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Abstract: Improving the detection efficiency and maintenance benefits is one of the greatest chal-

lenges in road testing and maintenance. To address this problem, this paper presents a method for 

combining the you only look once (YOLO) series with 3D ground-penetrating radar (GPR) images 

to recognize the internal defects in asphalt pavement and compares the effectiveness of traditional 

detection and GPR detection by evaluating the maintenance benefits. First, traditional detection is 

conducted to survey and summarize the surface conditions of tested roads, which are missing the 

internal information. Therefore, GPR detection is implemented to acquire the images of concealed 

defects. Then, the YOLOv5 model with the most even performance of the six selected models is 

applied to achieve the rapid identification of road defects. Finally, the benefits evaluation of mainte-

nance programs based on these two detection methods is conducted from economic and environ-

mental perspectives. The results demonstrate that the economic scores are improved and the 

maintenance cost is reduced by $49,398/km based on GPR detection; the energy consumption and 

carbon emissions are reduced by 792,106 MJ/km (16.94%) and 56,289 kg/km (16.91%), respectively, 

all of which indicates the effectiveness of 3D GPR in pavement detection and maintenance. 

Keywords: ground-penetrating radar; road defect detection; YOLOv5 models; road defects image 

recognition; road maintenance benefit; road maintenance effectiveness 

 

1. Introduction 

The quality parameters for structural layers of pavement are obtained through rea-

sonable setpoint, drilled core on-site and laboratory testing in core sample detection. 

However, the inspection results cannot reflect the true conditions of the road at the scene 

because the setpoint is random and incidental [1,2]. In addition, the defect conditions of 

the road surface are acquired by manual-based patrol and judgement, which cannot de-

tect the internal defects. These methods have the characteristics of low efficiency, poor 

presentation, and destructiveness that have led to a considerable increase in the cost of 

road maintenance. Thus, the traditional testing methods fail to meet the growing de-

mands of road maintenance. 

With the development of science and technology, new nondestructive testing (NDT) 

devices, such as ground-penetrating radar (GPR), the nuclear-free densitometer, laser de-

tector, and ultrasonic depth finder have been used in fast nondestructive and precise test-

ing. GPR is already well recognized for its role in improving the efficiency, security, and 

anti-interference [3,4]. Radar-collected data can provide the basis for recognizing hidden 

defects and be used to conduct the later maintenance and management of roads [5]. The 

development of 3D GPR further reinforces these effects [6]. Nevertheless, this technology 

has limitations, such as tedious data post-processing and a lack of evaluation criteria, 
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which have resulted in a failure to provide automatic detection and quantitative evalua-

tion of road testing and maintenance [7]. 

Recently, several efforts have been made in terms of the data processing of GPR in-

spection that includes signal processing and image recognition. Zhao et al. [8] proposed a 

nonlinear optimization method based on gradient descent to analyze the collected GPR 

signals in the thickness detection of asphalt pavement, which needs a prior knowledge of 

road structure. Liu et al. [9] used the frequency domain focusing technology of synthetic 

aperture radar (SAR) to aggregate scattered GPR signals for acquiring testing images. The 

noise of primordial signals was removed through the designed low-pass filter, and the 

profiles of detecting objects were extracted via the edge detection technique using the 

background information. Moreover, Mezgeen et al. [10] presented a formula relating the 

hidden crack width with the relative amplitude measured in the vertex of the hyperbola. 

However, a major drawback is that this research only considered regular single cracks. 

As for image recognition of GPR detection, many researchers have tried to apply the 

complex manual processes to automatically inspect internal defects in a road, but this goal 

is difficult to realize [11,12]. It was not until the appearance of deep learning (DL), the real, 

efficient, automatic detection of concealed defects became possible in asphalt pavement 

[13,14]. As a result, the combination of deep convolutional neural network (CNN) models 

and GPR images has become a mainstream research direction. Tong et al. [15–17] used a 

CNN algorithm to achieve the automatic localization of internal cracking based on GPR 

testing images, which used the GPR signals as an input value to import into the CNNs. 

However, although the region proposal types of CNN series models have the ad-

vantage of high accuracy, the limitation of detection speed loss has been reported. This 

limitation has promoted the development of more advanced DL models. Another regres-

sion method (also known as the one-stage method) substantially enhances the speed of 

defect detection by streamlining the workflow. This method primarily includes YOLO 

[18–20], RetinaNet [21], the single shot multibox detector (SSD) [22,23], and CenterNet 

[24]. Above all, YOLO version 3 (YOLOv3) is a mainstream method, and it has been 

widely used in remote sensing [25,26], agriculture [27], and energy [28]. It has also been 

successfully applied in transportation infrastructure, e.g., for the detection of pavement 

potholes and cracking [28–30]. Currently, the latest YOLO version 4 (YOLOv4) [31] and 

YOLO version 5 (YOLOv5) [32] have become more effective for object detection by inte-

grating the most advanced methods. 

On the other hand, researchers have performed many studies of the standardization 

of road testing and maintenance [33,34]. The group criteria of technical guidelines for 

ground-penetrating radar detection of the internal condition of highway asphalt pave-

ment has been published by the China Highway and Transportation Society (CHTS) [35], 

which has provided a scientific reference for future exploration. However, these attempts 

are far from numerous. Therefore, in the present study, we developed a method for eval-

uating the maintenance benefits by comparing the traditional detection and GPR detection 

in asphalt pavement. 

This work proposes a method for combining the YOLO series with GPR images to 

recognize the internal defects in asphalt pavement and compares the effectiveness of tra-

ditional detection and GPR detection by evaluating the maintenance benefits. The tech-

nical roadmap is shown in Figure 1. An introduction to the tested roads and traditional 

detection method are given in Section 2. In Section 3, the GPR detection process, which 

includes testing equipment, a testing scheme, data processing, and testing results, is elab-

orated. Moreover, the YOLOv3 and YOLOv5 models are applied to defect detection for 

better accuracy and efficiency. The fourth section discusses the maintenance programs 

and maintenance benefits based on two types of detection methods. Section 5 concludes 

the research. 
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Figure 1. Technical roadmap of the detection, data analysis, maintenance measures, and benefits analysis based on tradi-

tional detection and ground-penetrating radar (GPR) detection in this research. 

2. Traditional Pavement Detection 

2.1. Tested Road Sections 

Figure 2 shows the tested provincial road sections, which are called the Tonglu-Yiwu 

(TY) line (S210) and are located in Zhejiang province, China. Traditional and GPR inspec-

tion were implemented on this asphalt pavement from K46+000 to K51+000 and had a 

total length of 5 km. The structure layers, materials, and position of the tested road are 

indicated below. 

 

Figure 2. View of the tested road network, construction scheme and materials. The map used is 

the free version of Google Earth 2020. 
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2.2. Testing Process and Results 

As shown in Figure 3, visual surveying and measurement were adopted by testing 

personnel to determine the damage condition of the pavement, and an inspection van was 

used to survey the surface roughness and skidding resistance of the pavement. Moreover, 

a coring survey was taken to obtain an accurate thickness of the asphalt pavement accord-

ing to the highway performance assessment standards (JTG 5210-2018) and the specifica-

tions for maintenance design of highway asphalt pavement (JTG 5421-2019), which was 

enacted by the Ministry of Transport of the People’s Republic of China. 

  
(a) (b) 

  
(c) (d) 

Figure 3. (a) Pavement testing by inspection van, (b) pavement damage conditions, (c) the core 

sample of left-pavement, and (d) the core sample of right-pavement. 

After these detections and observations, the results of the pavement defects investi-

gation are shown in Table 1. 

Table 1. The detection results of pavement defects investigation. 

Disease 

Structural layer 

  Cracking   Settlement  

Nl Ll Dl Nr Lr Dr Nl Al Nr Ar 

Asphalt surface 126 337.6 1.4 84 174.1 0.7 1 4.5 2 7.3 

Base – – – – – – – – – – 

Subbase – – – – – – – – – – 
l Left side, r right side (N-number, L-length (m), D-density (N/m), A-area (m2)). 

3. Nondestructive Testing of Pavement Based on GPR 

3D GPR is a new type of nondestructive testing equipment, and its testing work will 

not damage the pavement. 3D GPR emits penetrating high-frequency electromagnetic 

waves to the pavement structure through the fixed distance transmitting antenna and re-

ceives the directional reflection signals by the paired receiving antenna. Then, through 

data processing and analysis of the radar host, the 3D detection information of the pave-

ment structure is reconstructed in the computer. 
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3.1. Testing Equipment 

The 3D GPR system (3d-Radar Company, Trondheim, Norway) was used to inspect 

the internal damage of the road, which substantially reduced the misjudgment rate of in-

terior conditions due to 2D imaging. The radar host of GeoScopeTM MKIV (Figure 4a), 

multi-channel DXGTM 1820 ground-coupled antenna arrays (Figure 4b), ExaminerTM 3 data 

analysis software, and GPS-RTK equipment (Figure 4c) was included in the 3D GPR sys-

tem. GeoScopeTM MKIV enables high-density, high-speed data acquisition while combin-

ing deeper detection capabilities with high resolution. By optimizing the signal band-

width and the best possible resolution, high-speed surveying and a large scan width can 

be realized without losing the image details for the study of different depth layers under-

ground. The multi-channel DXGTM 1820 ground-coupled antenna arrays have the ad-

vantage of high resolution that can collect 3D GPR data from up to 41 survey lines in a 

single pass in a continuous frequency range of 200 MHz to 3 GHz. In addition, the road 

conditions are detected from the surface of the road to a depth of 3 m by this DXGTM an-

tenna, which is well-suited for the detection requirements of highway subgrade and pave-

ment. 

   
(a) (b) (c) 

 
(d) 

Figure 4. (a) GeoScopeTM MKIV, (b) DXGTM 1820 ground-coupled antenna arrays, (c) GPS-RTK, and (d) transmit and 

receive arrays of Radar. 

Combined with the unique ability of the stepped-frequency radar host GeoScopeTM 

MKIV and VX series antennas to collect 3D radar data with a certain scan line density, the 

real 3D radar data processing is realized. As shown in Figure 4d, these antenna arrays 

combine different transmitting/receiving antenna pairs, allowing the user to collect mul-

tiple channels of data at once. By setting up, the user can collect data in a 7.5 cm × 7.5 cm 

grid (cover 1.5 m scanning) to obtain a true 3D image. The remaining technical parameters 

are shown in Table 2. 
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Table 2. The technical specifications of GeoScopeTM MKIV and DXGTM 1820. 

GeoScopeTM MKIV 

Data Acquisition 

DXGTM 1820 

Ground-Coupled Antenna Array 

Indicators Parameters Indicators Parameters 

Antennas 
Compatible with all 3D-RADAR DX and DXG antenna array 

models 
Width 1.8 m 

Number of channels 0~21 Frequency range 
200–3000 

MHz 

Scan pattern Liner scan, multi-offset, and common mid-point Number of channels 21 

Frequency band-

width 
2.9 GHz (100–300 MHz) 

Channels spacing (Crpss-

line) 
75 mm 

Resolution (time) ≥0.34 ns Effective scan width 1.5 m 

Time range ≤250 ns Direct wave suppression >50 dB 

Scan rate 13,000 A-scans per second 
Polarization (in-line direc-

tion) 
Linear 

3.2. Testing Scheme 

3D GPR was adopted in this research to realize a full scan covering the road cross-

section of the TY line (S210). According to the stake number, horizon, area, volume and 

width of the characteristic signal of internal road defects, and the details of some typical 

defects were detected, including subsidence of internal road structure (position, the max-

imum height difference, and area), bad interlayer bonding (position and area), general 

transverse cracking (position and length), general longitudinal cracking (position and 

length), penetrating cracking (position and length), water-rich zones (position and area), 

void zones (position and volume), and relaxing zones (position and degree). The infor-

mation of the tested road section is shown in Table 3. 

Table 3. Tested road section. 

Loca-

tion 

Stake Number of 

Starting Point 

Stake Number of 

Ending Point 

Breadth of 

Road 
Length/m

Number of 

Lines  

Testing 

Content 

Number of Re-

peated Scans 

Testing 

Mileage/m 

S210 K46 + 000 K51 + 000 Full width 5000 2 disease 1 10,000 

As shown in Figure 5, the 3D GPR detection was conducted lane by lane and covered 

all the lanes. Some vehicles were arranged to follow the inspection van during the detec-

tion process by the proprietor, which assured the security of detection personnel and 

equipment. Under suitable conditions, the detection process should be closed to traffic 

based on the Safety Work Rules for Highway Maintenance, JTG H30-2015 (Ministry of 

Transport of the People’s Republic of China). 
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Figure 5. The full field-testing workflow of GPR in Asphalt pavement (B-scan indicates the longi-

tudinal vertical section, C-scan indicates the horizontal section, and D-scan indicates the lateral 

vertical section). 

3.3. Data Processing 

The construction of a deep, learning-based road internal defect identification model 

requires a 3D GPR image dataset to provide the training set, verification, and testing re-

quired for model construction. This process was conducted by taking the steps in Figure 

6. 

 

Figure 6. The workflow of dataset construction for GPR images [36]. 
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3.3.1. Filtering for GPR Data 

After the GPR data acquisition, the augmentation and filtering of these images were 

to be performed. Based on the GPR system data processing software (ExaminerTM 3), the 

inverse discrete Fourier transform (ISDFT), data autoscale, and background removal 

(BGR) (high pass) were used for data processing. The specific settings of the filtering pa-

rameters are shown in Figure 6. 

3.3.2. Recognizing for GPR Data 

Cracking, void, and settlement are the three main defects to be classified and identi-

fied in this research. However, the settlement defect was not included in the identification 

model because the scale of settlement is much larger than the other two defects, and its 

characteristics are distinctive. Therefore, according to Technical Guideline for Ground 

Penetrating Radar Detection for Internal Conditions of Highway Asphalt Pavement 

promulgated by China Highway and Transportation Society, the basis for judgement of 

cracking and void was determined by summarizing the features of the B-scan and C-scan 

of these two defects in Table 4. 

Table 4. The classification criteria of defects. 

Typical Images of Abnormal GPR Signals Judge-

ment  

Excavation for 

Verifying B-Scan Description C-Scan Description 

Both sides of the waveform in-phase axial 

near horizontal distribution accompanied in-

terruption or dislocation 

Similar to the shape 

pf cracking (long 

strip) 

Crack-

ing 

 

Reflected waves of in-phase axial clearly 

protrude toward the top  

Irregular bright-

spots 
Void 

 

3.3.3. Capturing for GPR Data 

The B-scan images were chosen as the input images because they could reflect the 

most basic features of internal defects and the exact location through GPR. In addition, 

the images have a high identifiability degree, which is easier to recognize. The resolution 

of the captured images was 320 × 320 pixels, and the real size for the B-scan was 0.5 m × 

13.2 m. 

3.3.4. Labeling for GPR Data 

LabelImg labeling software [37] was used to mark hidden cracking in the captured 

images. Based on the identification method of 3.3.2 (the void defect was manually identi-

fied because the number of samples was too small), the hyperbolic reflection wave in B-

scan and the long strip in C-scan were used to mark the hidden cracking with rectangular 

boxes. 

Then, the corresponding annotation information for the box was stored in an XML-

formatted file, as shown in the bottom of Figure 6. The marking information includes the 

coordinates of two points on the diagonal line of the rectangular box, which can reflect 

the location and size of the selected cracking. 
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Next, according to the number of captured images in our early research, 350 sample 

images were labeled, and the total number of concealed cracks was 1400. Afterwards, 

these samples were assigned to three groups randomly in a certain ratio as follows: the 

training model’s dataset (263 images and 1134 cracks), the verifying model’s validation 

set (44 images and 135 cracks), and the evaluating model’s test set (43 images and 131 

cracks). 

3.4. Testing Results 

The workflow for the detection method of the YOLO models is shown in Figure 7. 

YOLOv3 is well known for having the most advanced one-stage detection networks. Alt-

hough the updated version YOLOv5 uses new peculiarities to increase the detection effi-

ciency, YOLOv5 and YOLOv3 still have a similar detection principle and network archi-

tecture. In brief, the latest technology has been used in YOLOv5 to update YOLOv3 in 

terms of Backbone and Neck. In parallel, skills are also added. Detailed information is 

shown in Table 5. 

 

Figure 7. The workflow for detection method of the you only look once (YOLO) models. 

Table 5. Architecture and improvement of you only look once version 3 (YOLOv3) and YOLOv5. 

Model Backbone Neck Head Main Improvement  

 

YOLOv3 
Darknet 

Feature Pyramid Net-

work 

YOLOv3

– 

YOLOv5s 
Cross-stage Partial 

Darknet 

Path Aggregation 

Network 

Mosaic (Data Augmentation) 

GIoU (estimating the bounding box loss) 

Auto-learning bounding box anchors (adjusting and optimize the 

choice of anchors) 

Figure 7 describes the detection workflow for the YOLO models of this research. The 

operations of our works were based on Python 3.7, PyTorch 1.4 in Windows 10. The model 

trainings were performed by a computer equipped with the following features: an AMD 

Ryzen 5 2600X CPU and 16 GB of memory. 

This study compared 6 models with 2 different kinds of versions, namely, YOLOv3, 

YOLOv3-tiny, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [38]. YOLO-tiny was con-

sidered light YOLO to substantially increase the detection speed but brought accuracy 

loss. Note that the s, m, l, and x appended to YOLOv5 represent the increasing depth of 

the model. 

YOLOv3 predicts an objectness score for each bounding box based on logistic regres-

sion. As for the loss of the bounding box regression, intersection over union (IoU) [39] is 

the most popular metric for calculating loss. YOLOv5 uses the same backbone of YOLOv3 

and utilizes GIoU to estimate the bounding box loss. Besides, it also uses auto-learning 

bounding box anchors to adjust and optimize the choice of anchors. 
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The network has a relatively large number of parameters and a small dataset, which 

could result in overfitting. Therefore, transfer learning was adopted to train the models to 

overcome this hidden danger [40]. The COCO dataset includes over 500,000 image data 

points belonging to 80 different categories. Consequently, the pretrained weights by the 

COCO dataset were used to initialize the model to be trained. The other hyperparameters 

of the model were set as shown below: the initial learning rate was 0.001; the size of the 

batch and mini-batch were 16 and 4, respectively; the momentum and weight decay were 

0.9 and 0.0005, respectively; the epoch was 300; and the other parameters were set to their 

default values. 

As is shown in Figure 8, the loss and mAP curves of the YOLO models were com-

pared. The value of loss represents the difference between the predicted value and true 

value. The smaller the value of loss, the better training effect. Moreover, the high mAP 

also denotes a great performance of the training models. 

  
(a) (b) 

 
(c) 

Figure 8. (a) The loss curve of the YOLOv3 models, (b) the loss curve of the YOLOv5 models, (c) 

the mAP Curve of the YOLOv3 and YOLOv5 models. 

According to Figure 8a, b, the final converged loss value of YOLOv3 was approxi-

mately 2, whereas that of YOLOv5 was lower than 0.2, which suggested that the YOLOv5 

model performed substantially better than YOLOv3 because the lower loss indicates bet-

ter training effects. Moreover, all mAP values of YOLOv5 were higher than those of 

YOLOv3. Taken together, we concluded that the performance of the YOLOv5 models was 

superior. 

The specific training results of the YOLOv3 and YOLOv5 models are summarized in 

Table 6. All mAP values of the YOLOv5m, YOLOv5l, and YOLOv5x models were higher 

than 90% (the highest value was 94.45%), which is commendable for the small training 

set. Another finding may be summarized as the higher the number of weights is, the 

higher the model’s mAP value will be, suggesting that an appropriate increase in model 

depth favored the enhancement of the training performance. However, with increasing 

weights, the frames per second (FPS) were reduced, while the inference time was pro-

longed. It is not difficult to find that the FPS of the YOLOv3 and YOLOv5 models were 
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poorly differentiated when the values of the weights were similar. What needs illustration 

is that the model with faster inference speed was preferentially selected based on the re-

quirements of rapid detection. Ultimately, the YOLOv5m model with the most even per-

formance was used to detect internal defects in roads according to the integrated consid-

eration of mAP and FPS. 

Table 6. Training results of these six models of YOLO series. 

Model P R F1 mAP/%  FPS Inference Time/ms Weights/MB 

YOLOv3 0.73 0.86 0.79 80.11 0.52 1920.65 235 

YOLOv3-tiny 0.66 0.65 0.69 67.59 4.52 221.48 33.1 

YOLOv5s 0.79 0.87 0.85 87.53 3.45 289.81 26.4 

YOLOv5m 0.76 0.94 0.82 91.61 1.36 735.54 83.2 

YOLOv5l 0.77 0.95 0.86 91.59 0.66 1526.37 190 

YOLOv5x 0.75 0.95 0.85 94.45 0.37 2735.15 364 

(P = precision, R = recall rate, F1score = 2P*R/(P+R), mAP = mean average precision, FPS = frames per second). 

Depending on the training results obtained via YOLOv5m, the statistical information 

of the defects is listed in Tables 7 and 8 (the raveling and settlement were manually rec-

ognized). 

Table 7. The defects detection results of the left side of road. 

Disease 

Structural Layer 

Cracking Void Raveling Settlement 

N1 L2 D3 N A4 N A N A 

Asphalt surface 132 354.9 1.5 4 13 – – 1 4.5 

Base 103 238.5 1.0 5 16 1 3.8 2 8.2 

Subbase – – – – – – – – – 
1 N-number, 2 L-length (m), 3 D-density (N/m), 4 A-area (m2). 

Table 8. The defects detection results of the right side of road. 

Disease 

Structural Layer 

Cracking Void Raveling Settlement 

N1 L2 D3 N A4 N A N A 

Asphalt surface 92 189 0.8 – – – – 2 7.3 

Base 86 151.6 0.6 13 52 – – 1 4.2 

Subbase – – – – – – – – – 
1 N-number, 2 L-length (m), 3 D-density (N/m), 4 A-area (m2). 

A schematic of the position and size of the defects is plotted in Figure 9 based on the 

recognition results (the detailed analysis is in the following Section 4.1). 

 
(a) 
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(b) 

Figure 9. A schematic for detection results of partial tested road. (a) General defect severity and 

(b) high defect severity. 

4. Discussion of Maintenance Benefits 

4.1. Disease Characteristics and Analysis 

4.1.1. Traditional Detection 

The primary defect types of the tested road section are the dominant cracking and 

settlement on the road surface. The maintenance measures were conducted at the surface 

and basement of the tested road because of the unclear information of the internal defects. 

4.1.2. GPR Detection 

The main defect types of the tested road section are cracking (more than 90%), void 

zones, and raveling. Therefore, the characteristics of the cracking were the focus of the 

analysis. First, the overall cracking density of the proposed maintenance roads was low. 

Specifically, the cracking density of the surface was 1.5 m/m2, the cracking density of the 

basement was 1.0 m/m2, and the number of void defects was 9 (the total area was 27 m2) 

in the left side of the tested road. Moreover, the cracking density of the surface was 0.8 

m/m2, the cracking density of the basement was 0.6 m/m2, and the number of void defects 

was 13 (the total area was 52 m2) in the right side of the tested road. 

As for the development horizon of the cracking, there were three types, as shown in 

Figure 10. 

1. The up and down cracking (the pumping defect had emerged, Figure 10a). 

2. The top-down developing cracking (the cracking had emerged on the surface but not 

at the basement, Figure 10b). 

3. The bottom-up developing cracking (the cracking had emerged on the basement but 

not at the surface, Figure 10c). 

From the perspective of the regional distribution of defects, distinct characteristics of 

partial defect concentration were in the tested roads. The defects of the basement were 

lesser than those of other structural layers in general road sections. On the other hand, the 

distribution of defects was more concentrated at the surface and basement in the road 

sections with severe defects. 
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(a) (b) (c) 

Figure 10. (a) The up and down cracking, (b) the top-down developing cracking, and (c) the bot-

tom-up developing cracking. 

Finally, the prediction of the development of defects was conducted based on the 

results above. Notably, the third type of developing cracking would gradually undergo a 

transition to the first type with the arrival of freeze-thawing during rainy and winter sea-

sons, which would lead to the appearance of more pumping mud. 

4.2. Maintenance Program 

As shown in Figure 11, the following two maintenance programs were determined 

according to different defect severities. 

 
(a) 

 
(b) 

Figure 11. (a) The first maintenance measure and (b) the second maintenance measure. 

First, for the general road sections with low defect severity, the milling measure for 

the original surface (5 cm AC-13 and 7 cm AC-16) should be performed. Then, the new 

surface (12 cm AC-13, a previous study demonstrated that the maintenance measure of 

AC-13 has the highest comprehensive benefit [41]) is spread on the basement (milling and 

resurfacing, MR). In terms of the road sections with severe defects, after the surface mill-

ing measure, the treatment of defects (overlay paving for reinforcement, OPR) is con-

ducted on the basement before the resurfacing. 

Finally, according to the analysis for defect characteristics and maintenance measures 

based on conventional detection and GPR detection, the maintenance programs were es-

tablished for these two detection methods. As presented in Figure 12, the MR measure 

was conducted for surface maintenance based on both detection methods. However, this 

was not the same case for the basement. Specifically, the OPR measure was adopted for 

the full range of basement with conventional detection, while only 1450 m for the base-

ment of serious diseases with GPR detection. 
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Figure 12. The selection of maintenance schemes based on traditional detection and GPR detection. 

4.3. Benefits Analysis 

The service life and pavement performance of maintenance measures have been used 

to evaluate the long-term benefits in many studies [42,43]. The present work drew on pre-

vious studies and used the economic and environmental benefits as evaluation criteria for 

comparison of traditional detection and GPR detection. 

The fundamental assumptions for the calculation of benefits were as follows. The 

material haul-lengths of asphalt, gravel, and asphalt mixture are 100, 60, and 50 km, re-

spectively. The density of hot-mix asphalt mixture is 2.45 t/m3. The thickness of treatment 

is typically 4 cm. The per unit of maintenance area is calculated as 375 m2 (100 m× 3.75 m, 

single lane). 

In this study, the tested road was a two-way four-lane road of 5 km. According to 

Figure 12, the total area of the first and second maintenance measures was 75,000 m2 based 

on traditional detection. As for GPR detection, the area of the first maintenance measure 

was 53,250 m2 and that of the second was 21,750 m2. 

4.3.1. Economic Benefits 

The average cost and economic effectiveness (the evaluation index for maintenance 

economic-benefits obtained by some pavement performance indexes) [44] of the MR and 

OPR measures are listed in Table 9. The actual thickness of treatment was 0.12 m in the 

road surface. Therefore, the final results in Figure 13 were obtained by multiplying by 3. 

Table 9. The average cost and economic effectiveness of the two maintenance measures. 

Maintenance Measures Thickness of Treatment (m) Average Cost ($/m2) Economic Effectiveness1 Economic Effectiveness 2 

MR 0.04 11.12 93.88 88.62 

OPR 0.01 4.64 90.73 85.47 
1 Low traffic, 2 high traffic. 

  
(a) (b) 

Figure 13. The contrast for maintenance cost (a) and economic effectiveness (b) of the two detecting methods. 

Figure 13 shows that the maintenance cost based on GPR detection was lower than 

that of traditional detection. More specifically, the reducing cost is $49,398/km. In addi-

tion, the economic scores were higher based on GPR detection than traditional detection 

in low-traffic and high-traffic road sections. 



Remote Sens. 2021, 13, 1081 15 of 18 
 

 

4.3.2. Environmental Benefits 

Table 10 lists the energy consumption and carbon emissions of the MR and OPR 

measures, including the milling, raw materials production, mixture, transport, spreading, 

and compaction sessions. 

Table 10. The energy consumption (left) and carbon emissions (right) of the two maintenance measures [45]. 

Maintenance Measures 

Maintenance Sessions 
MR OPR 

Maintenance Measures 

Maintenance Sessions 
MR OPR 

Milling 1770.83  Milling 131.22  

Raw materials production 12,298.53 12,298.53 Raw materials production 756.05 756.05 

Mixture 11,469.15 11,469.15 Mixture 925.58 925.58 

Transport 2146.60 2146.60 Transport 159.06 159.06 

Spreading  681.09 681.09 Spreading  50.47 50.47 

Compaction  1225.96 1225.96 Compaction  90.84 90.84 

Totally 29,592.17 27,821.34 Totally 2113.23 1982.01 

Thickness of treatment (m) 0.04 0.04 Thickness of treatment (m) 0.04 0.04 

Energy consumption (MJ/m2) 78.91 74.19 CO2 emissions (kg/m2) 5.64 5.29 

—— —— —— Carbon emissions (kg/m2) 1.54 1.44 

(The construction process of some sessions in the MR and OPR measures are the same) 

The contrast for energy consumption and carbon emissions are shown below in Fig-

ure 14. 

 
(a) 
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Figure 14. The contrast for energy consumption (a) and carbon emissions (b) of the two detecting 

methods. 

The contrast between the energy consumption and carbon emissions of the two de-

tecting methods is shown in Figure 14. Obviously, the energy consumption and carbon 

emissions based on GPR detection were less than those based on traditional detection and 

were reduced by 792,106 MJ/km (16.94%) and 56,289 kg/km (16.91%), respectively. 

5. Conclusions 

This paper aims to improve the detection efficiency and increase the maintenance 

benefits by combining YOLO models and 3D GPR images of an asphalt road. The 

YOLOv5m model is selected to conduct the rapid identification of road defects according 

to the comparison results of six YOLO series models. Based on the analysis of economic 

and environmental benefits for tested-road maintenance, the advantage of GPR detection 

has emerged. Several conclusions can be summarized as follows: 

1. The internal defects in asphalt pavement, including cracking, void zones, raveling, 

and settlement, were detected by 3D GPR. However, the conventional method de-

tected only the surface conditions. Furthermore, 3D GPR detection is more nonde-

structive relative to the coring validation. 

2. The final converged loss value of YOLOv3 was approximately 2, whereas that of 

YOLOv5 was lower than 0.2. Thus, the YOLOv5 models are suitable for the detection 

of internal defects in asphalt road, and these models provide a good training result 

even for a small dataset condition. The mAP values of the YOLOv5m, YOLOv5l, and 

YOLOv5x models were higher than 90% and the maximum was 94.45% in YOLOv5-

x. It was also found with regularity that the larger a model’s weights are, the higher 

the model’s mAP will be, which suggests that an appropriate increase in model depth 

favors the enhancement of the training performance. Most importantly, the 

YOLOv5m models are the most balanced deep-learning models in terms of detection 

speed and actual performance of the six YOLO series models. 

3. In the evaluation of the economic benefits of maintenance programs, the maintenance 

cost based on GPR detection was reduced by $49,398/km compared to that of tradi-

tional detection, and the economic scores based on GPR detection were higher than 

those of traditional detection in low-traffic and high-traffic road sections. As for en-

vironmental benefits, the energy consumption and carbon emissions of the mainte-

nance program based on GPR detection was less than those of traditional detection 
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by 792,106 MJ/km and 56,289 kg/km or 16.94 and 16.91 percentage points, respec-

tively. 

All these facts demonstrate that 3D GPR is effective in pavement detection and 

maintenance and should be recommended for the life-cycle maintenance of civil infra-

structure. Future research may focus on further improving the intelligence level of GPR 

detection and developing the evaluation criteria of GPR detection. 
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