
remote sensing  

Article

Continuous Particle Swarm Optimization-Based Deep Learning
Architecture Search for Hyperspectral Image Classification

Xiaobo Liu 1,2,3,* , Chaochao Zhang 1,2, Zhihua Cai 3,4,5 , Jianfeng Yang 1,2, Zhilang Zhou 1,2 and Xin Gong 1,2

����������
�������

Citation: Liu, X.; Zhang, C.; Cai, Z.;

Yang, J.; Zhou, Z.; Gong, X.

Continuous Particle Swarm

Optimization-Based Deep Learning

Architecture Search for Hyperspectral

Image Classification. Remote Sens.

2021, 13, 1082. https://doi.org/

10.3390/rs13061082

Academic Editor: Gwanggil Jeon

Received: 31 December 2020

Accepted: 27 February 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, China University of Geosciences (Wuhan), Wuhan 430074, China;
cz@cug.edu.cn (C.Z.); yangjianfeng@cug.edu.cn (J.Y.); zlzhou1106@cug.edu.cn (Z.Z.);
xgong@cug.edu.cn (X.G.)

2 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems,
China University of Geosciences (Wuhan), Wuhan 430074, China

3 Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences (Wuhan),
Wuhan 430078, China; zhcai@cug.edu.cn

4 School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
5 Beibu Gulf Big Data Resources Utilisation Laboratory, Beibu Gulf University, Qinzhou 535011, China
* Correspondence: xbliu@cug.edu.cn

Abstract: Deep convolutional neural networks (CNNs) are widely used in hyperspectral image
(HSI) classification. However, the most successful CNN architectures are handcrafted, which need
professional knowledge and consume a very significant amount of time. To automatically design
cell-based CNN architectures for HSI classification, we propose an efficient continuous evolutionary
method, named CPSO-Net, which can dramatically accelerate optimal architecture generation by
the optimization of weight-sharing parameters. First, a SuperNet with all candidate operations is
maintained to share the parameters for all individuals and optimized by collecting the gradients
of all individuals in the population. Second, a novel direct encoding strategy is devised to encode
architectures into particles, which inherit the parameters from the SuperNet. Then, particle swarm
optimization is used to search for the optimal deep architecture from the particle swarm. Further-
more, experiments with limited training samples based on four widely used biased and unbiased
hyperspectral datasets showed that our proposed method achieves good performance comparable to
the state-of-the-art HSI classification methods.

Keywords: convolutional neural network; hyperspectral image; particle swarm optimization; neural
architecture search; SuperNet

1. Introduction

A hyperspectral image (HSI) has a high spectral and spatial resolution, which provides
rich information about ground truths [1]. Hyperspectral sensors mounted on different space
platforms, i.e., imaging spectrometers, are used to capture images in the ultraviolet, visible,
near-infrared, and mid-infrared regions of the electromagnetic spectrum, where tens to
hundreds of continuous and subdivided spectral bands simultaneously image the target
area. The exploitation of HSI signatures is a powerful tool for observing the surface of the
Earth. Therefore, there are a wide range of processing techniques to explore HSI data [2–4],
and HSI classification is one of the most popular techniques for HSI data exploitation. HSI
classification is widely applied in many fields, such as agricultural applications [5], forestry
and environmental management [6], water and maritime resource management [7], and
military and defense applications [8].

Compared to traditional HSI classification algorithms, convolutional neural networks
(CNNs) can not only explore spectral information, but can also combine spatial information
with spectral information [9]. Moreover, because of the share of parameters to tackle the
curse of dimensionality [10] and the local receptive field to learn spatial information [11],

Remote Sens. 2021, 13, 1082. https://doi.org/10.3390/rs13061082 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8298-7715
https://orcid.org/0000-0003-0020-6503
https://doi.org/10.3390/rs13061082
https://doi.org/10.3390/rs13061082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061082
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061082?type=check_update&version=2


Remote Sens. 2021, 13, 1082 2 of 22

CNNs show good performance in HSI band selection [12,13], feature extraction and classi-
fication [14]. There are many CNN models used as HSI classifiers, including the spectral
CNN [15,16], the spatial CNN [17,18], and the spectral–spatial CNN [19,20]. With the ad-
vance of remote sensing technology, better classifiers are being developed to further improve
the classification performance and the complexity of CNNs. On the one hand, some new
types of CNNs have been introduced for HSI classification, such as the dense CNN using
shortcut connections between layers [21] and the deep residual network with skip connec-
tions [22]. On the other hand, some other techniques have been combined with CNNs, such
as the attention mechanism [23], sparse representation [24], multi-scale fusion [25], and
discriminant embedding [26].

Although the aforementioned CNN models have achieved remarkable progress in HSI
classification tasks in recent years, there are two major problems that should be considered
when applying these CNN models for HSI classification. On the one hand, designing
state-of-the-art successful CNN architectures requires substantial professional knowledge
of human experts and consume a significant amount of time for repeated debugging.
For example, ResNet [27] and DesNet [21] were carefully handcrafted by taking into
consideration the manual domain knowledge. On the other hand, manually optimizing a
CNN when applying it to different data sources may take days or even weeks and should
always be fine-tuned; additionally, this process results in a heavy computational burden,
and is not affordable for most researchers and developers [28].

To overcome the problems of handcrafting CNN models, neural architecture search
(NAS) [29] is an import method to automatically design neural architectures. Since Zoph
et al. [30] successfully discovered a neural network architecture that can achieve compa-
rable performance to handcrafted CNNs, there has been a growing interest in designing
a robust and well-performing neural architecture from the predefined search space by
NAS. There are many different search strategies that can be used to design a proper CNN
architecture, including evolutionary algorithms (EAs), reinforcement learning (RL), and
gradient-based methods. Recently, Chen et al. [31] proposed the automatic design of CNNs
for HSI classification, based on the gradient descent method, and the automatic CNNs
achieved better performance compared to some state-of-the-art deep learning methods.
However, the method based on gradient descent easily converges to the local optimal, and
it cannot be used when there is a vanishing gradient problem or an exploding gradient
problem. EAs search globally, and population-based optimization affords EAs a very good
global search ability. To address the NAS problem, a global search technique is required,
which has always been a topic of interest for discovering the neural architecture by the EA
search strategy. Junior et al. [32] found good chain CNN architectures based on the particle
swarm optimization (PSO) search strategy using nine datasets, which can only search simple
chain-CNNs. Real et al. [33] proposed AmoebaNet-A and found comparable cell-based
neural architectures to some state-of-the-art ImageNet models using the CIFAR-10 dataset,
showing that they consumed a significant time without weight-sharing. An alternative
architecture optimization method is neuroevolution, which is inspired by the evolution of
natural brains. Stanley et al. [34] proposed a classic neuroevolutionary approach, NEAT,
Neural Networks through Augmenting Topologieswhich can modify weights and add
nodes and connections in neural networks. HyperNEAT [35,36] is an improvement of
NEAT, which uses an indirect encoding method named CPPNs [37] that can generate the
patterns of weights in neural networks themselves to evolve into bigger network.

To automatically search for CNN architectures for HSI classification, we propose an
NAS method named PSO-Net, which is based on PSO and consumes a significant amount
of time to search for the optimal architecture. To further accelerate optimal architecture
generation, we propose CPSO-Net with weight-sharing parameter optimization based on
PSO-Net. We propose two cell-based CNN architecture search methods by PSO, capable of
searching globally, compared to the gradient descent method. The main contributions of
this paper are summarized as follows:



Remote Sens. 2021, 13, 1082 3 of 22

(1) Two methods based on PSO are explored to automatically design the CNN architecture
for HSI classification.

(2) A novel encoding strategy is devised that can be used to encode architectures into
arrays with the information of the connections and basic operations types between
the nodes in computation cells.

(3) To improve the search efficiency, CPSO-Net maintains continuous SuperNet sharing
parameters for all particles and optimizes by collecting the gradients of all individuals
in the population.

(4) PSO-Net and CPSO-Net are tested on four biased and unbiased hyperspectral datasets
with limited training samples, showing comparable performance to the state-of-the-art
CNN classification methods.

The remainder of this paper is structured as follows. Detailed related work about
neural architecture search and PSO is presented in Section 2. Section 3 introduces the
proposed PSO-Net and CPSO-Net in detail. Section 4 summarizes and analyzes a series of
experiments performed for HSI classification. Section 5 provides the main conclusions and
perspectives of this work.

2. Related Work

In this section, we introduce two methods related to the method we proposed, namely
neural architecture search and particle swarm optimization.

2.1. Neural Architecture Search

NAS aims to design a well-performing neural network architecture by selecting and
combining basic operations and connections from a predefined search space.

There are three main parts in NAS, namely the search space, the search strategy, and
the performance estimation strategy. The search space is a set of all possible architectures.
The search strategy then automatically finds the optimal architecture from the search
space. The estimation of performance aims to find the architectures with high predictive
performance by training and validation based on data.

The search space should be predefined with the information of all basic operations
and connection nodes. The search space mainly includes two types. The first is to directly
construct the global search space of the entire neural network architecture, including the
chain architecture search space [38] and the multi-branch architecture search space [30]; the
second is to construct parts of the neural network architecture by repeating certain specific
structures, such as the cell-based search space [39].

The search strategy contains gradient-based search and RL- and EA-based approaches.
Gradient-based approaches [40–42] convert the discrete architecture space into a continuous
space and find the optimal architecture using the gradient method in the continuous space.
RL-based methods [30,39] set the state–action space as the NAS search space and set
the policy function as the recurrent network to finish the search process. The validation
accuracy of each individual is used as the fitness to evolve the next generation. In EA-based
approaches [43,44], the population is composed of a group of candidate network structures,
and individuals generate new network architectures through evolutionary algorithms.
To improve the search efficiency of EA-based approaches, Yang et al. [45] maintained
a SuperNet that is trained by the gradient descent method and shares parameters for
all architectures.

The core of the estimation of performance is the weight parameter optimization step,
which can be divided into two categories, namely individual and weight-sharing opti-
mization. Individual weight parameter optimization often learns each network separately,
typically incurring a heavy computational burden and taking a significant amount of
time. Therefore, weight-sharing parameter optimization methods are used to accelerate
training [43,46], which can be divided into two categories according to the search strategies,
i.e., weight-sharing heuristic search strategies and weight-sharing differentiable search
strategies. Weight-sharing heuristic search strategies [47,48] always train one SuperNet



Remote Sens. 2021, 13, 1082 4 of 22

that includes all candidate operations first, and then focuses on each individual inherit pa-
rameter from the SuperNet. Rather than training all individuals, the SuperNet is optimized
only once during one iteration, which dramatically reduces the computational complexity
by separately learning each network. Weight-sharing differentiable search strategies [40]
relax one architecture to one SuperNet, with the weights of all candidate operations being
optimized by the gradient descent method.

2.2. Particle Swarm Optimization

PSO is a kind of evolutionary computation, which is derived from research on the
predation behavior of birds [49]. The main idea of particle swarm optimization is to find
the optimal solution through the cooperation and information-sharing among individuals
from the swarm. In PSO, each candidate solution can be thought of as a bird in the solution
space, which is called a particle. The optimal solution of itself in the past is the pBest, and
the current global optimal solution in the swarm is the gBest. At every iteration, particles
update themselves by tracking two extremes: pBest and gBest. Each particle is updated
according to the following rule of PSO:

vi,j(t + 1) = w× vi,j(t) + cp × rp × (pBesti,j − xi,j(t)) + cg × rg × (gBestj − xi,j(t)) (1)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

where vi,j is the velocity of the i-th particle, xi,j is the current particle position of the i-th
particle, w is a constant called momentum that controls how much the previous velocity
affects the velocity at the current time step, cp, and cg are yjr constants defined beforehand,
representing the weight of yjr particles approaching the pBest and gBest, and rp and rg are
random numbers in [0, 1).

One of the positive characteristics of PSO is that it is capable of fast convergence [50]
when compared to other evolutionary approaches, such as genetic algorithms. Due to the
fact that searching CNNs takes a lot time, even on the most powerful computers, a faster
converging characteristic can have a positive impact in terms of obtaining the optimal
CNN architecture.

3. Proposed Method

In this section, we propose a cell-based CNN architecture search method by particle
swarm optimization at first, named PSO-Net. To make the search stage more efficient and
to reduce the time consumed, we developed another novel continuous PSO approach for
searching neural architectures, namely CPSO-Net.

The two proposed methods are all based on the PSO architecture search step, in-
cluding four procedures to search for the optimal CNN architecture: Construction of the
search space, initialization of the architectures, weight optimization of the neural network
constructed by the architectures, fitness evaluation of the individual particles, and particle
update. CPSO-Net is an improvement based on PSO-Net, and the two methods have
different procedures for the parameter optimization of architectures. The weight optimiza-
tion of the former is the individual weight optimization of all particles, and the latter is
weight-sharing by the inherited weights from the SuperNet.

Figure 1 shows the framework of the stages of PSO-Net. From the framework, one can
see that network architectures are encoded into arrays. Then, the gradient descent method
is used separately to obtain the weight parameters for all architectures, and PSO is used as
the architecture search method to optimize the architectures by the fitness of all particles.
Finally, the optimal architecture is found after reaching the number of iterations.



Remote Sens. 2021, 13, 1082 5 of 22

Figure 1. Framework of the stages of particle swarm optimization PSO-Net. The constructed network architectures from
the search space are encoded into arrays, and populations are initialized. The gradient descent method is used to obtain
the weight parameters for all architectures separately, and PSO is used to optimize the architectures and to search for the
optimal architecture until reaching the number of iterations. The output is the optimal architecture.

Figure 2 shows the framework of the stages of CPSO-Net, which is proposed-based
PSO-Net. The main difference of Figure 2 is the procedure of the parameter optimization of
architectures. To accelerate the optimal architecture generation, a SuperNet is maintained
to share the parameters for all particles and is optimized by collecting the gradients of all
individuals in the population. Rather than training all the individuals of PSO-Net, the
SuperNet of CPSO-Net is optimized only once during one iteration, which dramatically
reduces the computational complexity by separately learning each network.

Figure 2. Framework of CPSO-Net. A continuous SuperNet that contains all candidate operations and can be trained by
gradient descent is maintained first. Then, all architectures are encoded into an array, inheriting the parameters from the
SuperNet, and search for the optimal architecture by PSO. Finally, the optimal architecture is found.

All the operations of PSO-Net and CPSO-Net are detailed in the following subsections.

3.1. Construction of the Search Space

The search space contains two parts, namely all candidate basic operations and
connection nodes. On the one hand, there are three main basic operation types: Convolution
operations, pooling operations, and nonlinear operations. All candidate basic operations
are placed into the operations list named OP to prepare for the next encoding strategy.
On the other hand, the cell-based search space is used to design CNN architectures in
the algorithm we proposed. Each neural network architecture is built by stacking two
types of k number computation cells, which includes normal cells and one reduction cell.
Each cell consists of an ordered sequence with two input nodes, n intermediate nodes, and
one output node. The input of the input nodes are the cell outputs in the previous two
cells, and the output of the cell is a cascade by the n intermediate nodes, each of which is
calculated by the sum of two computations. Additionally, each computation is based on a
random one operation of the basic operations OP computing on a random one node of its
previous nodes. Each computation is defined as an element, which is composed of the basic



Remote Sens. 2021, 13, 1082 6 of 22

operation and the computed node. Therefore, there are 2n elements in each cell with n
intermediate nodes. Figure 3 shows the general architecture stacking by the automatically
designed computation cells by PSO-Net and CPSO-Net.

Figure 3. The general architecture stacking by the automatically designed computation cells by
PSO-Net and CPSO-Net. The bottleneck convolution layer and the fully connected layer in Figure 3
are designed for data preprocessing and classification with human knowledge.

3.2. Initialization of the Swarm

Particle encoding is the core of the initialization of architectures. A novel encoding
strategy was devised that can be used to encode architectures into arrays with the infor-
mation of all of the basic operations and connections between the nodes in computation
cells—where the first and second input node is numbered the 0th and 1th in all nodes,
and the n intermediate nodes are numbered in cells successively following the number
of two input nodes. First, an array with a shape of (2, 2n, 2) is built, which represents an
architecture. The first dimension of the array represents two types of computation cells,
namely normal cells and reduction cells. The second dimension of the array represents
the 2n elements (defined in Section 3.1) in each cell with n intermediate nodes. The third
dimension of the array is composed of the index of basic operations list OP and the com-
puted node. Next, P particles of the swarm are initialized by the above encoding strategy.
Figure 4 shows an example of an encoded architecture, including an encoded normal cell
and a reduction cell with four intermediate nodes.

(a) Example of an encoded normal cell (b) Example of an encoded reduction cell

Figure 4. An example of an encoded architecture, including an encoded normal cell and a reduction
cell with four intermediate nodes. There are eight elements in each cell with four intermediate nodes.
(a) An example of an encoded normal cell. The 0th intermediate node, as well the 2th node in the cell,
are calculated by the sum of two elements OP [2] computed based on the 0th node in the cell and OP
[4] computed based on the 1th node in the cell, where the 0th and 1th nodes in the cell are the two
input nodes. All the remaining intermediate nodes are encoded into arrays in the same way. (b) An
example of an encoded reduction cell.



Remote Sens. 2021, 13, 1082 7 of 22

3.3. The Weight Optimization of the Neural Network Constructed by Architectures

The weight of the neural network constructed by architectures should be optimized,
when receiving information of the connection and basic operation type between the nodes
in computation cells.

3.3.1. Individual Parameter Optimization of PSO-Net

The parameter optimization of PSO-Net involves training individual particles by the
gradient descent method. Each network Ni we searched can be represented by the particle
Pi and a set of full precision parameters (Wi, Pi), i ∈ {1, . . . , P}, where P is the population
size. The training dataset X is denoted as the input data, and Ni(X) is the prediction of the
i-th network Ni. The loss can be expressed as Li = H(Ni(X), Y), whereH is the criterion
and Y is the target. The parameter Wi of Ni can be optimized by:

dWi =
∂Li
∂Wi

(3)

3.3.2. Weight-Sharing Parameter Optimization of CPSO-Net

To further accelerate optimal network generation, we built a SuperNet N that includes
all candidate operations and sharing parameters W for all particles. Each particle is regarded
as a subnet and inherits the weight parameters from the fixed SuperNet, which can be
optimized by the gradient descent method. Therefore, there is no need to train each particle
from the beginning to the end, and the search time can therefore be greatly reduced. After
the parameters have converged, the architecture could alternately be optimized by the
PSO algorithm.

Sampling from the SuperNet N , the different network Ni is a part of N , and the
parameter Wi of Ni can be inherited from W. Therefore, Wi can be represent as Wi =
W � Pi, i ∈ {1, . . . , P}, where � is the mask operation that retains the parameters of the
corresponding nodes of particle Pi. Therefore, the gradient of Wi also can be calculated as:

dWi =
∂Li
∂Wi

=
∂Li
∂W
� Pi (4)

The SuperNet shares W for all different architectures, so the gradient of parameter W
should be calculated by collecting the gradients of all individuals in the population:

dW =
1
P

P

∑
i=1

dWi =
1
P

P

∑
i=1

∂Li
∂W
� Pi (5)

Inspired by the mini-batch samples idea of stochastic gradient descent for updating
parameters, we used mini-batch architectures to accumulate the gradients of all individuals
for updating the shared weight W.

3.4. Fitness Evaluation

Fitness evaluation is performed using the HSI classification accuracy of the optimized
neural network on the validation set, and aimed to estimate the performance of the architec-
tures. Each particle is evaluated as a solution by the fitness evaluation function. Its optimal
solution in the past is the pBest, and the current global optimal solution in the swarm is
the gBest. By the fitness of PSO-Net and CPSO-Net, we can find the pBest and pBest.

3.5. Particle Update

The difference and the velocity operator are devised based on PSO to update the
particles. The particle P is updated element by element until all elements of the particle
have been updated, so the particle update problem is transformed into the element update
problem. Before being able to update an element, the difference between two elements



Remote Sens. 2021, 13, 1082 8 of 22

with the same index in two particles needs to be measured, and the velocity of the element
needs to be computed.

The difference (E2− E1) is calculated by comparing E2 and E1. If both elements are
the same, the difference is “None”, which means no difference. If the two elements are
different, the result of (E2− E1) is E2.

The velocity of any given element of a particle P_E is based on the two differences:
(gBest_E− P_E) and (pBest_E− P_E), where gBest, pBest, and P have the same index in
a particle. Each element velocity is chosen from the two differences based on the decision
factor cg and a number r obtained at random from [0,1). If r ≥ cg, the algorithm selects
from the difference (gBest_E− P_E). Otherwise, the algorithm selects from the difference
(pBest_E− P_E).

Each element is updated according to its element velocity. If its element velocity is
“None”, the element remains the same, otherwise it should be displaced by its velocity.
Particles are modified element by element according to the element velocity. Figure 5
shows the update of an element of a particle.

Figure 5. The update process for an element in a particle. This example shows an update of an element of the 2nd
intermediate node. Before being able to update the element of a particle, the difference between (gBest_E − P_E) or
(pBest_E− P_E) by the different, and the velocity of the element needs to be computed using the velocity operator.

The essence of the role of a particle update is that a particle update can be converted
to an element update in the particle. We assumed that the elements of pBest and gBest
can obtain good fitness, so that pBest and gBest can achieve good fitness. Therefore, we
compared P to pBest and gBest element by element, and determined whether the element
P needs to be replaced by pBest or gBest. Figure 4 shows the update process of particles.

4. Experimental Results and Analysis

In this section, we explain the experimental setting of the method proposed and a
comparative algorithm, followed by the empirical results, to confirm the effectiveness of
the proposed method for automatically designing CNNs for HSI classification based on
four HSI datasets with biased and unbiased data. The experimental conditions were as
follows: A NVIDIA GTX1080 Ti GPU, a E5-2620 CPU, and a memory of 32 GB.

4.1. Datasets

In this section, we used four standard hyperspectral datasets to evaluate the methods
we proposed. As shown in Table 1, the four datasets were Salinas Valley in California in
the USA (Salinas), a mixed vegetation site over the Indian Pines test area in northwestern
Indiana in the USA (Indian Pines), an urban site over the University of Pavia in Italy (Pavia),



Remote Sens. 2021, 13, 1082 9 of 22

and the Kennedy Space Center (KSC) in Florida in the USA. The detailed training samples
of each class are shown in Table 1.

Table 1. Number of samples in the Salinas Valley (Salinas), Indian Pines, University of Pavia (Pavia), and Kennedy Space
Center (KSC) hyperspectral datasets.

Salinas Valley (Salinas) Indian Pines

No. Class Samples Training No. Class Samples Training

1 Broccoli_green_weeds_1 2009 8 1 Alfalfa 46 1
2 Broccoli_green_weeds_2 3726 14 2 Corn–notill 1428 28
3 Fallow 1976 8 3 Corn–mintill 830 16
4 Fallow_rough_plow 1394 6 4 Corn 237 4
5 Fallow_smooth 2678 10 5 Grass–pasture 483 10
6 Stubble 3959 14 6 Grass–trees 730 14
7 Celery 3579 14 7 Grass–pasture–mowed 28 1
8 Grapes_untrained 11,271 40 8 Hay–windrowed 478 10
9 Soil_vineyard_develop 6203 22 9 Oats 20 1

10 Corn_senesced_green_weeds 3278 12 10 Soybean–notill 972 18
11 Lettuce_romaine_4wk 1068 4 11 Soybean–mintill 2455 47
12 Lettuce_romaine_5wk 1927 8 12 Soybean–clean 593 12
13 Lettuce_romaine_6wk 916 4 13 Wheat 205 4
14 Lettuce_romaine_7wk 1070 4 14 Woods 1265 24
15 Vineyard_untrained 7268 26 15 Buildings–grass–trees–drives 386 8
16 Vineyard_vertical_trellis 1807 6 16 Stone–steel–towers 93 2

Total 43,980 200 Total 10,249 200

University of Pavia (Pavia) Kennedy Space Center (KSC)

No. Class Samples Training No. Class Samples Training

1 Asphalt 6631 34 1 Scrub 761 24
2 Meadows 18,649 70 2 Willow swamp 243 10
3 Gravel 2099 12 3 Cp hammock 256 10
4 Trees 3064 14 4 Slash pine 252 10
5 Painted metal sheets 1345 6 5 Oak/broadleaf 261 10
6 Bare soil 5029 30 6 Hardwood 229 10
7 Bitumen 1330 14 7 Swamp 105 6
8 Self-blocking bricks 3682 16 8 Graminoid marsh 431 20
9 Shadows 947 4 9 Spartina marsh 520 20

10 Cattail marsh 404 18
11 Salt marsh 419 18
12 Mud flats 503 20
13 Water 927 24

Total 42,776 200 Total 5211 200

The first dataset, Salinas, was collected by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) with 224-band over Salinas Valley, California, which is of a high spatial
resolution (3.7 m/pixels). The available dataset consists of 204 bands with 512× 217 pixels
after discarding the 20 water absorption bands and the 16 land cover classes.

The second dataset, Indian Pines, was captured by the AVIRIS sensor with 220-
band over the Indian Pines test area. The available dataset consists of 200 bands with
145× 145 pixels after removing the water absorption bands. The ground reference map
covers 16 classes of interest.



Remote Sens. 2021, 13, 1082 10 of 22

The third dataset, University of Pavia, was collected by the ROSIS-3 sensor with
115-band over the University of Pavia, which is of a high spatial resolution (1.3 m/pixels) to
avoid mixed pixels. The available dataset consists of 103 bands with 610× 340 pixel vectors
after removing the noisy bands. The ground reference map covers nine classes of interest.

The fourth dataset, KSC, was captured by the airborne AVIRIS sensor over KSC, Florida,
at an altitude of approximately 20 km with a spatial resolution of 18 m. The available dataset
consists of 176 bands with 512× 614 pixels after removing the water absorption and noisy
bands. The ground reference map covers 13 classes of interest.

4.2. Comparative Experiment

To evaluate the performance of the two methods we proposed, some CNN classifi-
cation methods, including handcrafted CNN models and automatically designed CNN
models based on spatial–spectral information, were employed to achieve a comprehensive
comparison with the PSO-Net and CPSO-Net methods. We chose several handcrafted CNN
models that have reported results in the spectral–spatial information hyperspectral datasets
to test the proposed algorithms. The CNN [51] was conducted, which is a sample CNN
designed to tackle the problem of HSI spectral–spatial classification. The spectral–spatial
residual network (SSRN) [22] and ResNet [27] are residual-based methods, which can
achieve good classification performance. DesNet [21] using shortcut connections between
layers was used for comparison. Moreover, an automatically designed CNN method,
namely Auto-CNN, was introduced, which explores the automatic design of CNNs for HSI
classification by the gradient descent and achieved good performance. To demonstrate the
performance of the two methods we proposed, we made a comparison in the classification
accuracy and the computational complexity with handcrafted and automatically designed
CNN models. To further illustrate the search effectiveness of PSO-Net and CPSO-Net, we
compared them with a peer, the automatically designed method Auto-CNN, in terms of
time complexity.

4.3. Experimental Settings

In this section, we explain the detailed parameter setting for our experiments. For
the automatically designed algorithms, including Auto-CNN, PSO-Net, and CPSO-Net,
the search space should be predefined. We set the number of computation cells k to 3
and the intermediate nodes n to 4, and the basic operation list OP includes the following
candidate basic operations: None; 3 × 3 max pooling, abbreviated as max_3 × 3; 3 × 3
average pooling, abbreviated as avg_3 × 3; skip connection, abbreviated as skip; 3 × 3
separable convolution, abbreviated as sep_3 × 3; 5 × 5 separable convolution, abbreviated
as sep_5 × 5; 3× 3 dilated convolution, abbreviated as dil_3 × 3; 5 × 5 dilated convolution,
abbreviated as dil_5 × 5. For HSI classification, the general architecture of automatically
designed CNNs includes three parts. First, hyperspectral datasets as an input pass one 1× 1
bottleneck convolution layers to set the number of HSI bands to 10 for the next computation
cells. Then, two normal cells with padding and setting stride to 1, and reduction cells with
padding and setting stride to 2 are stacked to complete the CNN. Finally, the final labels
can be obtained by the fully connected layer.

For all the experiments in this work, we split the labeled samples of the HSI datasets
into three subsets by sampling without replacement, namely the training, validation, and
test sets. To ensure that all classes are included in the training, validation, and test dataset,
we choose samples including all classes based on the proportion of every class in whole
dataset and samples in each class are randomly selected with the same probability in this
class. Based on the rule above, we chose 200 samples, including all classes as the training
set and 600 samples as the validation set for each dataset. To demonstrate the stability of
the two proposed methods, we conducted the experiments five times with random split
datasets. Details of the training samples of each class of the four datasets are shown in
Table 1. All the remaining labeled samples served as the test set to evaluate the capability
of the network. The training set was used to train the network, and the validation set was



Remote Sens. 2021, 13, 1082 11 of 22

used to evaluate the performance of the architectures found and to search for the optimal
architecture for all the automatic design algorithms.

For biased datasets, we chose 7 × 7 × B neighborhoods of a pixel as input, where B
is the number of HSI bands. For unbiased datasets, samples with 32 × 32 slides were not
enough to divide into the training and validation datasets, so we chose 7× 7 neighborhoods
of a pixel, and none of the samples were overlapping. For all the CNN models designed by
hand, i.e., 3-D CNN, SSRN, ResNet, DesNet, we set the training epochs to 100 epochs. The
learning rate for the weights of all these models was 0.025. For 3-D Auto-CNN, we set the
training epochs in the architecture search and test process both to 100 epochs. The learning
rate for the weights in the search and test process was 0.025 and 0.05, respectively. For
PSO-Net, we set the swarm size to 100, the number of iterations to 40, cg to 0.5, the training
epochs in the architecture search and test process both to 100 epochs, and the learning rate
for the weights in the architecture search and test process to 0.025. For CPSO-Net, only
the training epochs in the architecture search were different from above, inspired by the
mini-batch architecture idea of stochastic gradient descent for updating parameters, with
only one epoch achieving good performance. For the test process, the experimental settings
for the different methods can be found in Table 2.

Table 2. Experimental settings for the different methods. CNN, convolutional neural network.

Algorithm Architecture CNN Training PSO

Parameters Cells Nodes Train_Samples Valid_Samples Epochs_Search Epochs_Test Pop_Size Iterations

Hand-CNNs / / 200 600 / 100 / /
Auto-CNNs 3 4 200 600 / 100 / /

PSO-Net 3 4 200 600 100 100 100 40
CPSO-Net 3 4 200 600 1 100 100 40

4.4. Results Analysis

In this section, we analyze the classification results and compare our algorithm with
other methods in terms of classification accuracy, parameters, and time complexity on biased
hyperspectral datasets to illustrate the effectiveness of our algorithms. We also demonstrate
the optimal architectures searched by our methods, and analyze the convergence to illustrate
the feasibility of the methods we proposed. Finally, we conduct experiments on unbiased
hyperspectral datasets to further show our algorithms’ advantages.

4.4.1. Classification Accuracy

Tables 3–6 show the detailed classification results on test datasets of the two methods
we proposed and the other comparative algorithm. As shown in Tables 3–6, it is obvious
that PSO-Net and CPSO-Net achieved a big improvement classification accuracy over the
handcraft methods, including CNN, SSRN, ResNet, and DesNet. Therefore, we mainly
compared the methods with Auto-CNN, which is an automatically designed method as
well. For the University of Pavia dataset, CPSO-Net improved the OA, AA, and Kappa
of Auto-CNN by 1.34%, 0.64%, and 0.0185, respectively, and PSO-Net exhibited the best
OA, AA, and Kappa, with improvements of 1.78%, 2.31%, and 0.0221 over Auto-CNN.
respectively. For the Salinas dataset, PSO-Net and CPSO-Net performed almost the same,
and CPSO-Net exhibited the best OA, AA and Kappa, with improvements of 1.22%, 1.95%
and 0.0221 over Auto-CNN, respectively. For the Indian Pines dataset, both PSO-Net and
CPSO-Net achieved higher classification results than the other algorithms. CPSO-Net ex-
hibited the best AA and Kappa, while PSO-Net exhibited the best OA, with improvements
of 1.88%, 0.0171, and 1.37% over Auto-CNN, respectively. For the KSC dataset, similar
results to the other datasets were obtained. Obviously, CPSO-Net dramatically accelerated
the optimal network generation and achieved quality performance comparable to PSO-Net.
For the Salinas, Indian Pines, and KSC datasets, CPSO-Net achieved even better classifica-
tion performance than PSO-Net, with some improvement over PSO-Net in terms of AA,



Remote Sens. 2021, 13, 1082 12 of 22

OA, and Kappa. There may be some significant differences in every class accuracy. For
example, CPSO-Net achieved particularly improvement of 12.98% over Auto-CNN in the
first-class classification on Salinas. In addition, Table 7 shows the detailed average rankings
of the classification accuracy on four datasets through the minimize performance measure
based Friedman test[52], which is a statistical test for the homogeneity of multiple samples.
From Table 7, we can see that the proposed approaches get almost similar ranking and
rank higher than other comparative algorithms in terms of OA, AA, and Kappa.

Table 3. Classification accuracy with bolding the best accuracy based on the biased Pavia dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 91.79 ± 0.98 91.65 ± 2.64 88.67 ± 0.65 91.86 ± 0.23 92.58 ± 0.82 94.36 ± 0.55 93.96 ± 1.23
AA (%) 84.59 ± 2.97 89.00 ± 3.27 80.86 ± 1.12 84.86 ± 1.49 87.75 ± 1.23 90.06 ± 1.02 88.39 ± 2.11
K×100 89.42 ± 1.58 89.16 ± 3.37 85.60 ± 1.34 89.63 ± 1.87 90.47 ± 1.30 92.68 ± 1.03 92.32 ± 1.07

Asphalt 92.11 ± 2.40 95.08 ± 2.46 91.90 ± 2.48 94.32 ± 1.16 95.16 ± 1.38 95.68 ± 1.35 95.31 ± 1.48
Meadows 98.88 ± 0.72 96.20 ± 4.20 97.16 ± 0.23 98.38 ± 0.84 98.17 ± 0.79 99.05 ± 0.48 98.45 ± 0.59

Gravel 59.99 ± 13.85 69.92 ± 18.36 79.43 ± 8.27 81.87 ± 9.48 82.65 ± 12.93 70.93 ± 14.39 84.23 ± 13.21
Trees 93.35 ± 4.35 90.84 ± 6.93 52.57 ± 12.76 49.15 ± 8.82 63.49 ± 14.82 76.46 ± 6.32 71.24 ± 5.92

Painted metal sheets 97.10 ± 4.30 99.25 ± 2.01 99.33 ± 0.35 99.48 ± 0.38 96.72 ± 2.49 96.45 ± 1.05 98.28 ± 3.16
Bare Soil 93.97 ± 3.24 89.34 ± 10.88 93.42 ± 2.49 96.26 ± 2.83 98.76 ± 0.38 98.84 ± 0.47 99.54 ± 0.46
Bitumen 54.23 ± 12.48 82.36 ± 14.01 87.16 ± 1.84 94.24 ± 2.85 95.82 ± 1.37 97.95 ± 1.25 97.43 ± 1.85

Self-blocking bricks 88.77 ± 5.64 79.67 ± 18.68 95.42 ± 1.56 97.80 ± 0.37 96.42 ± 2.48 97.22 ± 1.37 98.42 ± 0.76
Shadows 82.95 ± 21.60 98.34 ± 2.11 31.55 ± 10.26 52.23 ± 11.72 62.74 ± 25.64 77.02 ± 8.29 52.61 ± 16.47

Parameters 141 K 216.5 K 25.6 M 7.3 M 92.4 K 85.7 K 37.7 K

Table 4. Classification accuracy with bolding the best accuracy based on the biased Salinas dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 90.68 ± 1.28 91.16 ± 1.64 91.57 ± 0.74 92.97 ± 0.82 95.42 ± 1.48 96.18 ± 1.08 96.64 ± 1.48
AA (%) 88.18 ± 1.25 93.59 ± 2.35 92.80 ± 1.02 94.94 ± 1.14 95.37 ± 2.05 96.52 ± 1.24 97.32 ± 1.24
K×100 89.56 ± 1.45 90.16 ± 1.82 90.51 ± 0.95 92.11 ± 0.89 94.09 ± 1.85 95.84 ± 1.57 96.23 ± 1.15

Brocoli_green_weeds_1 81.76 ± 6.68 99.59 ± 0.72 98.73 ± 0.36 95.44 ± 3.58 81.69 ± 8.29 84.80 ± 8.35 94.67 ± 5.33
Brocoli_green_weeds_2 94.88 ± 6.07 99.54 ± 1.35 74.36 ± 0.44 89.69 ± 1.45 97.52 ±0.28 97.53 ± 0.48 96.95 ± 1.21

Fallow 91.35 ± 4.62 82.03 ± 20.05 100.00 ± 0.00 95.11 ± 2.13 92.36 ± 1.40 94.22 ± 1.37 97.68 ± 1.04
Fallow_rough_plow 88.31 ± 7.49 98.61 ± 1.57 95.42 ± 2.59 100.00 ± 0.00 93.28 ± 1.27 96.45 ± 1.21 96.82 ± 1.60

Fallow_smooth 95.60 ± 4.40 97.13 ± 3.98 96.76 ± 0.33 97.31 ± 0.42 97.36 ± 0.58 97.62 ± 0.70 96.93 ± 1.46
Stubble 99.74 ± 0.63 99.81 ± 0.49 99.36 ± 0.63 99.37 ± 0.56 99.78 ± 0.17 99.82 ±0.05 99.87 ± 0.12
Celery 97.42 ± 2.03 99.62 ± 0.58 99.45 ± 0.35 99.48 ± 0.27 99.47 ± 0.12 99.49 ± 0.59 98.66 ± 0.49

Grapes_untrained 88.48 ± 3.13 81.13 ± 8.86 96.76 ± 1.42 97.16 ± 0.67 95.26 ± 1.21 96.12 ± 2.48 98.03 ± 3.37
Soil_vineyard_develop 98.96 ± 1.70 98.96 ± 2.30 97.39 ± 1.35 99.37 ± 0.54 99.36 ± 1.10 99.38 ± 0.34 95.42 ± 3.91

Corn_senesced_green_weeds 95.20 ± 5.57 91.58 ± 3.72 93.82 ± 4.48 99.21.00 ± 0.93 99.81 ± 0.25 99.22 ± 0.64 99.86 ± 0.52
Lettuce_romaine_4wk 77.33 ± 8.43 83.38 ± 28.67 98.02 ± 0.83 99.86 ± 0.43 98.85 ± 0.12 99.92 ± 0.13 95.89 ± 1.14
Lettuce_romaine_5wk 89.66 ± 9.04 98.72 ± 3.02 96.12 ± 0.65 99.45 ± 0.57 92.63 ± 0.64 99.82 ± 1.08 99.92 ± 1.89
Lettuce_romaine_6wk 87.92 ± 9.43 95.30 ± 5.09 78.30 ± 6.34 78.81 ± 6.87 95.42 ± 0.72 96.61 ± 1.46 95.42 ± 1.79
Lettuce_romaine_7wk 90.53 ± 8.71 96.95 ± 3.15 97.02 ± 0.85 96.50 ± 1.45 93.78 ± 1.03 94.77 ± 1.12 97.44 ± 3.35
Vineyard_untrained 81.78 ± 11.24 79.72 ± 7.47 71.30 ± 10.29 74.63 ± 8.27 95.62 ± 2.34 95.89 ± 1.01 96.55 ± 1.56

Vineyard_vertical_trellis 61.12 ± 14.38 95.37 ± 2.84 91.96 ± 2.48 97.65 ± 3.81 93.79 ± 4.96 92.70 ± 5.23 97.12 ± 6.67

Parameters 193 K 370.3 K 27.5 M 7.6 M 101.8 K 61.6 K 47.1 K

To sum up from the classification accuracy analysis above, we can draw two con-
clusions. On the one hand, the PSO-Net and CPSO-Net algorithms made significant im-
provements over the state-of-the-art CNN models designed by hand, including CNN,
SSRN, ResNet, and DesNet. Additionally, the proposed approaches are able to find better
architectures than Auto-CNN optimized by the gradient descent. On the other hand, the
two methods proposed herein achieved almost the same classification performance, while
CPSO-Net dramatically reduced the time computation.



Remote Sens. 2021, 13, 1082 13 of 22

Table 5. Classification accuracy with bolding the best accuracy based on the biased Indian Pines dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 85.29 ± 1.45 80.66 ± 2.91 81.61 ± 1.23 87.77 ± 1.17 88.12 ± 1.42 89.52 ± 0.98 89.32 ± 1.27
AA (%) 69.94 ± 4.83 65.35 ± 6.85 66.71 ± 5.64 72.13 ±4.76 73.05 ±6.29 74.25 ± 4.04 74.42 ± 7.26
K×100 82.70 ± 1.75 77.83 ± 3.37 78.02 ± 1.84 85.34 ± 1.49 85.87 ± 1.94 87.52 ± 1.59 87.58 ± 1.53

Alfalfa 35.95 ± 35.52 12.46 ± 22.28 25.39 ± 46.34 46.72 ± 41.47 36.63 ± 42.27 38.63 ± 45.42 38.32 ± 39.62
Corn–notill 82.49 ± 14.94 79.05 ± 10.59 87.37 ± 4.26 96.21 ± 5.36 86.02 ± 4.93 89.90 ± 2.21 89.95 ± 3.83

Corn–mintill 64.88 ± 14.94 73.92 ± 16.97 62.38 ± 18.94 62.86 ± 22.63 79.63 ± 19.54 79.07 ± 26.98 67.46 ± 17.62
Corn 45.67 ± 20.51 38.96 ± 21.69 51.37 ± 26.43 49.06 ± 20.52 54.19 ± 38.16 72.49 ± 18.64 68.27 ± 39.48

Grass–pasture 58.91 ± 16.72 75.46 ± 16.00 67.39 ± 20.23 58.33 ± 23.84 74.63 ± 18.92 74.82 ± 24.85 68.63 ± 29.94
Grass–trees 89.89 ± 8.48 94.84 ± 5.20 87.57 ± 5.42 94.41 ± 4.26 94.89 ± 4.37 89.63 ± 3.62 86.62 ± 7.76

Grass–pasture–mowed 48.26 ± 42.07 33.70 ± 43.84 18.54 ± 43.36 34.83 ± 44.32 56.38 ±45.29 69.73 ± 43.74 73.84 ± 56.16
Hay–windrowed 92.54 ± 7.28 99.53 ± 0.69 89.54 ± 4.73 92.41 ± 2.62 98.05 ± 0.75 98.34 ± 1.37 96.35 ± 3.64

Oats 24.29 ± 31.89 8.48 ± 13.13 35.84 ± 35.74 52.63 ± 31.41 13.86 ± 26.95 19.92 ± 43.87 21.92 ± 43.82
Soybean–notill 86.89 ± 4.65 75.52 ± 8.84 80.13 ± 2.65 86.35 ± 2.73 91.64 ± 3.23 90.42 ± 3.25 94.87 ± 2.78

Soybean–mintill 92.72 ± 1.57 82.76 ± 6.90 85.75 ± 5.83 90.61 ± 2.84 92.76 ± 5.54 87.50 ± 7.53 94.36 ± 1.35
Soybean–clean 68.58 ± 16.91 68.04 ± 19.14 71.36 ± 22.75 85.32 ± 19.31 72.27 ± 21.93 71.89 ± 19.21 73.05 ± 16.95

Wheat 92.99 ± 13.36 95.41 ± 8.34 86.73 ± 2.56 71.39 ± 3.75 94.02 ± 5.85 83.21 ± 4.86 82.83 ± 8.42
Woods 98.89 ± 1.28 96.38 ± 3.15 93.79 ± 2.65 95.36 ± 2.79 97.46 ± 1.38 97.62 ± 1.74 95.49 ± 1.35

Buildings–grass–trees 75.44 ± 13.80 60.64 ± 19.60 64.52 ± 32.28 71.16 ± 21.84 53.72 ± 31.57 54.37 ± 27.46 68.42 ± 32.49
Stone–steel–towers 57.62 ± 26.55 50.40 ± 42.30 59.72 ± 32.48 66.39 ± 27.48 72.68 ± 27.54 71.42 ± 16.29 70.34 ± 29.67

parameters 191.4 K 364.2 K 27.4 M 7.6 M 38.4 K 53.6 K 55.1 K

Table 6. Classification accuracy with bolding the best accuracy based on the biased KSC dataset, fun five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 95.98 ± 0.83 96.77 ± 0.83 95.76 ± 0.72 95.92 ± 1.52 96.04 ± 0.90 97.43 ± 1.13 97.56 ± 1.69
AA (%) 94.07 ± 1.39 94.70 ± 0.86 95.12 ± 1.58 94.24 ± 1.46 94.01 ± 1.19 96.21 ± 0.61 96.41 ± 1.24
K×100 95.53 ± 0.95 96.41 ± 0.93 95.28 ± 0.63 95.46 ± 0.73 95.64 ± 1.10 97.07 ± 0.77 97.28 ± 1.15

Scrub 99.72 ± 0.29 97.72 ± 2.16 99.16 ± 1.04 97.89 ± 1.78 94.42 ± 1.54 93.28 ± 2.31 96.22 ± 137
Willow swamp 82.18 ± 9.58 90.35 ± 9.95 95.40 ± 3.63 83.12 ± 5.02 83.50 ± 5.26 86.37 ± 6.18 88.64 ± 7.31
Cp hammock 92.80 ± 7.60 95.88 ± 2.52 93.42 ± 2.57 90.53 ± 1.48 89.84 ± 6.45 90.91 ± 5.35 94.53 ± 6.34

Slash pine 78.38 ± 7.19 91.68 ± 5.97 95.23 ± 3.29 84.94 ± 3.35 95.03 ± 3.91 96.18 ± 4.67 94.84 ± 5.39
Oak/broadleaf 91.57 ± 7.51 81.88 ± 9.97 95.76 ± 4.27 83.86 ± 1.58 85.27 ± 2.57 96.38 ± 1.39 87.58 ± 2.58

Hardwood 88.02 ± 8.54 91.55 ± 8.02 97.38 ± 2.56 97.96 ± 2.56 88.47 ± 4.84 96.67 ± 2.12 97.55 ± 1.79
Swamp 96.64 ± 7.55 89.91 ± 10.76 89.27 ± 5.73 100.00 ± 0.00 98.67 ± 1.46 98.00±1.23 100.00 ± 0.00

Graminoid marsh 95.81 ± 5.42 96.96 ± 4.31 84.37 ± 8.26 98.12 ± 2.49 97.95 ± 2.62 98.31 ± 1.08 96.00 ± 4.57
Spartina marsh 98.46 ± 3.19 88.86 ± 0.70 96.23 ± 2.14 99.58 ± 1.12 100.00 ± 0.00 98.23 ± 1.77 100.00 ± 0.00
Cattail marsh 100.00 ± 0.00 98.16 ± 3.77 94.96 ± 1.50 93.37 ± 1.48 92.45 ± 1.23 99.65 ± 0.68 98.56 ± 2.49

Salt marsh 100.00 ± 0.00 98.28 ± 2.83 96.25 ± 1.77 96.50 ± 1.94 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Mud flats 99.33 ± 1.07 99.97 ± 1.63 99.13 ± 0.92 99.25 ± 1.84 98.69 ± 1.09 99.36 ± 0.69 99.44 ± 0.56

Water 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Parameters 178.9 K 327.2 K 26.7 M 7.5 M 100.4 K 69.4 K 60.1 K

Table 7. Average rankings of Friedman test on four datasets in terms of OA, AA and Kappa, bold the best results.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

Ranking (OA) 2.5 2.5 1.75 3.5 4.75 6.5 6.5
Ranking (OA) 2 3.5 2.5 3.5 3.75 6.25 6.5

Ranking (Kappa) 2.5 1.75 1.75 4 5 6.5 6.5

In addiction, taking CPSO-Net as example, we made a sensitivity hyperparameter
analysis of the cell numbers with an additional two and four cells, intermediate nodes with
an additional three and five nodes, and a population size with an additional 60 and 140.
From Figure 6a,b, it can be seen that fewer number of cells or intermediate nodes achieved
a lower OA, but the models with a higher number of cells or intermediate nodes did not
necessarily lead to better performance. The main reason is that the models with simple
architectures may not be able to extract deep features, and complex models may cause an
overfitting problem with limited training samples. From Figure 6c, we can see that a small
population may make architectures fall into the local optimal, but a large population will
not greatly improve the classification performance when spending much more time.



Remote Sens. 2021, 13, 1082 14 of 22

(a) Cell (b) Node (c) Population size

Figure 6. Classification results of different models searched by CPSO-Net with different numbers of cells, intermediate
nodes, and population sizes based on four biased hyperspectral image (HSI) datasets.

4.4.2. Complexity Analysis

To analyze the complexity of the method we proposed, the results of several trainable
parameters compared to both human-designed and automatically designed CNNs are
shown in the bottom row of Tables 3–6, and the time consumed compared to the peer
automatically designed method are shown in Figure 7. From Tables 3–6, it is obvious that
the models searched by PSO-Net and CPSO-Net achieved better results with the state-of-
the-art CNNs designed by human experts while having significantly less parameters, which
means less time and computational complexity to train the CNN models. There are two
main reasons for the above results. First, a CNN model with a high number of trainable
parameters may cause an overfitting problem with limited training samples. Second,
automatically designed methods can search CNNs more suitably for specific HSI datasets.
For the automatically designed methods Auto-CNN, PSO-Net, and CPSO-Net, even though
they had the same search space, CPSO-Net and PSO-Net performed better than Auto-CNN.
However, there was no consistent pattern between the number of parameters of the models
searched by the three automatically designed methods.

Pavia Salinas Indian KSC
datesets

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

se
ar
ch

 ti
m
e(
/h
ou

r)

0.28 0.3 0.33 0.3

1

2

1 1

0.15

0.4

0.225 0.2

Auto-CNN
CPSO-Net
CPSO-Net convergence

(a) Search time

Pavia Salinas Indian KSC
datesets

0

25

50

75

100

125

150

175

tra
in
 ti

m
e(
/s
)

115

190 185

131
119

159 156

120

92

140
133 135

Auto-CNN
PSO-Net
CPSO-Net

(b) Train time

Pavia Salinas Indian KSC
datesets

0

20

40

60

80

100

120

140

te
st
 ti

m
e(
/s
)

29

134

11 10

29

119

10 10

27

119

10 10

Auto-CNN
PSO-Net
CPSO-Net

(c) Test time

Figure 7. Time consumed in the different stages of the different automatically designed CNNs methods based on four
biased HSI datasets.

To further compare the search effectiveness of these automatically designed methods,
Figure 7 shows the time consumed in the different stages of the peer automatically designed
CNN methods based on four biased HSI datasets. PSO-Net consumed approximately 15 h
to converge, which is a significant time compared to the other two automatically designed
methods. Therefore, Figure 7a only shows the search time of Auto-CNN, CPSO-Net,
and CPSO-Net convergence. From Tables 3–6 and Figure 7a, we can see that CPSO-Net
and PSO-Net achieved better performance with a big improvement for Auto-CNN, but
CPSO-Net dramatically reduced the search time by the weight-sharing parameters from
the SuperNet compared to PSO-Net. The time of the total iteration of CPSO-Net consumed
more time than Auto-CNN, while it converged at six, eight, nine, and eight iterations (the
detailed convergence analysis can be seen is Section 4.4.3) based on Pavia, Salinas, Indian
Pines, and KSC, respectively. CPSO-Net only consumed approximately 15 min to converge,
which is almost close to and even less than Auto-CNN. From Figure 7b, we can see that
the training time of the CNNs searched by CPSO-Net was less than that of PSO-Net and
Auto-CNN based on the Pavia, Salinas, and Indian Pines datasets. From Figure 7c, the



Remote Sens. 2021, 13, 1082 15 of 22

three automatic-designed method, i.e., Auto-CNN, PSO-Net, and CPSO-Net, consumed
almost the same time to test all the data of the CNNs searched.

To sum up, from Figure 7, we can see that PSO-Net consumed a significant amount
of time to converge, while CPSO-Net dramatically accelerated the search generation. The
time CPSO-Net consumed to converge was almost same as and even less than Auto-CNN.

4.4.3. Convergence Analysis

To dramatically accelerate optimal network generation, CPSO-Net shared the weights
of SuperNet for all particles based on PSO-Net and achieved quality performance com-
parable to PSO-Net. Therefore, we mainly analyze the convergence of CPSO-Net in this
section. The convergence of the architectures was different from the other solutions, and
it is not enough only to consider the fitness of particles. The fitness was determined by
the HSI classification accuracy of the optimized neural network, which was composed
of the architectures and weight parameters. However, the number of parameters of the
architectures and the position of the particles were only related to architecture. Therefore,
the architecture convergence analysis of CPSO-Net took the number of parameters of the
architectures and the position of all the particles as important criteria.

The number of parameters of the architectures were closely related to the operations
in said architectures. With the alter of the operations in the architectures, the number of
parameters changed accordingly, representing the architectures converging when the number
of parameters remained the same during the generations. Figure 8 shows the accuracy and
number of parameters of gBest during iterations based on four datasets by CPSO-Net. From
the number of parameters of gBest, we can see that the architectures converged at six,
eight, nine, and eight iterations based on the Pavia, Salinas, Indian Pines, and KSC datasets,
respectively. The gBest accuracy of the validation dataset still increased after the convergence
of architectures. The main reason is that the parameters of the architectures inherited from
the SuperNet continued to be optimized, while SuperNet was trained until reaching the
maximum iterations.

0 5 10 15 20 25 30 35 40

Number of iterations

0.055

0.060

0.065

0.070

0.075

pa
ra
m
et
er
s(
M
b)

parameters
accuracy

50

60

70

80

ac
cu
ra
cy
(%

)

(a) Pavia

0 5 10 15 20 25 30 35 40

Number of iterations

0.050

0.055

0.060

0.065

0.070

pa
ra
m
et
er
s(
M
b)

parameters
accuracy

30

40

50

60

70

80

90

ac
cu
ra
cy
(%

)

(b) Slinas

0 5 10 15 20 25 30 35 40

Number of iterations

0.056

0.058

0.060

0.062

0.064

0.066

pa
ra
m
et
er
s(
M
b)

parameters
accuracy

20

30

40

50

60

70

80

ac
cu
ra
cy
(%

)

(c) Indian Pines

0 5 10 15 20 25 30 35 40

Number of iterations

0.060

0.065

0.070

0.075

0.080

0.085

pa
ra
m
et
er
s(
M
b)

parameters
accuracy

20

30

40

50

60

70

ac
cu
ra
cy
(%

)

(d) KSC

Figure 8. The accuracy and parameters of gBest during the iterations based on four biased datasets by CPSO-Net.

We further visualized the position of 20 particles selected randomly and gBest during
the iterations based on four datasets by CPSO-Net in Figure 9. The position of the particles
was projected from the array (encoding from the architectures) into one-dimensional space
using principal component analysis (PCA). As we can see, all particles divided globally at
initialization, gradually tended toward focusing on global exploration with the iteration,
toward the best particle position found thus far, and the position of gBest converged at the
same iteration as the number of parameters of gBest, as shown in Figure 8.

0 5 10 15 20 25 30 35 40
Number of iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

po
si
tio

n

gBest

(a) Pavia

0 5 10 15 20 25 30 35 40
Number of iterations

3

4

5

6

7

8

po
si
tio

n

gBest

(b) Slinas

0 5 10 15 20 25 30 35 40
Number of iterations

2

3

4

5

6

po
si
tio

n

gBest

(c) Indian Pines

0 5 10 15 20 25 30 35 40
Number of iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

po
si
tio

n

gBest

(d) KSC

Figure 9. Positions of 20 particles and gBest during the iterations based on four biased HSI datasets by CPSO-Net.



Remote Sens. 2021, 13, 1082 16 of 22

4.4.4. Optimal Architecture

To find the optimal architecture is the main purpose of the method we proposed, the
optimal architecture can be searched at the end of the algorithms. After searching, the
optimal architecture can be used to classify all the data. Herein, we took PSO-Net based on
biased the University of Pavia dataset and CPSO-Net based on the biased Salinas dataset
as examples. The architectures of the optimal CNN architectures found by the proposed
PSO-Net and CPSO-Net are shown in Figures 10 and 11. Compared to the handcraft CNNs,
PSO-Net and CPSO-Net designed the optimal architectures in a predefined search space
without professional knowledge of human experts and without spending significant time
on repeated debugging. The search space is constructed by incorporating typical properties
of successful architectures designed by hand. Therefore, the optimal architectures searched
includes some typical properties of handcraft CNNs. For example, inspired by the ResNet,
the optimal architectures in Figures 10 and 11 introduced skip connections.

(a) Normal cell (b) Reduction cell

Figure 10. Optimal architecture of PSO-Net for the biased Pavia dataset.

(a) Normal cell (b) Reduction cell

Figure 11. Optimal architecture of CPSO-Net for the biased Salinas dataset.

4.4.5. Classification Maps

To clearly represent the classification results, we plotted the whole image classification
maps of all the models. The classification maps obtained by the different models based on



Remote Sens. 2021, 13, 1082 17 of 22

four biased datasets are shown in Figures 12–15. We evaluated the classification accuracies
from the noise scatter in the visual perspective. From the results, we can see that CPSO-Net
achieved less scatter in the class with the largest area compared to the other models, which
means that CPSO-Net can obtain more precise classification accuracy in this class. From
the resulting images, we figured out how the different classification methods affected the
classification results. Obviously, the automatically designed CNNs had less noise than the
handcrafted CNN model, which demonstrates the feasibility of designing CNN models
automatically. It is obvious that the CNN search by the methods we proposed had less
scatter than the automatically design method Auto-CNN for HSI classification, which
further demonstrates the effectiveness of PSO-Net and CPSO-Net.

Figure 12. Classification Maps on biased Pavia dataset.

Figure 13. Classification maps based on the biased Salinas dataset.

Figure 14. Classification maps based on the biased Indian Pines dataset.

Figure 15. Classification maps based on the biased KSC dataset.

4.5. Unbiased HSI Classification

There may be pixel overlapping and training-test information leakage problems on
biased datasets which lead to over-optimistic results for spectral-spatial methods. Therefore,
to further demonstrate the effectiveness of PSO-Net and CPSO-Net, we conducted some
more experiments on the unbiased hyperspectral datasets and tested the two methods in
comparison to CNN, SSRN, ResNet, DesNet, and Auto-CNN based on the four biased HSI



Remote Sens. 2021, 13, 1082 18 of 22

datasets of Pavia, Salinas, Indian Pines, and KSC. There are some methods to split training
and test datasets without pixels overlapping and training-test information leakage, such as
patch-based [53] and set-to-sets distance based [54] methods.

For the unbiased datasets, samples with 32 × 32 slides were not enough for dividing
into the training and test datasets, so we chose 7 × 7 neighborhoods of a pixel according to
the patch-based [53] method, and none of the samples were overlapping. When the All
other experimental settings were the same with the aforementioned biased datasets.

From Tables 8–11, it is obvious to see that PSO-Net and CPSO-Net performed much
better than the other models, and the improvements of PSO-Net and CPSO-Net were
significant. In particular, the performance of CPSO-Net was better and consumed much
less time than PSO-Net. However, the results of different unbiased spatial-based HSI
classification methods were all lower than the performance of the biased methods.

Table 8. Classification accuracy with bolding the best accuracy based on the unbiased Pavia dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 83.12 ± 2.69 82.46 ± 2.58 79.93 ± 0.93 82.99 ± 1.32 86.05 ± 1.43 86.70 ± 1.26 87.13 ± 0.76
AA (%) 76.35 ± 2.46 78.63 ± 3.59 73.82 ± 1.57 76.25 ± 1.46 79.50 ± 1.78 81.46 ± 1.34 81.98 ± 1.45
K×100 78.42 ± 2.83 78.462 ± 3.48 73.35 ± 1.86 77.33 ± 1.83 81.44 ± 1.47 81.94 ± 1.39 82.92 ± 1.14

Asphalt 79.12 ± 2.69 83.45 ± 2.34 84.12 ± 2.58 86.71 ± 1.78 93.99 ± 1.96 91.31 ± 1.67 94.14 ± 2.79
Meadows 85.24 ± 1.53 93.75 ± 2.73 94.35 ± 2.21 95.50 ± 1.93 95.00 ± 1.36 95.74 ±1.38 95.70 ± 1.39

Gravel 53.14 ± 16.58 59.84 ± 18.43 80.37 ± 8.35 71.29 ± 9.68 51.91 ± 17.43 50.17 ± 15.72 50.63 ± 13.23
Trees 83.57 ± 5.18 82.69 ± 6.54 78.45 ± 11.35 85.92 ± 8.69 87.17 ± 5.82 88.60 ± 5.35 89.37 ± 5.24

Painted metal sheets 86.95 ± 5.51 89.95 ± 2.41 74.38 ± 3.15 71.76 ± 5.28 94.81 ± 3.78 99.58 ± 1.05 97.34 ± 3.57
Bare soil 62.32 ± 3.58 69.78 ± 10.73 52.50 ± 2.33 52.52 ± 2.56 66.44 ± 3.23 66.10 ± 4.59 67.31 ± 5.35
Bitumen 63.74 ± 16.72 62.32 ± 14.42 61.77 ± 1.97 70.78 ± 2.59 57.68 ± 1.37 71.26 ± 1.64 65.80 ± 1.46

Self-blocking bricks 75.63 ± 7.44 71.85 ± 18.51 59.82 ± 1.34 65.39 ± 1.68 72.10 ± 2.31 71.73 ± 1.75 80.07 ± 2.73
Shadows 97.49 ± 19.27 98.84 ± 2.24 78.62 ± 11.24 86.38 ± 11.72 96.45 ± 15.73 98.73 ± 7.94 97.51 ± 8.47

Table 9. Classification accuracy with bolding the best accuracy based on the unbiased Salinas dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 80.36 ± 1.69 81.21 ± 1.58 83.13 ± 0.97 81.99 ± 1.46 84.41 ± 1.53 88.83 ± 1.36 89.75 ± 1.72
AA (%) 82.86 ± 1.57 84.62 ± 2.58 80.37 ± 1.48 81.58 ± 1.39 87.21 ± 1.83 88.90 ± 1.62 90.53 ± 1.43
K×100 78.62 ± 1.72 80.37 ± 1.49 81.20 ± 1.24 79.91 ± 1.34 82.69 ± 1.67 87.54 ± 1.38 88.58 ± 1.84

Brocoli_green_weeds_1 92.46 ± 3.49 73.63 ± 4.7 58.93 ± 3.57 38.13 ± 19.45 60.22 ± 8.29 86.19 ± 8.84 97.50 ± 7.39
Brocoli_green_weeds_2 92.73 ± 6.73 91.52 ± 1.58 93.03 ± 1.29 96.65 ± 1.38 98.66 ± 1.52 99.55 ± 1.35 99.36 ± 1.20

Fallow 86.63 ± 4.68 82.84 ± 20.58 47.17 ± 10.34 79.07 ± 2.47 87.06 ± 1.39 76.72 ± 1.67 84.81 ± 1.38
Fallow_rough_plow 92.52 ± 7.57 91.37 ± 1.82 93.26 ± 2.93 92.61 ± 1.58 97.39 ± 1.97 96.65 ± 1.29 99.60 ± 1.56

Fallow_smooth 87.43 ±4.83 92.59 ± 3.68 94.28 ± 1.23 93.59 ± 1.48 94.58 ± 1.73 90.78 ± 3.72 92.22 ± 2.39
Stubble 93.52 ± 0.38 93.69 ± 0.60 97.85 ± 1.46 96.84 ± 1.44 99.34 ± 1.26 98.85 ± 1.37 99.37 ± 1.05
Celery 93.34 ± 2.85 94.77 ± 0.55 97.70 ± 1.26 97.52 ± 1.27 98.87 ± 1.24 99.07 ± 0.95 99.82 ± 0.73

Grapes_untrained 70.42 ± 3.58 73.37 ± 8.34 78.54 ± 1.96 75.71 ± 1.84 65.87 ± 5.38 86.60 ± 2.59 84.70 ± 4.45
Soil_vineyard_develop 95.34 ± 1.73 94.74 ± 2.37 95.10 ± 1.68 96.53 ± 1.72 97.01 ± 1.37 98.64 ± 1.46 97.33 ± 3.80

Corn_senesced_green_weeds 72.74 ± 5.79 74.64 ± 3.75 89.46 ± 2.57 87.41 ± 1.25 88.36 ± 3.21 91.19 ± 2.52 89.42 ± 1.26
Lettuce_romaine_4wk 68.63 ± 8.70 84.73 ± 28.82 38.58 ± 2.67 34.33 ± 8.39 71.34 ± 1.42 63.45 ± 3.73 77.94 ± 1.58
Lettuce_romaine_5wk 82.57 ± 9.52 88.62 ± 3.47 98.37 ± 1.36 98.89 ± 1.67 97.03 ± 1.45 97.50 ± 1.28 88.96 ± 6.96
Lettuce_romaine_6wk 84.97 ± 9.23 95.30 ± 5.68 98.53 ± 6.34 98.57 ± 1.52 88.77 ± 2.71 84.97 ± 3.49 88.95 ± 2.02
Lettuce_romaine_7wk 82.47 ± 8.78 83.89 ± 3.29 70.77 ± 1.46 79.33 ± 1.52 96.68 ± 1.14 93.24 ± 1.38 79.60 ± 2.13
Vineyard_untrained 54.69 ± 11.44 57.72 ± 7.45 72.91 ± 10.58 72.76 ± 2.62 74.32 ± 2.37 68.77 ± 1.48 74.45 ± 1.36

Vineyard_vertical_trellis 74.27 ± 14.83 79.57 ± 2.85 61.53 ± 2.59 67.44 ± 4.19 79.86 ± 4.85 90.24 ± 5.94 94.45 ± 6.48

Table 10. Classification accuracy with bolding the best accuracy based on the unbiased Indian Pines dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 58.11 ± 1.94 61.83 ± 1.62 58.46 ± 1.23 58.59 ± 1.46 68.23 ± 1.73 70.61 ± 0.73 69.89 ± 1.48
AA (%) 45.23 ± 6.93 49.24 ± 6.84 40.57 ± 6.64 47.28 ± 7.37 54.63 ± 6.52 56.47 ± 5.73 60.80 ± 7.42
K×100 52.14 ± 1.46 55.25 ± 3.47 51.35 ± 1.84 52.77 ± 2.74 63.55 ± 1.42 66.90 ± 1.27 66.79 ± 1.73

Alfalfa 13.55 ± 35.45 12.78 ± 22.61 13.95 ± 42.35 20.23 ± 43.28 14.78 ± 49.57 21.74 ± 43.63 24.78 ± 39.35
Corn–notill 32.47 ± 14.73 35.84 ± 10.48 34.70 ± 3.73 24.93 ± 17.53 53.29 ± 4.93 50.83 ± 5.52 65.20 ± 3.53

Corn–mintill 40.54 ± 14.48 42.53 ± 16.68 26.06 ± 29.25 34.55± 13.63 40.40 ± 29.52 49.75 ± 26.42 51.59 ± 17.24
Corn 5.41 ± 20.53 30.96 ± 21.41 15.13 ± 12.25 37.39 ± 29.53 34.46 ± 38.74 53.08 ± 24.65 40.17 ± 39.51

Grass–pasture 55.74 ± 16.53 57.96 ± 16.38 31.89 ± 32.46 65.19 ± 17.45 76.42 ± 18.27 68.62 ± 23.53 81.86 ± 29.96



Remote Sens. 2021, 13, 1082 19 of 22

Table 10. Cont.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

Grass-trees 88.52 ± 8.92 82.94 ± 5.79 95.0 6± 3.43 97.19 ± 1.37 90.04 ± 4.74 92.88 ± 3.74 92.77 ± 7.82
Grass–pasture–mowed 0.00 ± 0.00 8.92 ± 43.92 0.00 ± 0.00 0.00 ± 0.00 8.58 ± 45.93 2.84 ± 13.36 16.42 ± 56.51

Hay–windrowed 89.92 ± 7.71 93.74 ± 1.79 86.06 ± 1.85 96.06 ± 1.94 97.88 ± 1.79 95.49 ± 1.52 90.04 ± 3.84
Oats 0.00 ± 0.00 1.68 ± 13.68 0.00 ± 0.00 0.00 ± 0.00 8.80 ± 36.95 0.00 ± 0.00 22.00 ± 23.2

Soybean–notill 49.62 ± 4.48 57.05 ± 8.64 25.35 ± 4.75 36.95 ± 7.43 75.41 ± 3.67 64.65 ± 4.52 65.33 ± 2.83
Soybean–mintill 69.62 ± 1.70 69.84 ± 6.68 78.70 ± 3.85 66.44 ± 9.42 75.32 ± 5.52 81.96 ± 7.94 66.91 ± 1.37
Soybean–clean 31.31 ± 16.49 33.94 ± 19.54 24.47 ± 25.31 46.13 ± 13.35 38.20 ± 21.64 37.73 ± 19.47 40.45 ± 16.93

Wheat 78.51 ± 13.72 78.81 ± 8.89 54.03 ± 4.49 69.40 ± 7.42 42.54 ± 5.52 75.41 ± 4.63 83.32 ± 8.62
Woods 88.52 ± 1.69 85.06 ± 3.19 87.56 ± 2.57 85.54 ± 1.82 87.88 ± 1.31 95.96 ± 1.42 92.76 ± 1.73

Buildings–grass–trees 23.42 ± 13.62 30.85 ± 19.28 30.13 ± 23.17 31.78 ± 27.48 48.92 ± 31.62 41.54 ± 27.96 54.71 ± 27.63
Stone–steel–towers 55.41 ± 26.37 64.96 ± 42.35 46.03 ± 23.48 42.70 ± 21.47 73.76 ± 27.26 71.12 ± 16.93 94.62 ± 22.36

Table 11. Classification accuracy with bolding the best accuracy based on the unbiased KSC dataset, run five times.

Method CNN SSRN ResNet DesNet Auto-CNN PSO-Net CPSO-Net

OA (%) 68.46 ± 1.56 69.52 ± 1.72 68.19 ± 1.83 73.57 ± 1.74 74.41 ± 1.37 82.50 ± 1.47 83.77 ± 1.74
AA (%) 65.46 ± 1.46 68.35 ± 1.47 59.59 ± 1.94 64.10 ± 1.64 66.41 ± 1.76 74.98 ± 1.85 76.55 ± 1.87
K×100 64.31 ± 1.68 68.61 ± 1.41 64.01 ± 1.84 70.65 ± 1.79 71.46 ± 1.86 80.49 ± 1.28 81.96 ± 1.85

Scrub 91.72 ± 2.31 93.72 ± 2.57 69.69 ± 1.64 79.61 ± 1.94 91.11 ± 1.84 98.40 ± 1.49 96.54 ± 2.97
Willow swamp 68.18 ± 9.35 71.28 ± 9.51 37.73 ± 3.74 33.76 ± 5.64 40.41 ± 5.75 76.63 ± 7.96 80.25 ± 6.24
Cp hammock 70.80 ± 7.04 72.94 ± 2.79 73.86 ± 2.92 73.44 ± 2.53 65.69 ± 6.74 74.04 ± 6.87 73.71 ± 5.29

Slash pine 23.24 ± 7.52 26.90 ± 5.47 20.88 ± 10.38 32.26 ± 12.45 27.62 ± 11.63 38.02 ± 15.37 56.42 ± 4.73
Oak/broadleaf 43.84 ± 7.15 46.67 ± 4.73 43.69 ± 4.90 36.85 ± 24.74 63.81 ± 2.47 42.86 ± 8.95 39.38 ± 11.33

Hardwood 22.29 ± 5.49 21.72 ± 6.68 20.63 ± 7.92 23.50 ± 5.63 52.40 ± 4.62 63.24 ± 1.36 52.21 ± 2.73
Swamp 62.69 ± 7.69 69.27 ± 5.36 61.30 ± 3.17 68.36 ± 2.65 70.29 ± 1.35 76.38 ± 3.52 62.67 ± 1.48

Graminoid marsh 75.48 ± 5.73 76.40 ± 4.38 75.56 ± 8.25 78.14 ± 1.45 45.86 ± 12.65 56.60 ± 6.42 83.26 ± 1.34
Spartina marsh 59.91 ± 3.29 64.92 ± 1.52 58.60 ± 2.47 66.45 ± 1.86 95.77 ± 1.42 98.38 ± 1.69 93.42 ± 1.83
Cattail marsh 76.15 ± 2.83 76.31 ± 3.27 71.47 ± 1.82 78.01 ± 1.89 41.59 ± 7.73 70.89 ± 4.84 84.00 ± 2.63

Salt marsh 81.16 ± 2.37 86.27 ± 2.63 82.62 ± 1.94 87.41 ± 1.28 97.42 ± 1.45 96.43 ± 1.95 98.52 ± 1.85
Mud flats 80.82 ± 1.48 82.82 ± 1.47 58.75 ± 1.82 80.73 ± 1.38 72.73 ± 1.09 84.21 ± 1.76 83.82 ± 3.43

Water 94.72 ± 3.52 99.38 ± 1.52 99.89 ± 1.23 94.78.00 ± 2.53 98.64 ± 1.24 98.66 ± 1.96 90.95 ± 1.74

5. Conclusions

In this paper, we proposed two novel evolutionary-based search methods, PSO-Net
and CPSO-Net, which use particle swarm optimization as the search strategy to search for
the optimal architecture. For PSO-Net, the gradient descent method was used to obtain
the weight parameters for all architectures separately, and PSO was used to optimize
the architectures and search for the optimal architecture until reaching the maximum
number of iterations. To accelerate the optimal network generation, CPSO-Net made an
improvement based on the PSO-Net parameter optimization of architectures. For CPSO-
Net, we maintained a SuperNet with all candidate operations and shared the weight
parameters for all individuals. There was no need to train each particle from the beginning
to the end, so the search time was reduced greatly. Our results showed that PSO-Net
and CPSO-Net can achieve better classification accuracies compared to the state-of-the-art
algorithms of the automatic design of CNNs for HSI classification, and CPSO-Net can
obtain almost the same results with much less time consumed than PSO-Net.

For future works, we will consider multiple complementary objectives, such as the
number of parameters and the classification accuracy to achieve the Pareto optimal front.
To further demonstrate the effectiveness of the methods we proposed herein, we will test
these methods on the same common image classification datasets.

Author Contributions: Conceptualization, X.L. and C.Z.; methodology, X.L.; software, X.L. and C.Z.;
validation, X.L., C.Z., and Z.C.; formal analysis, X.L.; investigation, C.Z.; resources, X.L. and Z.C.;
data curation, C.Z.; writing—original draft preparation, C.Z.; writing—review and editing, X.L.,
Z.C., J.Y., Z.Z., and X.G.; visualization, C.Z.; supervision, X.L.; project administration, X.L. and Z.C.;
funding acquisition, X.L. All authors read and agreed to the published version of the manuscript.



Remote Sens. 2021, 13, 1082 20 of 22

Funding: This research was funded by the National Nature Science Foundation of China (grant
numbers 61973285, 62076226, 61873249, and 61773355) and the Open Research Project of the Hubei
Key Laboratory of Intelligent Geo-Information Processing (grant number KLIGIP-2019A04).

Acknowledgments: The authors would like to thank M. Grana, M.A. Veganzons, and B. Ayerdi for
the hyperspectral image datasets used in this paper, and Y. Chen for the Auto-CNN source codes.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with

statistical learning methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [CrossRef]
2. Yi, C.; Zhao, Y.Q.; Chan, J.C.W. Hyperspectral image super-resolution based on spatial and spectral correlation fusion. IEEE Trans.

Geosci. Remote Sens. 2018, 56, 4165–4177. [CrossRef]
3. Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral anomaly detection with attribute and edge-preserving

filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [CrossRef]
4. Haut, J.M.; Bernabé, S.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, A.; Plaza, J. LowChigh-power consumption architectures for

deep-learning models applied to hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 776–780. [CrossRef]
5. Teke, M.; Deveci, H.S.; Haliloglu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in

agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul,
Turkey, 16 August 2013; pp. 171–176.

6. Shang, X.; Chisholm, L.A. Classification of australian native forest species using hyperspectral remote sensing and machine-
learning classification algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2481–2489. [CrossRef]

7. Han, Y.; Li, J.; Zhang, Y.; Hong, Z.; Wang, J. Sea ice detection based on an improved similarity measurement method using
hyperspectral data. Sensors 2017, 17, 1124.

8. El-Sharkawy, Y.H.; Elbasuney, S. Hyperspectral imaging: Anew prospective for remote recognition of explosive materials. Remote
Sens. Appl. Soc. Environ. 2019, 13, 31–38. [CrossRef]

9. Li, Y.; Zhang, H.; Shen, Q. Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote
Sens. 2017, 9, 67. [CrossRef]

10. Luo, Y.; Zou, J.; Yao, C.; Zhao, X.; Li, T.; Bai, G. Hsi-cnn: A novel convolution neural network for hyperspectral image. In
Proceedings of the International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 16–17 July
2018; pp. 464–469.

11. Santara, A.; Mani, K.; Hatwar, P.; Singh, A.; Garg, A.; Padia, K.; Mitra, P. BASS Net: Band-adaptive spectral-spatial feature
learning neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5293–5301. [CrossRef]

12. Cai, Y.; Liu, X.; Cai, Z. BS-Nets: An end-to-end framework for band selection of hyperspectral image. IEEE Trans. Geosci. Remote
Sens. 2020, 58, 1969–1984. [CrossRef]

13. Cai, Y.; Zhang, Z.; Cai, Z.; Liu, X.; Jiang, X.; Yan, Q. Graph convolutional subspace clustering: A robust subspace clustering
framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2020. [CrossRef]

14. Feng, J.; Wang, L.; Yu, H.; Jiao, L.; Zhang, X. Divide-and-conquer dual-architecture convolutional neural network for classification
of hyperspectral images. Remote Sens. 2019, 11, 484. [CrossRef]

15. Charmisha, K.; Sowmya, V.; Soman, K. Dimensionally reduced features for hyperspectral image classification using deep learning.
In Proceedings of the International Conference on Communications and Cyber Physical Engineering (ICCCE), Hyderabad, India,
24–25 January 2018; pp. 171–179.

16. Du, J.; Li, Z. A hyperspectral target detection framework with subtraction pixel pair features. IEEE Access. 2018, 6, 45562–45577.
[CrossRef]

17. Jia, P.; Zhang, M.; Yu, W.; Shen, F.; Shen, Y. Convolutional neural network based classification for hyperspectral data. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 5075–5078.

18. Haut, J.; Paoletti, M.; Plaza, J.; Plaza, A. Hyperspectral image classification using random occlusion data augmentation. IEEE
Geosci. Remote Sens. Lett. 2019, 16, 1751–1755. [CrossRef]

19. Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder
for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [CrossRef]

20. Sellami, A.; Farah, M.; Farah, I.R.; Solaiman, B. Hyperspectral imagery classification based on semi-supervised 3-d deep neural
network and adaptive band selection. Expert Syst. Appl. 2019, 129, 246–259. [CrossRef]

21. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep&Dense convolutional neural network for hyperspectral image classification. Remote
Sens. 2018, 10, 1454.

22. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep
learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [CrossRef]

23. Fang, B.; Li, Y.; Zhang, H.; Chan, J. Hyperspectral images classification based on dense convolutional networks with spectral-wise
attention mechanism. Remote Sens. 2019, 11, 159. [CrossRef]

http://doi.org/10.1109/MSP.2013.2279179
http://dx.doi.org/10.1109/TGRS.2018.2828042
http://dx.doi.org/10.1109/TGRS.2017.2710145
http://dx.doi.org/10.1109/LGRS.2018.2881045
http://dx.doi.org/10.1109/JSTARS.2013.2282166
http://dx.doi.org/10.1016/j.rsase.2018.10.016
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2017.2705073
http://dx.doi.org/10.1109/TGRS.2019.2951433
http://dx.doi.org/10.1109/TGRS.2020.3018135
http://dx.doi.org/10.3390/rs11050484
http://dx.doi.org/10.1109/ACCESS.2018.2865963
http://dx.doi.org/10.1109/LGRS.2019.2909495
http://dx.doi.org/10.1109/TGRS.2019.2908756
http://dx.doi.org/10.1016/j.eswa.2019.04.006
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.3390/rs11020159


Remote Sens. 2021, 13, 1082 21 of 22

24. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE
Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

25. Safari, K.; Prasad, S.; Labate, D. A multiscale deep learning approach for high-resolution hyperspectral image classification. IEEE
Geosci. Remote Sens Lett. 2021, 18, 167–171. [CrossRef]

26. Shao, W.; Du, S. Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep
learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 1–27. [CrossRef]
29. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21.
30. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2017, arXiv:1611.01578.
31. Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, G.; Benediktsson, J.A. Automatic design of convolutional neural network for

hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066. [CrossRef]
32. Junior , F.; Erivaldo, F.; Yen,G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm

Evol. Comput. 2019, 49, 62–74. [CrossRef]
33. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. In Proceedings of the

Conference on Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February 2019; pp. 4780–4789.
34. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. IEEE Trans. Evol. Comput. 2002, 10,

99–127. [CrossRef]
35. Gauci, J.; Stanley, K.O. Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput. 2010, 22,

1860–1898. [CrossRef] [PubMed]
36. Stanley, K.O.; D’Ambrosio, D.B.; Gauci, J. A hypercube-based indirect encoding for evolving large-scale neural networks. Artif.

Life 2009, 15, 185–212. [CrossRef]
37. Stanley, K.O. Compositional pattern producing networks: A novel abstraction of development. Genet. Program Evol. Mach. 2007,

8, 131–162. [CrossRef]
38. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing Neural Network Architectures Using Reinforcement Learning. arXiv 2017,

arXiv:1611.02167.
39. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp.
8697–8710.

40. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2019, arXiv:1806.09055.
41. Xie, S.; Zheng, H.; Liu, C.; Lin, C. Snas: Stochastic neural architecture search. arXiv 2019, arXiv:1812.09926.
42. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet

design via differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10734–10742.

43. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J.Efficient neural architecture search via parameter sharing. In Proceedings of the
Internation Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 6522–6531.

44. Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 1388–1397.

45. Yang, Z.; Wang, Y.; Chen, X.; Shi, B.; Xu, C.; Xu, C.; Tian, Q.; Xu, C. CARS: Continuous evolution for efficient neural architecture
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June
2020; pp. 1829–1838.

46. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2019,
arXiv:1804.09081.

47. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Smash: One-shot model architecture search through hypernetworks. arXiv 2017,
arXiv:1708.05344.

48. Saxena, S.; Verbeek, J. Convolutional neural fabrics. In Proceedings of the Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; pp. 4060–4068.

49. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on
Micro Machine and Human Science (MHS), Nagoya, Japan, 4–6 October 1995; pp. 39–43.

50. Sahu, A.; Panigrahi, S.K.; Pattnaik, S. Fast convergence particle swarm optimization for functions optimization. Procedia Technol.
2012, 4, 319–324. [CrossRef]

51. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

52. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 30, 86–92.
[CrossRef]

http://dx.doi.org/10.1109/TGRS.2011.2129595
http://dx.doi.org/10.1109/LGRS.2020.2966987
http://dx.doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1109/TGRS.2019.2910603
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/neco.2010.06-09-1042
http://www.ncbi.nlm.nih.gov/pubmed/20235822
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1016/j.protcy.2012.05.048
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1214/aoms/1177731944


Remote Sens. 2021, 13, 1082 22 of 22

53. Nalepa, J.; Myller, M.; Kawulok, M. Validating hyperspectral image segmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16,
1264–1268. [CrossRef]

54. Cao, X.; Ren, M.; Zhao, J.; Lu, H.; Jiao, L. Non-overlapping classification of hyperspectral imagery based on set-to-sets distance.
Neurocomputing 2020, 378, 422–434. [CrossRef]

http://dx.doi.org/10.1109/LGRS.2019.2895697
http://dx.doi.org/10.1016/j.neucom.2019.10.071

	Introduction
	Related Work
	Neural Architecture Search
	Particle Swarm Optimization

	Proposed Method
	Construction of the Search Space
	Initialization of the Swarm
	The Weight Optimization of the Neural Network Constructed by Architectures
	Individual Parameter Optimization of PSO-Net
	Weight-Sharing Parameter Optimization of CPSO-Net

	Fitness Evaluation
	Particle Update

	Experimental Results and Analysis
	Datasets
	Comparative Experiment
	Experimental Settings
	Results Analysis
	Classification Accuracy
	Complexity Analysis
	Convergence Analysis 
	Optimal Architecture
	Classification Maps

	Unbiased HSI Classification

	Conclusions
	References

