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Abstract: This article presents a novel approach to explore mangrove dynamics on a prograding delta
by integrating unmanned aerial vehicle (UAV) and satellite imagery. The Porong Delta in Indonesia
has a unique geographical setting with rapid delta development and expansion of the mangrove belt.
This is due to an unprecedented mud load from the LUSI mud volcanic eruption. The mangrove
dynamics analysis combines UAV-based Structure from Motion (SfM) photogrammetry and 11 years
(2009–2019) satellite imagery cloud computing analysis by Google Earth Engine (GEE). Our analysis
shows unique, high-spatiotemporal-resolution mangrove extent maps. The SfM photogrammetry
analysis leads to a 3D representation of the mangrove canopy and an estimate of mangrove biophysi-
cal properties with accurate height and individual position of the mangroves stand. GEE derived
vegetation indices resulted in high (three-monthly) resolution mangrove coverage dynamics over
11 years (2009–2019), yielding a value of more than 98% for the overall, producer and consumer
accuracy. Combining the satellite-derived age maps and the UAV-derived spatial tree structure
allowed us to monitor the mangrove dynamics on a rapidly prograding delta along with its structural
attributes. This analysis is of essential value to ecologists, coastal managers, and policymakers.

Keywords: mangroves; remote sensing; Google Earth Engine; SfM photogrammetry; UAV

1. Introduction

Mangroves are trees or large shrubs that grow in or adjacent to the intertidal zone and
are distributed along (sub-)tropical coasts and estuaries [1,2]. Mangroves are well-known
for providing a range of ecosystem services such as timber production, carbon sequestration,
soil formation, nutrient cycling, habitat creation for marine and terrestrial species, and
protecting coastlines by attenuating waves and limiting erosion [2–4]. However, land
use conversion has caused mangrove forests to decline at a rate three to five times larger
than the average forest loss. Hence, mangroves’ important ecosystem services will be
diminished [2].

In order to gain a better understanding of the value of important ecological services
provided by mangroves, further efficient collection of data, e.g., mangrove extent, height,
individual position, and species membership are necessary. Earth observation offers a
method for the large-scale monitoring and assessment of the environment, especially when
it comes to the mangrove forest inventory and spatial extent monitoring that are generally
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difficult to carry out on the ground [5]. Mapping mangrove forests is one of the most
challenging tasks in remote sensing since the forests are mostly quite large, located in a
remote area, and persistent cloud cover in the tropical areas [2,6,7]. Several efforts have
been made to monitor the spatial extent of mangrove forests from local to the global scales.
Two global-scale mangrove extent maps were released for 2000, i.e., the World Atlas of
Mangrove (WAM) [1] and the Global Mangrove Forest Distribution v1 (GMFD) [8]. Other
current global products are the Continuous Global Mangrove Forest Cover for the 21st
Century (GCMFC-21) that showing annual global mangrove forest cover from 2000 to
2012 [9] and Global Mangrove Watch (GMW) v2.0 [10].

Information on important structural attributes of mangroves such as tree height, age,
and diameter at breast height (dbh) is required to characterise the mangrove forest stands.
Accurate information of tree height is essential, since there is a high correlation of the
height and the dbh, basal area (BA), and above ground biomass (AGB) [5,11]. Mangrove
forests with their harsh physical conditions hinder surveyors from carrying out direct
measurements in the field. In principle, a number of remote sensing approaches have been
developed as supplement or substitute for ground-based inventory [12–15]. A Canopy
Height Model (CHM)—that is, a three-dimensional representation of the forest—can be
derived by using airborne or terrestrial LiDAR, Synthetic Aperture Radar (SAR), and
high-resolution optical imagery [16].

Global satellite datasets such as Shuttle Radar Topography Mission (SRTM) and
ICESat/ GLAS [16,17], and ICESat-2/ATLAS launched in 2018 [18] have proven to be useful
in deriving canopy height, but they were released in a medium resolution of 30 m × 30 m.
TanDEM-X InSAR, a DEM product developed by the German Space Agency (2011–2015)
with a ground resolution of 12.5× 12.5 m, has also been used to estimate canopy height [14].
Recently, Very High Resolution (VHR) CHM derived from Unmanned Aerial Vehicle (UAV)-
based Structure from Motion (SfM) Photogrammetry has been deployed [15,16] often at
a local scale. The SRTM, ICESat, and TanDEM are the most commonly utilised methods
to estimate CHM since they have global coverage, and the data are easily accessible [19].
However, the passive/optical sensors solely obtain surface canopy information, and radar
has at least limited penetration capability [19]. LiDAR, on the other hand, is able to
penetrate the canopy cover to some extent depending on the acquisition design and lidar
system [20]. However, this technique can be associated with high cost which limits the use
of this system [16,19].

This study takes the Porong Estuary, Indonesia, as a case study. Porong Estuary
provided a unique setting as this area is characterised by a rapidly prograding delta and
concomitant mangrove expansion [21–23]. It is because of the mud volcanic eruption in 2006
and subsequent mudflow diversion known as LUSI (acronym of lumpur (mud) and sidoarjo
(the regency name)) [23]. Several studies have been conducted to investigate the effects
of LUSI’s high sediment load on the Porong River, the Porong Estuary, and surrounding
coastal waters [21,24,25] and the development of mangrove on the created wetland in
general [26–28]. However, none of them explored the mangrove dynamics and investigated
the structural characterisation of the mangroves in the rapidly prograding delta.

This study aims to analyse mangrove dynamics on a rapidly prograding delta by a
novel integration of UAV SfM Photogrammetry and multiple sources of satellite imagery in
cloud computing Google Earth Engine (GEE). The first objective of this study is to retrieve
mangrove biophysical properties (height and individual location of trees) employing the
off-the-shelf UAV SfM photogrammetry, in combination with ground-truthing based on
field data. The second objective is to generate a three-monthly classification of mangrove
areas using Landsat 7, Landsat 8, Sentinel 1, and Sentinel 2 in GEE. These mangrove extent
maps represent the dry season and wet season, where two maps were created during each
of these seasons every three months. The third objective is to estimate the mangrove age
and age-height relationship based on the combination of UAV and GEE analysis.
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2. Materials and Methods
2.1. Study Area

The Porong Delta, as presented in Figure 1 is located in East Java Province, Indonesia
(7.569 S, 112.872 E). It is approximately 37 km southeast of Surabaya, the second-largest
city in Indonesia. It has a monsoon climate with a dry (April-September) and wet (October-
March) season [29], in which the high precipitation contributes up to 80% of the mean
annual precipitation [30]. The Porong River is one of the two major branches of the Brantas
watershed. The watershed is regulated with several large dams, barrages, and flood gates.
During the dry season, the flow is diverted to Surabaya, and therefore the flow in the
Porong River is often reduced to almost zero [31]. During the wet season flood discharge is
diverted from the upstream barrage and high precipitation contributes to high river flow
that discharges into the Madura Strait [24,25]. Madura Strait has a micro to the meso-tidal
range and is categorised by a mixed diurnal-semidiurnal tide [32].

Figure 1. The study area is described in a sequence: (A) Indonesian border (light green) with East Java Province depicted in
dark green, (B) East Java Province and the capital city Surabaya (represented as a red circle), (C) LUSI (lumpur (mud) and
sidoarjo (the regency name)) mud volcano represented as a black polygon, and the Porong River as the black line flowing
from the west to the east part of the map, and (D) Porong Estuary with LUSI island and the delta lobes.

The Brantas river originates from the volcanic complex of the Semeru and Arjuno
Mountains [32]. Erosion rates on the slopes of Mount Semeru are among the highest
recorded in the world (105–106 m3 km−2 a−1) [33]. Sediment yield in several drainage
basins of Mount Semeru is dominated by rain-triggered events during the wet season [30,33].
The Brantas watershed is densely populated and affected by anthropogenic activities
such as deforestation, intensive agriculture (mainly rice cultivation), and industries [34].
Due to the geological conditions consisting of the presence of easily erodible soils and
high anthropogenic activities, surface erosion is high [31]. The Porong River drains off
high sediment loads, causing a prograding delta [34,35] with a progradation rates of
approximately 0.4 × 106 m2 y−1 over the 1935–1981 period [21,31].

In addition to the sediment load due to runoff from the hinterland, the Porong River
has been experiencing an extreme sediment load due to the mud volcanic eruption in
Sidoarjo, Indonesia. The LUSI mudflow is reported to be the ‘largest mud eruption in the
world’ [36], about 18 km west of Porong Delta (Figure 1). On 29 May 2006, the boiling mud
erupted at a peak flow rate of up to 180,000 m3 day−1 [22] which declined to 50,000 m3 d−1

in September 2011 [23]. Sixty thousand residents were forced to evacuate, and 7 km2 of
residential area was submerged with mud [36] (Figure 2a). The excessive LUSI is still
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actively erupting material, gas, water, clasts, and oil, albeit at a considerably reduced
rate [36]. The continuous discharge of mud has been diverted to the Porong River since
2007 [23]. To reduce damage to the nearby community and environment, the mud in LUSI
is first stored in a reservoir contained by 10-m-tall dyke and then diluted and disposed of
by pumping to the river [21,36]. This operation has increased sediment concentration and
loads of the Porong River by a factor of 3–4 compared to pre-LUSI conditions [21,23,34].
As shown in Figure 2b, due to the mudflow, the delta is rapidly prograding along with the
development of mangrove belts. To date, the LUSI mud volcano is still erupting with no
end in sight [36].

Figure 2. (a) Series of images of LUSI mud volcano eruption that show the expansion of the inundated
area due to the mud volcanic eruption and the ring dyke to contain the mud and (b) Porong Delta
development after diversion operation which shows rapid delta and mangrove belt expansion.
Source: Google Earth Pro.

The delta lobes (Figure 1) have naturally developed, while LUSI Island was created
as a spoil bank to contain sediment dredged from Porong River, after severe siltation due
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to the mud diversion operations. It was constructed between February and November
2009 by building a 4 km series of geotube breakwaters which were attached to the natural
existing Sarinah Island [23]. In 2009, 5000 Avicennia spp. seedlings were planted at this
newly created wetland [23,37], and the Ministry of Marine Affairs and Fisheries continued
planting thousands of Rhizophora spp. seedlings between 2010 and 2011 [26,27].

2.2. UAV Data Collection and Processing

The fieldwork was conducted at the end of the dry season (October–November) in
2019, focusing on two delta lobes (northern and southern deltas) with a total area of
approximately 0.3 km2. This timeframe was expected to have a higher probability of clear
satellite images with limited cloud cover, and more sunlight as well as less shadows to
reach an optimum condition for unmanned aerial vehicle (UAV) image acquisition. UAV/
drones are widely accepted as standard survey tools in many environment settings [38],
generating high-resolution data in a safe, straightforward, and cost-effective way [39].
Coastal environments are challenging for the UAV-based surveying method because of the
low texture and contrast of the bed surface [39]. Careful planning of the GCPs placement
and flight path can lead to reach centimetres of vertical accuracy [15,39].

2.2.1. Data Acquisition

Several studies demonstrated that consumer-grade UAV could achieve vertical ac-
curacies in the order of a few centimetres to a few decimetres in coastal topographical
surveying [38–40]. In comparison with other low-cost platforms (e.g., kite, pole, and fixed-
wing), a consumer (rotary) drone system with its integrated positioning system, inertial
measurement unit, and stabilised camera offers flexibility and efficiency while attaining
the accuracy in coastal area application [39,41,42].

In this study, we used consumer-grade UAV DJI Mavic Pro (DJI, Shenzen, China)
during the field campaign. The drone has four propellers and a built-in true colour
camera. The camera is equipped with 1/2.3′ ′ CMOS sensor with total effective pixels of
12.35 M, which produces a 4000 × 3000 image resolution and equipped with an electronic
shutter. Information on shutter type is important since it will affect the setting on the
camera calibration to compensate the rolling shutter issues as in the electronic shutter-type
cameras. The overall flight time in optimal condition is 21 min with 15% remaining battery
level [43].

The DroneDeploy web app (DroneDeploy, San Fransisco, CA, USA) was used to
define the flight path [40]. It was planned with a flight altitude of 60 m, an overlay of
80% front overlap and 75% side overlap. Each flight was designed to cover 0.02 km2

area with 15 min flight time to limit one battery per flight. An enhanced 3D mode was
activated to improve 3D structures quality which will capture an oblique image of the
objects, facing toward the inner centre of the target by carefully not to include horizon in
the shots [44]. We added a buffer zone approximately 20 m apart from the edge of the low
tide limit that was cropped during the processing later on to prevent interference with the
SfM Photogrammetry processing [15]. With these settings, we were able to build 15 grids
covering around 0.3 km2. All the grids created in the web app then can be synced into
the mobile app to manage the flight and photo acquisition on-field automatically. The
flights were conducted between 09:00 and 12:00 to get optimum natural sunlight, primarily
limit the appearance of shadows on the photos. Additionally, this short time window was
chosen to avoid high variation in sun intensity [45] and it covered the low-tide period.
Before the flight, we placed the custom made printed red cross-shape tarpaulin as a ground
control point (GCP). The GCP size is 1 m× 1 m rectangle in the inner side and 1 m diagonal
cross in the outer side to make it identifiable from the 60 m altitude. We placed GCPs over
the mudflat and in the middle of the delta, which has low vegetation density and registered
them with DGPS in RTK mode.

In total, the properties and location of 69 mangrove trees were measured concurrently
with the mudflat topography. We recorded diameter at breast height (dbh), height, and
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location for each tree. The dbh was recorded using a measuring tape at 130 cm above the
ground. Tree height was recorded with laser rangefinder by measuring horizontal distance
and hypotenuse from surveyor location to the tree stem and treetop, respectively. For the
trees that were located in the proximity of the mangrove edge we recorded the position
with DGPS. Trees that were located more in the centre of the forest were recorded with GPS
(horizontal accuracy ± 3.5 m) because it is difficult to walk inside the forest with heavy
equipment. Mudflat topography was measured with DGPS in RTK mode. The mangrove
trees dataset was used as control points and groundtruthing for the created Digital Surface
Model (DSM).

2.2.2. Data Processing

We estimated the tree’s location and height based on point clouds created by the
Structure from Motion (SfM) photogrammetry method. Three-dimensional point clouds
derived from SfM photogrammetry produced conservative and realistic measures of tree
heights [12]. Alongside with point clouds, a DSM, Digital Terrain Model (DTM), and an
orthomosaic were also generated from these processes [13].

The workflow comprises of three phases, namely pre-processing, processing, and
post-processing. The workflow in point clouds generation and processing is illustrated
in Figure 3. Pre-processing is mainly related to data acquisition including flight route
planning, GCP placement and processing of overlapped images with SfM Photogrammetry.
After the data is acquired, we process the images in commercial SfM photogrammetry
software Agisoft Metashape Professional 1.6.1 (Agisoft LLC, St. Petersburg, Russia). The
workflow is in general as follows: (1) photo alignment, (2) photo marking, (3) dense
point clouds generation, (4) exporting dense point clouds, and (5) DSM and orthomosaic
generation. A detailed description of this workflow can be read in the Appendix A,
Table A1.

Since the UAV camera cannot penetrate the mangrove canopy, the DSM includes
vegetation and any above ground covers. Therefore, on the next workflow, we processed the
point clouds to estimate the DTM. Orthomosaic was created by using surface information
provided by the DSM and orthorectifying of the overlapping images.

The processing phase consists of nine steps, which are quality checking, clipping,
indexing, tiling, sorting, noise removal, ground classification, height normalisation, and
generating the Canopy Height Model (CHM). Details in this phase are described in Figure 4.
We used LASTools (rapidlasso GmbH, Gilching, Germany) to clean the artefacts. The
Cloth Simulation Filter (CSF) algorithm [46], which is efficient to extract the bare earth
in lidR package [47], was employed for ground classification. As the first step, we assess
the quality and information, e.g., number of points, projection, and point density with
lasinfo module. Dense point clouds derived from SfM photogrammetry still contain
noise and uncertainties [48,49]. Therefore, to get an optimal application in the mangroves
environment, a cleaning procedure should be considered. The waterbody is the main
noise contributor of the SfM photogrammetry point clouds. We visually inspected the
orthomosaic and draw a polygon which excludes water and selected the area of interest.
The raw point clouds were then clipped based on the polygon with lasclip module. Next,
we tiled and indexed the clipped point clouds into a smaller tile of 40 × 40 m and added
a buffer that was 20% of the tile size. The tiling procedure is useful to decrease the
computational time by taking advantage of parallel computation. Another consideration
is that, the free licensed LASTools has a point limitation about 1~15 million points [50].
Therefore, tiles should be adjusted with the allowable number of points as attached to
the license. The tiled points were then sorted to rearrange the points into a space-filling
curve order. Afterward, we reclassified the highest points, find the highly isolated points
in the dense forest, to create a temporary ground classification. Next, we mapped all the
points located 0.2 m below the temporary ground as noise. These high and low noise were
removed with the lasthin and lasnoise module. The cleaned photogrammetry point clouds
then were processed with the CSF algorithm in the lidR package to define the ground
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points. An exhaustive manual revision of the ground-no ground classification was done
in the dense forest to avoid ground misclassification. The point clouds were created only
from what is visible to the camera within the path not penetrating the canopies, because
of that only vegetation tops/canopies were included. Therefore, careful manual revision
had to be made. Finally, points were height-normalised by replacing the height of each
point to the relative height of the ground-classified points. Subsequently, we converted the
height-normalised points into CHM and the ground-classified points into DTM.

1 
 

 

Figure 3. The workflow of the unmanned aerial vehicle (UAV)-based point clouds generation and processing.

In the post-processing phase, we used a CHM which is a gridded canopy model with
5.3 cm resolution. To locate individual trees in this very high-resolution CHM, the lidR
‘tree_detection’ provides two algorithms—Layer Stacking [51] and Local Maximum Filter
(LMF) [52]. We set the LMF algorithm parameters window size to 5 m [15], a minimum
height of 1.37 m, and a circular moving window shape which represent the crown of a
mangrove tree. The resulting data CHM were tree location (x,y) and tree height (z). The
detected trees were manually checked to avoid errors [12].
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Figure 4. Working steps of the processing and post-processing phase of the point clouds.

2.2.3. Tree Detection Validation

The latest forest inventory was conducted by the Ministry of Marine Affairs and
Fisheries (MMAF) in 2010 [53,54]. Therefore, we could not directly validate presence
of individual trees detected in CHM. Most of the tree inventory collected during the
fieldwork was located around the edge of mangrove forests. Therefore, we performed
visual interpretation undertaken by the three researchers [15]. We pre-selected 30 × 30 m
plots reflecting the plot size as in traditional forest inventories. For each of the two delta
lobes three plots were chosen, one being located at the centre, another at the northern
and still another at the southern edge of the forest. The background of the researchers
is (1) a groundwater engineer with no experience in ecology and remote sensing, (2) a
hydraulic engineer with basic experience in remote sensing and no knowledge in ecology,
and (3) a coastal engineer with basic knowledge in ecology and advanced knowledge in
remote sensing. The horizontal accuracy of the detected trees and validation data can be
quantified with widely used guidelines by the National Standard for Spatial Data Accuracy
(NSSDA) [55] to measure the positional accuracy of the spatial datasets [56].

2.3. Satellite Data and Processing

Google Earth Engine (GEE) has been used as a tool to perform climate and hydrology
and natural disaster analysis, and image processing, land use/land cover classification
(LU/ LC), and urban planning [57,58]. GEE consists of petabytes of science-ready datasets
and is equipped with high performance computing that can be accessed through an
application programming interface (API) that is available in JavaScript and Python [59].
Some notable applications of GEE are, for instance, the Global Mangrove Watch [10],
global forest cover change [60], global surface water changes [61,62], global shoreline
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changes [63], and continent level agricultural mapping [64]. To understand the mangrove
extent development, we processed satellite imagery, such as Landsat 7/8 and Sentinel 1/2,
in GEE with Python package geemap [65].

2.3.1. Available Dataset

We used combinations of satellite imagery from four satellites constellations available
and science-ready in the GEE platform, i.e., Landsat 7 (L7), Landsat 8 (L8), Sentinel 1 (S1),
and Sentinel 2 (S2). S1 and S2 are satellite constellations developed by ESA (European
Space Agency) along with other constellations such as Sentinel 3 and 5. S1 and S2 satel-
lites hold the sensors that are suitable for the mangrove classification study. S1 satellite
carries a dual-polarisation C-band Synthetic Aperture Radar (SAR) instrument [66,67].
Each S1 scene in GEE has been pre-processed with the Sentinel-1 Toolbox and is science
ready [68]. We employed Sentinel-1 SAR Ground Range Detected (GRD) products with
10 m spatial resolution with available dataset in GEE (‘COPERNICUS/S1_GRD’) from
October 2014. The S2 satellite carries a Multispectral Instrument (MSI) with 13 spectral
bands: 10 m resolution RGB and NIR, 20 m red edge and SWIR, and 60 m atmospheric
band [69,70]. The S2 MultiSpectral Instrument (MSI) Level-1C products were used with
available dataset in GEE (‘COPERNICUS/S2’) from June 2015. L7 and L8 are satellite
constellations developed by a joint program of the USGS and the NASA. Within the GEE
platform, L7 scenes have been atmospherically corrected using LEDAPS [71,72] and L8
using LasRC [73,74] (USGS Landsat Surface Reflectance Tier 1). Clouds, shadow, water,
and snow were masked with the CFMASK algorithm [71,73,75]. The L8 Surface Reflectance
Tier 1 (‘LANDSAT/LC08/C01/T1_SR’) which is available from April 2013 onwards and
Landsat 7 Surface Reflectance Tier 1 (‘LANDSAT/LE07/C01/T1_SR’) dataset available
from January 1999 onward were employed in this study.

Seasonal varying precipitation, flood control measures, and diversion operations are
likely to influence the sediment yield. Mangrove flowering and seedling dispersal periods
are also influenced by the season. By considering those conditions and dynamics on the
delta, we proposed to map mangrove extent on a seasonal time scale. We mapped the
mangrove extent that represents dry season (May and August) and wet season (November
and February). A composite from one-month scenes of the particular month was created
with the median value of the selected bands and indices for mangrove classification
for optical sensor (S2, L7, L8). A mean function was applied for the satellite with SAR
instrument (S1) [76,77]. The median value was chosen because it is less affected by outlier
values that arise, for instance, from pixels affected by clouds or snow during the masking
procedures [75]. To optimise the dataset availability and account for mangrove–mudflat
dynamics, we employed the combination of S1 and S2 during the period of November
2015 to November 2019. The combination of optical S1 and S2 SAR was reported to
improve the classification accuracy [12,76,78,79]. L8-based classification was for the period
of August 2013 to August 2015, and L7-based classification was from dry season 2009 to
dry season 2012. An exception has been made for L7-based classification. The L7 series
of scenes has gaps due to Scan-Line Connector (SLC) failure or stripping problem [80].
Therefore, instead of using the one-month scenes we applied median values of full seasons
(six months for each) during 2009–2012. Since in that period the diversion operation had
just begun and the LUSI Island reclamation project had been conducted, we observed
less mangrove succession in the delta. A presentation of the seasonal classification with a
single map for the period of 2009–2012 is considered sufficient. All available datasets in a
particular classification period were used to generate a cloud-free composite and improve
the classification accuracy [76,78].

2.3.2. Vegetation Indices

We assessed the mangrove vegetation cover by way of four optical-related vegeta-
tion indices that are widely used in land cover characterisation [14,78,81,82], i.e., NDVI
(Normalised Difference Vegetation Index) [83], NDMI (Normalised Difference Moisture
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Index) [15], EVI (Enhanced Vegetation Index) [84], and SAVI (Soil-Adjusted Vegetation
Index) [85]. The S1 images were first pre-processed with a speckle filter (Lee refined) at
a window size of 7 × 7 pixels [81,86]. A ratio channel (VV/VH) from the backscattering
was generated. Lastly, the mean value of all S1 images was employed. This mean function
makes the S1 composite less susceptible to variation in image acquisition [76,77]. With this
additional dataset, each S1 mosaic had two bands and one index, while S2, L7, and L8 had
10, 6, and 7 spectral bands, respectively, and each was composed of four vegetation indices
(Table 1). Table 2 specifies the vegetation indices formulas used in the analysis. Figure 5
describes the flowchart of the image processing procedure.

Table 1. Datasets used as input for each satellite constellation product.

Mission Bands/Indices Metric

Sentinel-1 VV, VH, VV/VH mean

Sentinel-2 B2-B8, B8A, B11-12, NDVI, NDMI, EVI, SAVI median

Landsat-7 B1-5, B7, NDVI, NDMI, EVI, SAVI median

Landsat-8 B2-8, NDVI, NDMI, EVI, SAVI median

Table 2. Vegetation indices formulas used for the optical sensor.

Indices Formulas S-2 L-7 L-8

NDVI (NIR − R) ÷ (NIR + R) (B8 − B4) ÷ (B8 + B4) (B4 − B3) ÷ (B4 + B3) (B5 − B4) ÷ (B5 + B4)

NDMI (NIR − SWIR) ÷ (NIR + SWIR) (B8 − B11) ÷ (B8 + B11) (B4 − B5) ÷ (B4 + B5) (B5 − B6) ÷ (B5 + B6)

EVI 2.5 × ((NIR − R) ÷ (NIR + 6 × R
− 7.5 × B + 1)

2.5 × ((B8 − B4) ÷ (B8
+ 6 × B4 − 7.5 × B2 + 1)

2.5 × ((B4 − B3) ÷ (B4
+ 6 × B3 − 7.5 × B1 + 1)

2.5 × ((B5 − B4) ÷ (B5
+ 6 × B4 − 7.5 × B2 + 1)

SAVI (NIR − R) × 1.5 ÷ (NIR + R + 0.5) (B8 − B4) × 1.5 ÷ (B8 +
B4 + 0.5)

(B4 − B3) × 1.5 ÷ (B4 +
B3 + 0.5)

(B5 − B4) × 1.5 ÷ (B5 +
B4 + 0.5)

2.3.3. Land Cover Classification

A supervised land cover classification with machine learning algorithm was employed
in GEE. Several of those algorithms have been embedded in GEE. These classifiers are
Classification and Regression Tree (CART), Random Forest (RF), NaiveBayes, and Support
Vector Machine (SVM) [59]. Wetland mapping, as in mangrove swamps, is one of the
most challenging areas for remote sensing. RF supervised classification is reported to have
the highest accuracy among widely used machine learning algorithms, e.g., K-Nearest
Neighbour (KNN), SVM, Maximum Likelihood (ML), and CART [76,87]. RF comprises a
collection of tree-structured classifiers to make prediction [88]. RF is more robust to noise
and size reduction of the training set than CART [89], easier to implement than SVM [90],
and is particularly suitable to handle high dimensional remote sensing data [91].

The land cover classification was conducted using the following workflow: (1) training
data collection, (2) initiating classifier and adjusting parameters, (3) train the classifier with
training dataset, (4) classify the image based on the trained dataset, and (5) accuracy
checking. In the first step, the training dataset is provided from the very high-resolution
orthomosaic created on the UAV data processing. We created three classifications (water,
mangroves, and mudflat area) by plotting region of interests (ROIs) which represent
these classifications. As the intertidal mudflat varies over time by tidal variation, proper
consideration should be made by not only referencing the mudflat’s ROI based on the
orthomosaic but also considering the median composite in November 2019. The ROIs
polygons were made in QGIS as a shapefile and uploaded to GEE as assets. Next, sample
points were created based on supervised ROIs. Accuracy of RF classification is sensitive
to the sample size and spatial distribution [92]. Within each stratum, which is based on
supervised ROIs, the stratums are randomly sampled [93]. Stratified random sampling
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function in GEE was used to sample the training data. Cochran’s formula (1) was employed
to determine sample size by assuming an unknown proportion for each class [94].

n0 = Z2 pq
e2 (1)

Here, n0 is the sample size per class, p is the proportion of the population which has
the class in question, q = 1− p, Z is the z-value for the given confidence, e is the margin of
error. The samples were subdivided into a 70% training set and 30% of validation [88]. In
the next step, to optimise the computational performance, RF classifier with 200 decision
trees [78] was initiated and trained as several studies suggested 100–500 as the optimal
number [89,91,95–97]. The trained dataset then is used to classify the composite.

Figure 5. Flowchart of the satellite imagery processing in Google Earth Engine (GEE) with Landsat 7, Landsat 8, Sentinel 1,
and Sentinel-2. The UAV orthomosaic is used as the training and validation dataset.
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2.3.4. Accuracy Assessment and Validation

We used accuracy assessment functions embedded in GEE for those parameters. The
final ground-truthing is based on the VHR orthomosaic derived from UAV image acqui-
sitions in November 2019. We used the confusion error matrix with these parameters:
Overall Accuracy (OA), Kappa Coefficient, Producer Accuracy (PA), and Consumer Ac-
curacy (CA) [87,90]. The OA is calculated by summing the number of correctly classified
values and divided by the total number of values. PA is determined by comparing the
number of correctly classified values of a particular class and number of reference pixels of
the same class, while CA can be calculated by dividing the number of correctly classified
values of a particular class and number of classified pixels in the class [98]. The OA, PA, and
CA are expressed as percentage, with 100% accuracy representing a perfect classification.
Kappa measures the difference between the actual agreement in the error matrix and the
chance agreement that is indicated by the row and column total [93]. A kappa value of 0
represents no agreement, and a value of 1 indicates perfect agreement.

3. Results

This section outlines the result of drone-based point clouds, tree detection and valida-
tion, and satellite-based mangrove extent change over time.

3.1. Point Clouds

In total, we processed 2860 UAV images (2020 images for north delta lobe and 840 im-
ages for the southern delta lobe), which is equal to an average of 200 images per grid. SfM
Photogrammetry provided point clouds, DSM, and orthomosaic for each delta lobe. The
generated raw point clouds had 400.5 million and 136.6 million points, which correspond
to average point densities of 951.25 m−2 and 736 m−2 for the northern and southern delta
lobes, respectively. The derived DSM has a resolution of 5.33 cm/pixel and an orthomosaic
with 2.66 cm/pixel resolution. The products in total covered an area of 0.44 km2 and
were corrected based on GCPs with a total error of 0.06 m. The discrepancy between the
planned flight area and the product is generated from other areas captured during the UAV
image acquisition.

A small subset of the point clouds is shown in Figure 6. The set of figures illustrates
the step-by-step point clouds processing. Figure 6a shows subtle noise yielded on the
SfM-based point clouds. The raw point clouds were refined by classifying the high and
low noise, resulting in cleaned points as depicted in Figure 6d. The ground-classified
points with the CSF method were then evaluated, especially those situated below the
dense vegetation since SfM-based point clouds provide no information below the canopy
cover. Hence, an exhaustive manual revision was conducted by checking and correcting
the classified ground points. The final point classification categories chosen for the analysis
were non-ground (1), ground (2), high vegetation (5), and noise (7). The final result of the
point cloud processing is a height-normalised point clouds that can be described with all
elevations were normalised with respect to the ground, i.e., an elevation of 0 m. Figure 7
shows DTM and DSM derived from the final classification of the point clouds.

3.2. Canopy Height Model (CHM) and Tree Detection

The height normalised point clouds were rasterised to a CHM with a resolution of
0.1 m, and subjected to the individual tree detection. The ‘tree_detection’ function in the
lidR package with the LMF algorithm was adjusted to detect mangrove trees above the
breast height. The individual trees derived from the algorithm can be observed in Figure 8.
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Figure 6. Point clouds processing: (a) raw point clouds, (b) the thinned 20% elevation percentile
points, (c) high noise-classified points, (d) cleaned photogrammetry point clouds, (e) ground points
classification (brown colour represents ground points and grey represents non-ground), (f) height nor-
malisation.

The root mean square error (RMSE) analysis of the individual tree detection based
on fieldwork data and visual inspection is described in detail in Appendix B, Table A2.
The RMSE value for tree location was 0.23 m on average. All three validators provided
similar RMSEr with values ranging 0.15, 0.28, and 0.25 m, while the maximum RMSEr was
0.48 m. As observed, the number of the detected trees for the dense mangrove forest was
underestimated, whereas it was more accurate in the sparse mangrove forest.

The CHM-derived height demonstrated that the mangroves’ median height is 3.5 m in
the southern delta while the northern delta with its older mangroves had a median height of
4.2 m. As shown in Figure 9, the northern delta had bi-modal tree height distribution. The
distribution is likely correlated to the mangrove planting activities in 2016. Corresponding
rectangular shaped mangrove areas can be clearly seen in Figure 7a.
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Figure 7. (a) Digital Surface Model (DSM) and Digital Terrain Model (DTM) of the northern delta and (b) DSM and DTM of
the southern delta.

Figure 8. The detected individual tree as represented here as the red dots derived from UAV Structure from Motion (SfM)
photogrammetry in (A) northern delta and (B) southern delta.
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Figure 9. The detected mangrove trees height frequency histogram of (a) the north delta and (b) the south delta.

3.3. Mangrove Extent and Age Estimation
3.3.1. Mangrove Extent

Figures 10 and 11 illustrate the development of the mangrove extent from 2009 to
2019. Figure 11 presents the result of the mangrove classification based on L7 (2009 Dry
season–2012 Wet season), L8 (August 2013–August 2015), and the combination of S1–S2
(November 2015–November 2019). It can be observed that the mangrove belt expansion
has strongly developed in the Porong River mouth. The mangroves on LUSI Island are
clearly visible and have continuously expanded after the construction in 2011 (Figure 11).
On the northern delta lobe, mangroves appeared in 2016 followed by the southern delta
lobe in 2018. The land conversion to fish ponds in the hinterland is apparent as well in
the figures.

Figure 10 provides an illustrative visualisation of the mangrove dynamics. Starting in
2006 the mangrove forests tended to expand seawards. The mangroves in northern and
southern delta lobes contributed significantly to this. Considering the time series map, it is
likely that the southern delta mangrove will be attached to the LUSI Island within the next
few years.

The time series of the mangrove extent has been extracted for both on the region of
interest (ROI) (Figure 12a) as well as for the LUSI Island-delta lobes (Figure 12b). Both
areas exhibit a similar positive trend of development. Generally, it varies with season. The
mangroves area recedes during the transition from dry to wet season and the mangroves
regrow during the wet to dry season. However, the delta lobes’ mangroves have a slightly
different seasonal pattern. As in Figure 12b, the mangrove’s seasonal variation is less
pronounced. It is likely because it is more isolated and is affected less by human activities.

3.3.2. Accuracy Assessment of Porong’s Mangrove Classification

Four confusion matrices of L7, L8, and S1/2 based classification show high accuracy
when compared with the UAV ground reference data. The reference data was subdivided
into 70% fraction of the total sample points (cf. Section 2.3.3) for training purposes, equal
to 808 points for all classes. The rest (30% of the sample points) or 347 points in total were
used for validation samples. The values of Overall Accuracy (OA), Kappa Coefficient,
Producer Accuracy (PA), and Consumer Accuracy (CA) of all the classifications were all
above 98%. L7 or L8 alone are already excellent sources for the classification of the one-
month composite, but the combination of S1 and S2 is even superior to those. The trained
OA, Kappa, PA, and CA of S1–S2 classification were all 100%. Due to the SLC error, the
trained L7 classification generated from a six-month mean composite also resulted in 100%
OA, Kappa, PA, and CA values. The L8-trained OA, Kappa, PA, and CA were 99.88%, 0.99,
99.65%, and 99.62%, respectively.
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Figure 10. Time series of porong mangrove extent derived from Landsat 7, Landsat 8, and Sentinel 1–Sentinel 2 imagery
(the time-series animation is provided as an online material: Animation S1).

The validation accuracies also showed consistently excellent values similar to those
of the training. The combination of S1–S2 has a value of 100% for all confusion matri-
ces. The L8-validated OA, Kappa, PA, and CA were 99.39%, 0.99, 97.92%, and 98.39%,
respectively. The L7-validated OA, Kappa, PA, and CA were 99.54%, 0.99, 97.83%, and
98.18%, respectively.

3.3.3. Age Map

The age map (Figure 13) was estimated and referenced to November 2019 and derived
backward to 2009. The age map indicates that the mangrove expansion of forests being
attached to the mainland began in 2014. In comparison, the isolated forests (on the delta
lobes) were found to have started expanding in 2016, most likely initiated by the mangrove
planting in the northern delta, in contrast to the natural mangrove succession that took
place in the southern delta.
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Figure 11. Details of the mangrove extent estimated by satellite imagery from the 2009 dry season to November 2019.

By taking advantage of the age map and the high-resolution CHM, a relationship of
mangrove height dependent on stand age was setup for the two Porong delta lobes. A
mean height distribution across the mangrove age map was calculated by clipping the
mangroves’ age polygon to a CHM raster. Figure 14 compares the age-height relationships
from the delta lobes’ mangroves. The northern delta mangroves were consistently taller
than the southern ones at the same stand age. By only taking the mangrove trees into
account that were taller than 1.3 m, the average annual mangrove growth of the northern
delta amounted to 2.26 m yr−1. In contrast, the mangroves in the southern delta had an
annual mangrove growth rate of 1.71 m yr−1.
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Figure 12. Time series of mangrove extent area development on (A) the region of interest (ROI) extends from 112.8585◦ S,
−7.5418◦ E to 112.8927◦ S, −7.5879◦ E and focusing on (B) the Porong Estuary and the newly developed delta lobes which
obviously exhibits an increasing trend of area development after 2011. The right figures show the time-series of mangrove
area development for each region (A,B).

Figure 13. Map of mangroves age distribution in Porong Estuary as estimated with respect to the
reference period of November 2019.
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Figure 14. Relationship of the mangrove height dependent on stand age on Porong Delta Lobes.

4. Discussion

The study aimed to quantify the mangrove dynamics arising from the massive LUSI
mudflow diversion operation that followed the extreme mud volcano eruption, in Sidoarjo,
Indonesia. Our investigation started in January 2009 and continued until November 2019.
This investigation of mangrove dynamics combined usage of UAV-based and satellite
analyses with GEE cloud computing. This approach included the successful retrieval of
mangrove biophysical properties in terms of canopy height and the individual position of
mangrove trees (Figure 8) as well as a time series of mangrove belt development (Figure 10).
This approach resulted to a new set of mangrove extent maps for our study location that is
not covered by other existing products such as the WMA [1] and GMFD v1 [8] that were
released in 2000. The GCMFC-21 [9], GMW v2.0 [10] and at the national-level provided by
the Indonesian National Institute of Aeronautics and Space (LAPAN) [99], whose latest
product at the time of writing dates from 2012, 2016, and 2019, respectively. The mangrove
dataset provided by the GMW v2.0 from the period of 1996, 2007, 2008, 2009, 2010, 2015,
and 2016, while LAPAN products were for the period of 2014, 2016, and 2019. Therefore,
from those datasets the mangrove dynamics in Porong Estuary cannot be deduced. The
spatial and temporal resolution of those dataset is not sufficient as Porong has been
experiencing extreme mud influx from LUSI and its transformation has been so rapid.
This study resulted in a higher temporal resolution and detailed three monthly mangrove
classification and their biophysical properties, especially in the highly dynamic delta lobes
that expand seaward.

4.1. UAV-Based Mangrove Forest Inventory

The derived tree locations were in close correspondence with field inventory data
and expert analyses at an RMSEr in the order of 20 cm. However, since the low-cost
UAV is equipped with an RGB camera system, the estimated tree location is limited to
the description of the canopy top inherent in the CHM. It is different from the LiDAR
system where the beam is able to penetrate the dense canopy cover. The UAV-based SfM
photogrammetry method tended to underestimate the number of individual trees, even
though it has a higher accuracy in the sparse mangrove forest. Based on the result, the
low accuracy in the dense forest of the northern delta lobe is likely due to the mangrove
plantation programme that has created a more homogenous canopy and an almost flat
CHM. This prevented complete detection of all treetop positions. However, despite the
underestimated tree location, considering that colonising mangrove species during pri-
mary succession is shade-intolerant, therefore, the loss in detection might be marginal, in
particular when the canopy is still sparse. The estimated individual positions of the trees
can give us more information regarding the height distribution of the mangrove’s trees and



Remote Sens. 2021, 13, 1084 20 of 28

density (Supplementary Materials S1). As shown in Figure 9 we can observe the influence
of mangrove planting on the north delta to the height variation indicated by the bimodal
distribution (Figure 9a).

Despite its limitation, the UAV-based tree detection offers the advantages of lower
technical requirements and lower costs when compared to a LiDAR system [39]. With
miniaturisation, increasing proliferation, and advancement in sensor technology, the possi-
bility arises of adding multispectral sensors to accuracy of the UAV-based method while
keeping it lightweight and low-cost. The image acquisition was conducted for five days
or equal to 8.8 hectares/day since it was limited by the time frame of the optimum sun-
light and battery capacity. The UAV survey in this study was conducted by two people.
In comparison, traditional mangrove forest inventory with three experienced surveyors
needs two complete days (seven hours/ day) to sample 0.05 hectare of the forest [15].
Thus, UAV-based forest inventory is likely to increase the possibility for frequent and
rapid mangrove monitoring. Moreover, this method can be further developed as citizen
science monitoring. With an off-the-shelf drone, pre-planned flight, open tutorial, and
validation procedure, the public can be involved in this kind of mangrove monitoring
programme. Depending on the needs, the UAV-based SfM photogrammetry is useful to
estimate mangrove biophysical properties from the plot level up to the landscape-level.
Moreover, another product generated in the workflow, for instance, the DTM is useful in
studying the biogeomorphology to understand the feedback loop of vegetation and the
environment forcing.

4.2. Mangrove Belt Expansion Identification in Google Earth Engine

The expansion of the mangrove belt has been substantiated with the supervised land
cover classification. We have evidenced a total of 11 years of mangrove development (2009–
2019) with high accuracy (more than 98%). Cloud computation with GEE to our advantage,
we generated three monthly mangrove maps, with the exception of sixth-monthly maps
during the period of 2009–2012. Most importantly, our map series has higher frequency
than the above-mentioned global mangrove products.

4.3. Seasonal Pattern of Mangrove Dynamics

Based on the resulting maps, it is apparent that the year 2016 marked the start of the
positive mangrove expansion, which seen in Figure 10 and the time-lapse animation in
the Supplementary Animation S1. There were two of the largest expansion areas in the
Porong River mouth contributing 24% of the total mangrove area extracted inside the ROI
as of November 2019 (Figure 12). It is highly likely that the mudflow diversion procedure
has promoted mangrove belt expansion in Porong Estuary. Mud pumping disposal of
LUSI discharged extra sediment supply thereby providing a suitable environment that
enhanced mangrove expansion. Figure 11 provides detail of the significant increase of
mangrove extent both on the ROI and focusing on the estuary. Dredging operation and the
completion of LUSI Island construction in 2011 have contributed to the prominent increase
of the mangrove area.

The mangrove expansion followed a seasonal pattern as Figure 12 clearly indicates.
We observed recession of the mangrove extent during the transition of dry to wet season
and regrowth during the wet to dry season. The wet season has the highest sedimentation
rates related to the mudflow pumping operation in LUSI. The mud is disposed of in the wet
season and stored in the reservoir during the dry season. The seasonal pattern in Porong
was also indicated in the study by Sidik et al. (2016) [21]. In principle, net development
trend of the mangrove area is positive. Investigated further, we can see amplitude of the
high-low signal differs in the period of 2013–2017 from that in 2018–2019. In 2013–2017,
we can see low mangrove extent in the wet season followed by the high regrowth in the
dry season. In contrast, from 2018 to 2019, we observe only a slight decrease in the wet
season and a high roughly two-fold increase in the dry season. Focusing on the Porong
river mouth, as shown in Figure 12b, the seasonal fluctuation is also recognised but is
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less pronounced as in Figure 12a. The graphs reveal continuous expansion until August
2013, irrespective of the region, thus no recession visible in both regions. From August to
November 2013, there is a sudden recession, i.e., sharp decrease of area in region A and
slightly less in region B. The recession took place in the middle of the dry season and the
beginning of the wet season, thus at the end of the dry season. There is recovery occurring
from November 2013 until August 2014, where recovery is more pronounced for region A
(February and May clear satellite images are lacking in 2014). The recovery occurred during
the wet to dry season. It seems that the recession occurred at the end of the dry season while
recovering and return to expansion happens in the middle of the wet season and the first
half of the dry season. This 2013 recession–recovery behaviour repeats in 2014–2017, where
the fluctuation is noticeable in region A and less in region B. It is likely in the beginning
mangroves start growing on the newly deposited, homogeneously distributed mud since
its sediment attributes are rather suitable for their growth. Mangroves have access to water
during wet season as well as during dry season. However, because of their existence,
further sediment is deposited at the margin of the forest. This possibly transforms them
into the basin mangrove type in certain areas, more so in the landward direction, less so on
the delta lobes. When the trees start generative production, i.e., propagule production, at
an age of three years seedling that are known to be more sensitive to salt and drought might
die under the extreme conditions at the end of the dry season in the basins. This condition
has developed from the interplay of vegetation and geomorphological processes—namely,
the massive sediment load. Studies reported buried pneumatophore leads to mangrove
mortality, for example in Mekong Delta [100]; high sedimentation concentration reduces
the oxygen level in the mangrove’s root [21,101]; and an enhanced of growth of Micronesia
trees that is possibly due to associated decreases in root zone salinity [102].

The delta lobes’ mangroves response to high sedimentation rates is generally appear as
lack of growth instead of a decrease. It is likely because the delta lobes are relatively isolated
and therefore less affected by human activities, such as land conversion to fishponds that
is obvious in the maps. Given the sharp decrease-increase pattern in Figure 12a (period
2014–2018) and slight decrease-increase as Figure 12a (period 2018–2019) Figure 12b it is
likely that anthropogenic activities played an additional role. However, as a verification of
that role is beyond the scope of this article, we suggest further investigation of this topic.

4.4. Mangroves’ Age Class Estimation

The age map (Figure 13) was derived to understand the mangroves succession. When
it is combined with the CHM, we can estimate the annual growth rate of the mangrove trees
(Figure 14). The age map indicates a difference in the trend of mangrove expansion for those
located in the river mouth and on the mainland. Expansion in the river mouth was altered
by the LUSI Island’s construction and the built-up of the delta lobes. It is likely that the
mangrove planting programme affected the northern delta’s spatial tree height variation.
Apparently, it is also visible in the age-height relationship displayed in Figure 14. As the
mangroves on the northern delta were planted, the mangroves tended to be in average two
times taller in their first year than its southern counterparts. However, the data used to
derive the age-height graph in this article is probably not long enough; for instance, the
southern delta provides only three years of observation. Thus, two growth rates for the
relationship, which is insufficient for performing statistical tests. Nevertheless, mangrove
growth rates had a similar trend for both locations, despite a difference likely due to the
mangrove planting. Moreover, the graph demonstrates the advantage of combining UAV-
based VHR data and satellite imagery to characterise the mangrove structural attributes
that need a large workforce if done traditionally.

4.5. Implications of the Study

To our knowledge, this study presents the first attempt to explore the mangrove
dynamics in a prograding delta setting by integrating UAV and multiple sources of satel-
lite imagery (L7, L8, S1, and S2) in GEE. Studies to classify mangrove forest have been
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conducted in the last two decades [8,10]. They were based not only on one source but
also on the combination of multiple satellite sources [12,14,103,104] and became more
popular with the advent of GEE. The resulting three-monthly classification maps are more
frequent than the commonly produced annual mangrove maps. The frequent monitoring
is deemed necessary in this environmental setting, since the sediment influx continues at
an unprecedented rate, promoting rapid delta development and mangrove belt expansion.
The results of the UAV and the entire methodology presented here shows the advantage of
using an off-the-shelf drone. The CHM and individual tree locations present important
structural attributes to characterise the mangrove forest. It is essential as there is likely
a much closer linkage between diameter at breast height (dbh) and height rather than
between crown radii and dbh. Accurate information of mangrove biophysical structure is
critical for the ecologist, coastal manager, or policymaker.

5. Conclusions

The LUSI mud volcano eruption, arguably the largest mud eruption in the world,
certainly affects the downstream landscape development. Particularly with the diversion
operation that conveys a large amount of mudflow sediment into the river that eventually
stimulates a rapid progradation of the delta compared to pre-LUSI conditions. This offers
a unique opportunity to analyse mangrove dynamics on a rapidly prograding delta. We
created time series of mangrove extent maps and mangrove biophysical structure with the
following steps: (a) biophysical properties retrieval using UAV-based SfM photogrammetry;
(b) three-monthly classification of mangrove areas using L7, L8, S1, and S2 in Google
Earth Engine; and (c) derivation of mangrove age maps based on the satellite imagery.
This improvement enables us to capture the highly dynamic setting in the study area.
Moreover, the off-the-shelf UAV offers an efficient yet accurate technique to retrieve the
important structural attributes, such as individual tree location and canopy height. When
combined with satellite imagery analyses, the information can be used to characterise the
mangrove forest and assess the effect of excessive mudflow discharge on the delta and
mangrove development.

The proposed approaches allowed us to monitor the dynamics of mangrove extent
and structural attributes in a rapidly prograding delta. The random forest supervised
classification demonstrated a high accuracy (OA > 99.39%, kappa value 0.99, PA > 97.83%,
and CA > 98.18%). The highest accuracy was obtained in the classification from the
combined Sentinel 1 and 2, while the lowest resulted from the Landsat 7. The 11 years of
mangrove extent mapping provided evidence of an overall positive trend in mangrove
extent overlaid by seasonal variation. The receding mangrove area is detected during the
transition from dry to wet season and regrow during the wet to dry season. The individual
trees height and position derived from UAV showed the different distribution of the north
and south delta lobes that is likely related to the mangrove planting.

The method enabled us to retrieve rapid and accurate information on mangrove
biophysical properties with an off-the-shelf drone. Moreover, in combination with GEE
based cloud computing, it is possible to derive a high spatiotemporal resolution mangrove
extent map. The combination of UAV-derived spatial tree structure and the satellite-derived
maps are needed to support fast and frequent mangrove monitoring that will be valuable
for the ecologists, coastal managers, or policymakers.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/6/1084/s1, Animation S1: Time series animation of Porong mangrove extent, Supplement S1
Mangrove trees density on the northern and southern delta lobes.
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Appendix A

Here we explain the settings of the pre-processing phase to generate 3D point clouds in
the Agisoft Metashape Profesional. The settings in this appendix are for Agisoft Metashape
Professional version 1.6.3 build 10723 (64 bit). The detailed description is depicted in
Table A1 below.

Table A1. Settings of the Agisoft Metashape Professional.

Steps Parameters Value

Align Photos

Accuracy ‘High’

Generic Preselection ‘Yes’

Reference Preselection ‘Source’

Key Point Limit 50,000

Tie Point Limit 4000

Guided Image Matching ‘Yes’

Adaptive Camera Model Fitting “Yes”

Camera Calibration ‘Enable Rolling Shutter Compensation’

Dense Cloud Generation

Quality ‘High’

Depth Filtering ‘Mild’

Calculate Point Colours activate

Calculate Point Confidence activate

Appendix B

The calculation of positional accuracy of the detected trees is following the guidelines
by the NSSDA Part 3: National Standard for Spatial Data Accuracy [55]. We assessed
the horizontal accuracy of the detected trees against the visual observation by the three
observer and fieldwork measurement. The RMSE values were assessed using the follow-
ing equations:

RMSEx =

√
∑i(xdata,i − xcheck,i)

2

n
(A1)

RMSEy =

√
∑i(ydata,i − ycheck,i)

2

n
(A2)

RMSEr =
√

RMSE2
x + RMSE2

y (A3)

where xdata,i, ydata,i are the coordinates of the ith check point of the dataset and xcheck,i,
ycheck,i are the coordinates of the ith check points of the independent source of higher
accuracy and n is the number of check point tested. The horizontal error at point i is
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defined as in the Equation (A3). The results of the positional accuracy are shown in the
tables below.

Table A2. Detected trees positional accuracy.

Plots RMSEx RMSEy RMSEr

Observer 1

North 1 0.09 0.09 0.12

North 2 0.07 0.08 0.11

North 3 0.08 0.09 0.12

South 1 0.19 0.16 0.25

South 2 0.13 0.08 0.15

South 3 0.09 0.08 0.12

Average - - 0.15

Observer 2

North 1 0.12 0.09 0.15

North 2 0.11 0.10 0.15

North 3 0.08 0.08 0.11

South 1 0.29 0.29 0.41

South 2 0.28 0.26 0.38

South 3 0.30 0.38 0.49

Average - - 0.28

Observer 3

North 1 0.15 0.12 0.19

North 2 0.14 0.19 0.23

North 3 0.15 0.15 0.21

South 1 0.17 0.22 0.28

South 2 0.28 0.23 0.37

South 3 0.14 0.16 0.21

Average - - 0.25
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