

Variable importance and partial dependence plots for the presence/absence 
model 

The following chunks plot variable importance and partial dependence for each of the spectral 
indices and bands that were included in the final Random Forest model of bark beetle 
presence. 

## Plotting variable importance 
# First, get vimp, order by value, and scale to 0-100 
vimp <- stack(presMod$variable.importance) 
vimp$ind <- factor(vimp$ind, levels = vimp$ind[order(vimp$values, decreasing 
= F)]) 
vimp$values <- vimp$values/sum(vimp$values)*100 
 
# Then plotting variable importance 
(vimp1 <- ggplot(vimp, aes(x = ind, y = values)) +  
  geom_bar(stat = "identity", color = "black", fill = bbColor, alpha = 0.7) +  
  coord_flip() + theme_bw() + xlab("Variable") + ylab("Relative Importance (%
)") + 
  theme(legend.position = "none")) 



 

Many of the bands/indices included in the final RF model target the shortwave infrared portion 
of the spectrum (i.e., bands 5 and 7, NBR, NDMI, tasseled cap indices). This aligns with prior 
literature on using Landsat data to detect tree mortality. NDVI (which only includes red and 
near-infrared) in snow-on conditions in the winter seems helpful too - by focusing on the winter 
period, the signal of conifer mortality is enhanced and aspen/understory vegetation are 
minimized. 

## Re-fitting probability forest for easier visualization of partial plots 
presModProb <- ranger(formula = DisturbanceType~., data = modData, 
                      importance = "permutation", num.trees = 1000,  
                      min.node.size = optMinNode, splitrule = optSplit, 
                      mtry = optMtry, seed = 25, probability = T) 
 
## And plotting partial dependence. Re-fitting this with probability forest t
o get 
  # class probabilities. 
partialVals <- lapply(vimp$ind, FUN = function(x, data = modData){ 
  ## Calculating partial values 
  allData <- pdp::partial(presModProb, pred.var = as.character(x), 
               type = "classification", which.class = "1", prob = T) 
  colnames(allData)[2] <- c("BBProbability") 
 
  ## Getting focal column from data frame 
  focalVec <- as.vector(data[,colnames(data) == x]) 
   
  ## Plotting 
  p <- ggplot(allData, aes(x = allData[,1])) + 
      geom_smooth(aes(y = BBProbability), color = "grey10", lwd = 1.5,  



                  se = F, span = 0.25) + 
      xlab(as.character(x)) + ylab("Prob. of Presence") + theme_bw() 
   
  # Adding deciles similar to rug plot but with less overplotting. First gett
ing 
    # existing range, then expanding down, then calculating location of ticks
. 
    ylims <- ggplot_build(p)$layout$panel_scales_y[[1]]$range$range 
    p <- p + ylim(c(ylims[1] - abs((ylims[2]-ylims[1]) * 0.07), ylims[2])) 
    ystart <- ylims[1]- abs((ylims[2]-ylims[1]) * 0.07) 
    yend <- ylims[1]- abs((ylims[2]-ylims[1]) * 0.02) 
   
    for(i in 1:11){ 
      dec <- quantile(focalVec, probs = c((i-1) *0.1)) 
      p <- p+annotate("segment", y = ystart, yend = yend, x = dec,  
                      xend = dec, lwd = 0.7) 
    } 
   
  ## Returning plot 
  return(p) 
}) 
 
## Merging them all 
sjPlot::plot_grid(partialVals, margin = c(0.1,0.1,0.1,0.1)) 

 



Partial dependence plots above all show logical trends. Basically, the probability of bark beetle 
disturbance increases with the amount of spectral change from 1997-2019 in each of these 
bands/indices. 

The RF model of disturbance severity 

Plotting distributions of the different variables in the severity model 

The plots below show the sampled distribution of the response variable (percentMortality) and 
each of the selected predictors from LandTrendr in the final model of disturbance severity. As in 
the model above, values of each predictor are oriented such that higher numbers are indicative 
of greater spectral declines indicative of vegetation loss. 

## Getting indices of columns 
start <- which(colnames(fieldData) == "percentMortality") 
end <- ncol(fieldData) 
 
## Making plots 
densPlots <- lapply(colnames(fieldData)[start:end],  
                   FUN = function(x, data = fieldData){ 
   
  ## Getting focal column from data frame 
  focalData <- data.frame(data[,colnames(data) == x]) 
   
  ## Plotting 
  p <- ggplot(focalData, aes(x = focalData[,1])) + 
    geom_density(fill = bbColor, alpha = 0.5) +  xlab(as.character(x)) +  
    ylab("density") + theme_bw()  
 
  ## Returning plot 
  return(p) 
}) 
 
## Putting list of plots together 
sjPlot::plot_grid(densPlots, margin = c(0.1,0.1,0.1,0.1)) 



 

And making a correlation plot of the response and each predictor 

The plot below shows the correlations among each of the predictors and the response variable. 
As in a similar plot above, all correlations are positive, with lower values in red and higher 
values in blue. 

## Creating pairwise correlation matrix 
corrMat <- cor(fieldData[start:end]) 
 
## Color ramp - hacky way to get the function below to work is to repeat twic
e 
pal <- brewer.pal(10, name = "RdYlBu"); pal <- c(pal, pal) 
 
## Making correlation plot 
corrplot(corrMat, method = "circle", diag = F, cl.lim = c(0, 1),  
         tl.col = "black", col = pal, bg = "grey90") 



 

Tuning and fitting the Random Forest model of percent basal area loss 

The code chunk below performs recursive feature elimination, tunes hyperparameters (i.e., 
number of variables to split at each node, splitting rule, and minimum node size), and fits the 
final Random Forest model of disturbance severity. 

## Getting subset of variables with predictors and response 
modData <- fieldData[,c(start:end)] 
 
## Testing for multicollinearity of predictors 
multi.collinear(modData[,-1]) 

## NULL 

## Creating CV Folds 
set.seed(25) 
folds <- createFolds(modData$percentMortality, k = nfolds, list = TRUE) 



 
## Setting parameters for recursive feature elimination (i.e., backward selec
tion) 
  # First establishing seeds for multi-core 
seeds <- setSeeds(numbers = nfolds, tunes = ncol(modData)-1, seed = 118) 
  # And setting parameters 
controls <- rfeControl(method = "cv", number = nfolds,  
                       index = folds, seeds = seeds, functions = rfFuncs) 
  # Initiating parallel processing and setting seed 
cl <- makeCluster(detectCores()-1) 
registerDoParallel(cl) 
set.seed(118) 
 
## Running recursive feature elimination 
caretRFE <- rfe(y = modData$percentMortality,  
                x = within(modData, rm(percentMortality)), 
                rfeControl = controls,  
                sizes = ncol(modData)-1) 
stopCluster(cl) 
#caretRFE ## Including all terms is the best option here 
 
# Set hyperparameters for tuning 
controls <- trainControl(method = "cv", number = nfolds, 
                         index = folds, 
                         savePredictions = "all") 
tgrid <- expand.grid( 
  mtry = 2:5, 
  splitrule = c("variance", "maxstat"), 
  min.node.size = c(1, 5, 10, 25, 50, 100) 
) 
 
# Running model on tuning grid 
set.seed(92) 
cl <- makeCluster(detectCores()-1) 
registerDoParallel(cl) 
model_caret <- train(percentMortality~., data = modData, 
                     method = "ranger", 
                     trControl = controls, 
                     tuneGrid = tgrid, 
                     importance = "permutation", num.trees = 1000) 

## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = 
## trainInfo, : There were missing values in resampled performance measures. 

stopCluster(cl) 
 
## Getting optimal hyperparameters from cross-validation above 
optMtry <- as.numeric(model_caret$bestTune[1,1]) 
optSplit <- as.character(model_caret$bestTune[1,2]) 
optMinNode <- as.numeric(model_caret$bestTune[1,3]) 



 
 
## Getting other variables to track in crossvalidation 
mortAgent <- fieldData$domDisturb; baPre <- fieldData$preBA_HA 
sbwTrees <- fieldData$sbw_Trees; contrib <- fieldData$contributor 
 
## Performing 10-fold cross-validation of model 
predVals <- c(); obsVals <- c(); domDist <- c(); prevBA <- c(); contr <- c(); 
sbwSev <- c() 
 
## Getting seeds for crossvalidation 
  # Creating separate folds for accuracy assessment 
set.seed(924) 
folds <- createFolds(modData$percentMortality, k = nfolds, list = TRUE) 
set.seed(94) 
cvSeeds <- sample(1:1000, nfolds) 
 
for(i in 1:nfolds){ 
  ## Subsetting data 
  testData <- modData[folds[[i]],] ## Subsetting to test set 
  trainData <- modData[-folds[[i]],] ## Subsetting to training set 
   
  ## Getting other tracked values - contributor, previous BA, and sbw defolia
tion 
  domDist <- c(domDist, as.character(mortAgent[folds[[i]]])) 
  prevBA <- c(prevBA, baPre[folds[[i]]]) 
  sbwSev <- c(sbwSev, sbwTrees[folds[[i]]]) 
  contr <- c(contr, as.character(contrib[folds[[i]]])) 
 
  ## Fitting model to training data and predicting to test set 
  mod <- ranger(formula = percentMortality~., data = trainData, 
                  importance = "permutation", 
                num.trees = 1000, min.node.size = optMinNode, 
                mtry = optMtry, splitrule = optSplit, seed = cvSeeds[i]) 
   
  ## And getting those values 
  obsVals <- c(obsVals, testData$percentMortality) 
  predVals <- c(predVals, predict(mod, data = testData)$predictions) 
} 
 
## Developing final RF model of disturbance severity with selected parameters 
  # and full dataset 
(severMod <- ranger(formula = percentMortality~., data = modData, 
                  importance = "permutation",num.trees = 1000,  
                  min.node.size = optMinNode, splitrule = optSplit, 
                mtry = optMtry, seed = 202)) 

## Ranger result 
##  
## Call: 



##  ranger(formula = percentMortality ~ ., data = modData, importance = "perm
utation",      num.trees = 1000, min.node.size = optMinNode, splitrule = optS
plit,      mtry = optMtry, seed = 202)  
##  
## Type:                             Regression  
## Number of trees:                  1000  
## Sample size:                      239  
## Number of independent variables:  10  
## Mtry:                             2  
## Target node size:                 1  
## Variable importance mode:         permutation  
## Splitrule:                        maxstat  
## OOB prediction error (MSE):       274.2722  
## R squared (OOB):                  0.6794364 

# saveRDS(severMod, here("AnalysisOutputs", "BB_SeverityMod.rds")) 

Summarizing results of the model of percent basal area loss 

The model of bark beetle severity is performing pretty well in predicting the percentage of 
basal area that died c. 1997-2019 (R-squared in the OOB sample of 0.68) The code chunk below 
prints the accuracy of the model in 10-fold cross-validation and makes diagnostic plots that 
describe the model predictions by contributor, mortality agent, across a range of initial 
densities and defolation severities. 

## Creating function to calculate RMSE 
rmse <- function(act, pred){return(sqrt(mean((act - pred)^2)))} 
# cat("Severity model has an cross-validated RMSE of: ") 
# rmse(obsVals, predVals) 
# cat(" percent\nand a cross-validated R-squared of: ") 
# cor(obsVals, predVals)^2 
 
## Plotting model results 
preds <- data.frame(observed = obsVals, predicted = predVals,  
                    contr, domDist, prevBA, sbwSev) 
 
## Getting mean and sd of obs and predicted in crossvalidation, for bias corr
ection 
# muRF <- mean(predVals); sigmaRF <- sd(predVals) 
# muObs <- mean(obsVals); sigmaObs <- sd(obsVals) 
 
## Transforming using variance matching - mean and sd of observed and predict
ed in cross-validation 
  # this was the method we ended up using 
preds$predCorrected <- (((preds$predicted - 61.65879)/22.06188) * 29.25053) + 
62.07586  
 
  # Updated fitting statistics 
cat("Severity model has an cross-validated RMSE of: ") 



## Severity model has an cross-validated RMSE of: 

rmse(preds$observed, preds$predCorrected) 

## [1] 17.31348 

cat(" percent\nand a cross-validated R-squared of: ") 

##  percent 
## and a cross-validated R-squared of: 

cor(preds$observed, preds$predCorrected)^2 

## [1] 0.6791231 

## Creating some diagnostic plots 
  # Observed vs. predicted and 1:1 line, after bias correction 
a1 <- ggplot(preds, aes(y = predicted, x = observed)) + 
      geom_point() +  geom_abline(intercept = 0, slope = 1, lty = 2, lwd = 1) 
+  
      geom_smooth(method = "lm", se = F, lwd = 1, lty = 1, fullrange = T, col
or = "black") +  
      theme_bw() + xlab("Predicted Severity") + ylab("Observed Severity") +  
      xlim(c(-5,105)) + ylim(c(-5,105)) + theme(legend.position = "none") 
 
a2 <- ggplot(preds, aes(y = predCorrected, x = observed)) + 
      geom_point() +  geom_abline(intercept = 0, slope = 1, lty = 2, lwd = 1) 
+  
      geom_smooth(method = "lm", se = F, lwd = 1, lty = 1, fullrange = T, col
or = "black") +  
      theme_bw() + xlab("Bias-Corrected") + ylab("Observed Severity") +  
      xlim(c(-5,105)) + ylim(c(-5,105)) + theme(legend.position = "none") 
  # Merging to single long-form DF 
predLong <- preds %>% 
  select(c(observed, predicted, predCorrected))%>% 
  rename(obs = observed, pred = predicted, predBC = predCorrected) %>% 
  gather() 
predLong$key <- factor(predLong$key, levels = c("obs", "pred", "predBC")) 
 
  # Observed vs. predicted (following bias correction) and 1:1 line 
a3 <- ggplot(predLong, aes(y = value, x = key)) + 
      geom_boxplot(color = "black", fill = "grey80") +  
  theme_bw() + xlab(" ") + ylab("Observed Severity") +  
      ylim(c(-5,105)) + theme(legend.position = "none") 
a <- cowplot::plot_grid(a1, a2, a3, nrow = 1) 
 
  # Residuals across different disturbance agents 
b <- ggplot(preds, aes(x = domDist, y = observed-predCorrected)) + 
      geom_hline(yintercept = 0, lty = 2, lwd = 1) +  
      geom_boxplot(color = "black", fill = "grey80") + 
      theme_bw() + ylab("Observed Minus Predicted") + 



      xlab("Dominant Disturbance Agent") + theme(legend.position = "none") 
 
  # Residuals across different disturbance agents 
c <- ggplot(preds, aes(x = contr, y = observed-predCorrected)) + 
      geom_hline(yintercept = 0, lty = 2, lwd = 1) +  
      geom_boxplot(color = "black", fill = "grey80") + 
      theme_bw() + ylab("Observed Minus Predicted") + 
      xlab("Data Contributor") + theme(legend.position = "none") 
 
  # Residuals by initial density 
d <- ggplot(preds, aes(x = prevBA, y = observed-predCorrected)) + 
      geom_hline(yintercept = 0, lty = 2, lwd = 1) + geom_point() + 
      geom_smooth(method = "gam", se = F) + theme_bw() + ylab("Observed Minus 
Predicted") + 
      xlab("Pre-Outbreak Basal Area (sq m/ha)") 
 
  # Residuals by sbw defoliation 
e <- ggplot(preds, aes(x = sbwSev, y = observed-predCorrected)) + 
      geom_hline(yintercept = 0, lty = 2, lwd = 1) + geom_point() + 
      geom_smooth(method = "gam", se = F) + theme_bw() + ylab("Observed Minus 
Predicted") + 
      xlab("SBW Defoliation Severity (% BA)") 
 
cowplot::plot_grid(a, b, c, d, e, nrow = 5) 



 



As shown in the figures and summaries above, the RF model of severity is predicting well into 
new areas (i.e., the cross-validated sample) with a fairly low RMSE of ~17%BA and a high R-
squared for observed vs. predicted of ~0.7. The scatterplot shows the observed to predicted 
relationship with point shapes and colors based on dominant mortality agent. The relationship 
showed bias at low and high values and the RF-predicted values did not span the full range of 
the data (a common problem in Random Forest regression). We addressed this in the final data 
layers through bias correction of predicted values using a z-score standardization based on 10-
fold cross-validation (i.e., adjusting predictions to match the mean and standard deviation of 
observed values). The results of this are shown in the boxplots, where predicted values 
(following bias correction) more closely match the range and distribution of the observed data. 
There doesn’t appear to be much of a bias in predictions by mortality agent (shown in 
boxplots), indicating that the model is doing well at predicting in different contexts. Similarly, 
there are no notable biases by data contributor, which is important given the slightly different 
plot types and field protocols. There also doesn’t appear to be a bias in severity predictions by 
initial density. As with fire severity metrics such as dNBR, we might expect that the magnitude 
of spectral change could be related to the initial density of the forest, but it seems like that isn’t 
too much of an issue in the subalpine stands here. In part, this could be because many of the 
plots were pretty dense before outbreak occurrence, but there were some more open ones 
too. SBW defoliation seems to only have a bit of an effect on predictions of severity, where we 
could be overpredicting the severity of bark beetle attack by ~20% in stands with 50% 
defoliation by spruce budworm. Though field data to assess this relationship is limited in areas 
with higher defoliation. 

Variable importance and partial dependence plots for the severity model 

The following chunks plot variable importance and partial dependence for each of the spectral 
indices and bands that were included in the final Random Forest model. 

## Plotting variable importance 
# First, get vimp, order by value, and scale to 0-100 
vimp <- stack(severMod$variable.importance) 
vimp$ind <- factor(vimp$ind, levels = vimp$ind[order(vimp$values, decreasing 
= F)]) 
vimp$values <- vimp$values/sum(vimp$values)*100 
 
# Then plotting variable importance 
(vimp2 <- ggplot(vimp, aes(x = ind, y = values)) +  
  geom_bar(stat = "identity", color = "black", fill = bbColor, alpha = 0.7) +  
  coord_flip() + theme_bw() + xlab("Variable") + ylab("Relative Importance (%
)") + 
  theme(legend.position = "none")) 



 

Again, as with the presence/absence model, bands and indices that incorporate the shortwave 
infrared portion of the spectrum were most often retained by VSURF and appear to be most 
influential predictors in the final model. Winter NDVI seems a little less helpful here than in the 
presence/absence model. 

## Creating partial dependence plots 
partialVals <- lapply(vimp$ind, FUN = function(x, data = modData){ 
  ## Calculating partial values 
  response <- pdp::partial(severMod, pred.var = as.character(x), 
                   type = "regression") 
 
  ## Getting focal column from data frame 
  focalVec <- as.vector(data[,colnames(data) == x]) 
   
  ## Plotting 
  p <- ggplot(response, aes(x = response[,1])) + 
    geom_smooth(aes(y = response[,2]), color = "grey10", lwd = 1.5, se = F, s
pan = 0.25) + 
    xlab(as.character(x)) + ylab("Basal Area\nMortality (%)") + theme_bw() 
   
  # Adding deciles similar to rug plot but with less overplotting. First gett
ing 
    # existing range, then expanding down, then calculating location of ticks
. 
  ylims <- ggplot_build(p)$layout$panel_scales_y[[1]]$range$range 
  p <- p + ylim(c(ylims[1] - abs((ylims[2]-ylims[1]) * 0.07), ylims[2])) 
  ystart <- ylims[1]- abs((ylims[2]-ylims[1]) * 0.07) 
  yend <- ylims[1]- abs((ylims[2]-ylims[1]) * 0.02) 



 
  for(i in 1:11){ 
    dec <- quantile(focalVec, probs = c((i-1) *0.1)) 
    p <- p+annotate("segment", y = ystart, yend = yend, x = dec, xend = dec, 
lwd = 0.7) 
  } 
   
  ## Returning plot 
  return(p) 
}) 
 
## And creating a plot with them all 
sjPlot::plot_grid(partialVals, margin = c(0.1,0.1,0.1,0.1)) 

 

Again, all of the partial dependence plots look good and give reasonable relationships. As the 
magnitude of change increases for each band/spectral index, the predicted outbreak severity 
increases. There are interesting non-linear relationships for some of these things. 

 


