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Abstract: Soil is the largest carbon reservoir on the terrestrial surface. Soil organic carbon (SOC)
not only regulates global climate change, but also indicates soil fertility level in croplands. SOC
prediction based on remote sensing images has generated great interest in the research field of
digital soil mapping. The short revisiting time and wide spectral bands available from Sentinel-2A
(S2A) remote sensing data can provide a useful data resource for soil property prediction. However,
dense soil surface coverage reduces the direct relationship between soil properties and S2A spectral
reflectance such that it is difficult to achieve a successful SOC prediction model. Observations of
bare cropland in autumn provide the possibility to establish accurate SOC retrieval models using the
S2A super-spectral reflectance. Therefore, in this study, we collected 225 topsoil samples from bare
cropland in autumn and measured the SOC content. We also obtained S2A spectral images of the
western Guanzhong Plain, China. We established four SOC prediction models, including random
forest (RF), support vector machine (SVM), partial least-squares regression (PLSR), and artificial
neural network (ANN) based on 15 variables retrieved from the S2A images, and compared the
prediction accuracy using RMSE (root mean square error), R2 (coefficient of determination), and RPD
(ratio of performance to deviation). Based on the optimal model, the spatial distribution of SOC was
mapped and analyzed. The results indicated that the inversion model with the RF algorithm achieved
the highest accuracy, with an R2 of 0.8581, RPD of 2.1313, and RMSE of 1.07. The variables retrieved
from the shortwave infrared (SWIR) bands (B11 and B12) usually had higher variable importance,
except for the ANN model. SOC content mapped with the RF model gradually decreased with
increasing distance from the Wei river, and values were higher in the west than in the east. These
results matched the SOC distribution based on measurements at the sample sites. This research
provides evidence that soil properties such as SOC can be retrieved and spatially mapped based on
S2A images that are obtained from bare cropland in autumn.

Keywords: soil organic carbon; sentinel-2A; random forest; seasonal bare cropland; variable
importance

1. Introduction

In recent decades, increased carbon emission and its potential effects on ecological
systems has aroused great concerns globally. The closely related regional carbon storage
and cycles have also become an intensively researched topic in macroecology [1]. Soil
carbon banks, with a soil carbon reserve of about 1500 Pg C, are one of the key components
of the global carbon cycle [2], and are more than twice the atmospheric carbon bank
reserves and three times the terrestrial biocarbon reserves [3]. Soil carbon includes organic
and inorganic fractions. Inorganic carbon is distributed in the deep soil layers with a
longer cycling period, while organic carbon is distributed in the top soil layers (within
1 m of the soil surface) where carbon cycles directly among soil, air, and plants [4]. Due
to the huge reserves of soil organic carbon (SOC), small variations of SOC in the soil by
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accumulation (forestation) or decomposition (logging, incineration) can cause significant
fluctuations in CO2 concentrations in the atmosphere [5,6]. Land use is one of the factors
affecting SOC storage and variation. Especially in the case of farmland, which accounts
for 10.7% of the world land area, long-time crop production practices, such as fertilization,
tillage, and irrigation, frequently change SOC status. Meanwhile, SOC contributes to plant
growth through its effect on the soil physical, chemical, and biological properties, and has
been considered as the most important soil quality indicator. Therefore, detecting SOC
status in farmland and mapping its spatial variation is vital for monitoring soil quality and
producing environmental benefits [7].

The soil is an exceptionally variable, heterogeneous environment, both spatially and
temporally. In order to acquire the spatial distribution of SOC, soil sampling and laboratory
determination are required, both of which are time-consuming and expensive [8,9]. With the
rapid development of remote sensing in recent years and its application to soil, retrieval of
soil properties based on reflectance spectroscopy has become an alternative way to monitor
field soil [10]. However, surface vegetation can block most of the soil spectrum information
obtainable from satellites. It is difficult for satellite sensors to directly detect the reflectance
characteristics of soil during crop growing seasons, and this interference by vegetation
significantly reduces remote sensing’s prediction accuracy of soil properties. Farmland
does, however, have a crop-free period in which the soil is bare, and this period provides the
possibility of enhancing soil property prediction accuracy from satellite imagery of exposed
soils [11]. The visible-near-infrared and shortwave infrared hyperspectral images can be
used to quantitatively provide soil property information by intensively and continuously
collecting spectral information of bare soil in certain optical domains. Castaldi et al. [12] and
Laamrani et al. [13] obtained reliable soil property prediction results from hyperspectral
images. However, few hyperspectral sensors are currently available as both spaceborne
and airborne instruments. In recent years, researchers have given great attention to the
correlation between airborne multispectral remote sensing data and soil properties, as well
as to the applicability of multispectral remote sensing data of exposed soils as captured by
the SPOT (Systeme Probatoire d’Observation de la Terre) constellation of satellites [14,15].
It is possible to quantitatively estimate soil attributes using multispectral or hyperspectral
data as long as high-quality spectral data in certain sensitive bands are obtained. However,
prediction accuracy can yet be improved. Fortunately, in 2015 the European Space Agency
successfully launched the Sentinel-2A (S2A) satellite that was equipped with high-quality
multispectral (7–20 band) image sensors. Access to the images was provided free of charge,
and undoubtedly provided the opportunity for multispectral data to be used to obtain a
wide range of quantitative soil attribute information.

The S2A images have been successfully used in various fields since their date of
availability. Because the S2A has four bands in the red edge area of vegetation, scholars
first conducted a great amount of research on vegetation monitoring and classification,
in which they have made some progress. For example, He et al. [16] assimilated S2A
leaf area index time series images into an ecological model to predict cotton yield, with
results showing that 85% of the variation in yield was explained. They concluded that
these images could be used as a data source for accurate estimation of cotton yield. Chen
et al. [17] obtained an enhanced flower index (EBI) closely related to vegetation flower
phenology based on S2A images. It was expected that EBI obtained by satellite would track
the flowering information, and thereby improve our understanding and prediction of the
response of flowers and pollination to weather and final yield. Yun et al. [18] used S2A
multi-band spectral characteristics, normalized difference vegetation index (NDVI), ratio
vegetation index (RVI), difference vegetation index, normalized difference water index
(NDWI), and other index characteristics, as well as contrast, correlation, energy, mean
value, entropy, and other texture characteristics to study the southeast area of the Mu
River Basin in the southern central peninsula under the framework of a random forest
model. The accuracy of land cover classification was 87.53% and the kappa coefficient
was 0.8461, and these results were better than the original random forest method. These
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results will undoubtedly contribute significantly to the further development of precision
agriculture [19]. In addition, S2A datasets have made corresponding contributions to the
study of glaciers [20], volcanoes [21], and reservoir water purity assessment [9]. However,
S2A research regarding applications to topsoil properties (including CEC, pH, SOC, calcium
carbonate, texture, etc.) has only appeared in recent years [22,23]. Gholizadeh et al. [24]
assessed the potential of using S2A data to study soil texture and organic carbon monitoring
and mapping through quantitative regional prediction and mapping of soil parameters in
central Europe. They compared the accuracy results with those obtained from airborne
hyperspectral data and laboratory spectral data. Results derived from S2A were slightly
lower than those obtained from laboratory spectra and airborne images, but the decrease
in accuracy may be offset by the extensive geographic coverage and greater frequency of
satellite observations. In this case, some researchers also obtained similar results [25–27].
However, due to the strong regional variability of surface soil properties, the prediction
model obtained at the small local scale was not extremely versatile, and could not be
extended to other regions. Information mining of surface soil properties based on S2A data
still needs further research.

Previous studies have tried a variety of SOC hyperspectral prediction models to obtain
the best prediction accuracy. Machine learning is an effective empirical approach applied in
many fields of earth science to produce successful soil property prediction models [28,29].
These machine learning methods include random forest (RF), partial least squares regres-
sion (PLSR), support vector machine (SVM), and artificial neural network (ANN). RF is an
ensemble algorithm with great potential to remove over-fitting, and it gained great popular-
ity in classification and regression [30,31]. ANN models learn from training datasets, and
mimic some intelligent behaviors of the human brain, widely applying a large number of
learn-from-data applications in such areas as water resources and hydrology [32–34]. Two
other data-driven models (SVM and PLSR) excel at approximating multivariate non-linear
relationships among the target variables by seeking a new coordinate system [35,36]. Signif-
icant differences have been observed in the best estimation models for different soil types
as well as land uses, and further attempts need to be explored to achieve high prediction
accuracy adapted to local conditions.

Currently, hyperspectral SOC prediction research has achieved abundant progress,
but no unified models in existing studies have produced agreement, and great variation
in model estimation accuracy has been detected. Therefore, a model established in one
region has been impossible to apply to another region, and the prediction results have not
been comparable. Furthermore, most SOC spectral predictions have been focused on areas
with vegetation growing over the soil surface (e.g., forest and cropland), and there have
been few reports regarding bare cropland topsoil. The objective of this study was to assess
the capacity of S2A images to predict SOC content and to map spatial distribution of SOC.
This study focuses on the western Guanzhong Plain in Shaanxi Province, China, where
bare farmland was investigated in autumn. Four machine learning algorithms (RF, PLSR,
SVM, and ANN) were used to link the local surface spectral data with field observations
without considering influence of soil moisture on SOC retrieval, as well as 15 variables
retrieved from S2A images in order to predict SOC content of the first 30 cm based on
reflected spectral values of bare farmland topsoil.

2. Materials
2.1. Study Areas

We selected the western Guanzhong Plain for our SOC field study area (Figure 1).
This is a dominant crop production area in Shaanxi province, China, where bare arable
land could be detected in autumn. The western Guanzhong Plain covers Fufeng county,
Qishan county, Fengxiang county, and the eastern part of Chencang district, encompassing
latitudes 34◦13′ to 34◦47′ N and longitudes 107◦10′ to 108◦4′ E, and covering a total area of
2926 km2. The study area was adjacent to the Loess Plateau in the north and the Qinling
Mountains (running east to west) in the south. The landforms observed in this region can
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be divided into alluvial flat terrace along the Wei river, low tableland in the transitional
area of the Loess Plateau, and the Wei river valley. Landform gently changes from high
in the west to low in the east, with the altitude ranging from 0 to 1663 m. This area is
dominated by a temperate, semi-arid continental monsoon climate. The average annual
precipitation ranges from 550 to 750 mm, 70% of which falls between June and September.
Sunshine duration is 2300 h with a sunshine rate of 62%. The mean annual air temperature
ranges from 12 to 14 ◦C, and accumulated temperature (>10 ◦C) is about 4500 ◦C.

Figure 1. Location of autumnal bare farmland sample sites in the western Guanzhong Plain, China (the images containing
bare farmland were obtained from Landsat 8 OLI on 12 August and 15, 2019).

The selected study area includes three of the 23 dominant crop production counties in
Shaanxi province because of the appropriate climate conditions, fertile soils, and flat land-
form. The dominant soil groups are Hapli-Ustic Argosols, Earth-cumuli-Orthic Anthrosols,
and Ochri-Aquic Cambosols (the corresponding soil groups were Hapudalfs, Hapustalfs,
and Haplustepts, respectively, based on the soil taxonomy in the Wei River Valley [37]).
Most of the land in the study area is used for crop and fruit production.

2.2. Soil Sampling and S2A data

The climate and soil conditions in the research area are suitable for the traditional
double cropping system of winter wheat followed by autumn maize. However, we found
that most of the arable land was not used for crop production after wheat was harvested
in June until wheat was planted in October (as shown in Figure 1). We investigated the
research area in August 2019. Based on the field investigation and remote sensing images,
225 sample sites were randomly and relatively homogeneously selected in the autumn bare
arable land area during the period of 11–20 August 2019, and this period was consistent
with the satellite passing time of S2A. Latitude and longitude of each sample site were
recorded using a hand-held global positioning system (GPS). Topsoil samples (0–15 cm)
were collected using an auger with 10 cm diameter at each sampling site, and included
five topsoil subsamples within an area of 50 m2. Following collection, the five subsamples
were combined and mixed to form a single 500 g final sample. The soil samples were
air-dried and sieved through a 2-mm sieve prior to analysis. SOC was determined by the
dichromate-wet combustion method [38]. These data were then used to build four retrieval
models and a SOC map (Figure 2).
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Figure 2. Flowchart showing the soil organic carbon (SOC) prediction method. PLSR = partial least
squares regression; RF = random forest; SVM = support vector machine; ANN = artificial neural
network; RPD = relative percent difference; R2 = coefficient of determination; RMSE = root mean
square error; VIP = variance importance in projection.

Retrieval of SOC for bare arable land was based on S2A satellite images. The S2A
satellite provides multispectral reflectance remote sensing images that comprised 13 suc-
cessive spectral bands within the range of 443–2190 nm [39]. The S2A has a 5-day revisit
cycle (Table 1). Different bands had one of three spatial resolutions: 10-m resolution was
assigned to B2, B3, B4, and B8 with central wavelengths of 490 nm, 560 nm, 665 nm,
and 842 nm, respectively; 20-m resolution was assigned to B5, B6, B7, B8A, B11, and B12
with central wavelengths of 705 nm, 740 nm, 783 nm, 865 nm, 1610 nm, and 2190 nm,
respectively; and 60-m resolution was assigned to the B1, B9, and B10 bands that were
used as the atmospheric correction channels with central wavelengths of 443 nm, 945 nm,
and 1375 nm, respectively. The autumnal bare farmland was easily detected in August
based on our field investigation. Therefore, three S2A multispectral images with cloud
fractions less than 20%, and no significant cloud cover in the study area were downloaded
for data collected on August 12 and 15, 2019, from the Copernicus open access hub (Table 1)
(https://scihub.copernicus.eu/dhus/#/home (accessed on 2 February 2021)). The atmo-
spheric, terrain, and cirrus corrections for the obtained S2A images were performed by
the Sen2cor processor [40,41]. The top of the atmosphere reflectance was converted into
the bottom of atmosphere reflectance based on a look-up table algorithm [42]. Due to
differences in ground sampling distances among different bands in the image, the nearest
neighbor resampling method was used to unify the spatial resolution of the atmospherically
corrected images to 20 m to comprehensively reflect the level of detail of S2A data. Doing so
not only preserves the input image pixel values, but also greatly improves computational
efficiency. Nine of the 13 available spectral bands (B2, B3, B4, B5, B6, B7, B8A, B11, and
B12) were selected as indices for retrieving SOC (shown in bold in Table 2). Among the
spectral bands, B8A (855–875 nm) characterizes soil spectral absorption characteristics and
has higher spatial resolution [22], so B8 (789–900 nm) is not required to participate in the
model. Likewise, B1, which is used to monitor aerosol in coastal water and the atmosphere,
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B9, used to characterize water vapor, and B10, used to characterize cirrus clouds, were
not selected.

Table 1. Main characteristics of the studied scenes acquired over the study area, the western Guanzhong Plain, China.

Imaging Date Sensor Output
Resolution (m)

Time of Acquisition (U.T
GMT) Solar Azimuth (◦) Solar Elevation (◦)

12 August 2019 S2A 20 03:25:41 134.5 64.05
15 August 2019 S2A 20 03:35:41 138.5 64.17
15 August 2019 S2A 20 03:35:41 140.5 64.76

Table 2. Characteristics of the multispectral instrument aboard the Sentinel-2A satellite. Bands shown
in bold font represent those selected for retrieving soil organic carbon content.

Sentinel-2 Bands Spectral
Position (nm)

Central
Wavelength

(nm)

Resolution
(m)

SNR
(at Lref) 1

B1-Coastal aerosol 421–557 443 60 -

B2-Blue 458–523 490 10 154

B3-Green 543–578 560 10 168

B4-Red 650–680 665 10 142

B5-Vegetation Red Edge 698–713 705 20 117

B6-Vegetation Red Edge 733–748 740 20 89

B7-Vegetation Red Edge 773–793 783 20 105

B8-NIR 789–900 842 10 174

B8A-Vegetation Red Edge 855–875 865 20 72

B9-Water vapor 931–958 945 60 -

B10-SWIR-Cirrus 1338–1414 1375 60 -

B11-SWIR 1565–1655 1610 20 100

B12-SWIR 2100–2280 2190 20 100
1 SNR, signal-to-noise ratio and the MSI (Multispectral Imager) instrument specifications for SNR are generally
at Lref.

An inspection of Figure 1 shows the dominant land coverage to be arable land with
scattered areas occupied by buildings and water bodies. To accurately acquire the bare
soil pixels in the S2A data, the water bodies and buildings were identified and masked.
After the arable land pixels with NDVI values greater than 0.2 were masked, the rest of
the arable land was identified as bare land, accounting for about 26% of the study area.
Additionally, even though the S2A spectral reflectance is the result of many soil factor
especially soil moisture and soil texture, SOC has a significant negative correlation with
spectral reflectance, i.e., a lower SOC concentration corresponds to bare soil pixels with
high reflectance and a higher SOC concentration corresponds to bare soil pixels with low
reflectance (Figure 3). These curves corresponded to maximum and minimum, as well as
to two random values of measured SOC between the maximum and minimum values.

The spectral reflectance remote sensing data provide a comprehensive identification
of various ground objects including vegetation, water, and soil [43,44]. The characteristics
of S2A spectral reflectance for bare soils significantly reflected several soil physical and
chemical properties, such as soil water, texture, iron, organic carbon, CaCO3, and salin-
ity. The spectral signature of certain soil properties is characterized by the signature’s
general shape, reflectance intensity, and specific absorption bands. For soil properties,
SOC concentration is a synthetic reflectance of soil conditions such as plant growth, water,
and soil color. Therefore, in addition to the selected nine S2A spectral bands, several
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spectral indices were integrated into the retrieving models that included vegetation indices
(that are sensitive to biomass, that is, sensitive to organic carbon), water indices (that
are sensitive to soil moisture), and brightness-related indices (that are sensitive to both
organic carbon content and soil texture) [24]. The selected specific spectral indices included
NDVI [45], Transformed Vegetation Index (TVI) [46], Enhanced Vegetation Index (EVI) [47],
Green Normalized Difference Vegetation Index (GNDVI) [48], Green-Red Vegetation Index
(GRVI) [49], Moisture Stress Index (MSI) [50], Soil-Adjusted Vegetation Index (SAVI) [51],
Soil-Adjusted Total Vegetation Index (SATVI) [52], the Second Modified Soil Adjusted
Vegetation Index (MSAVI2) [53], Brightness Index (BI) [54], the Second Brightness Index
(BI2) [54], Redness Index (RI) [55], Color Index (CI) [56], and vegetation (V) [56]. The spe-
cific calculation formulae are shown in Table 3. Six of the 14 spectral bands were selected as
the indices for SOC retrieving (shown in bold in Table 3), filtered by the weighted average
of variable importance in each retrieval model (Figure 4) and environment in study area.
The threshold we chose for their exclusion was 0.023, in which the nine bands mentioned
above as well as SATVI, BI2, and TVI were chosen. Nevertheless, to avoid a small amount
of vegetation cover on the soil, several vegetation indices sensitive to low vegetation cover
and soil were selected, including NDVI, SAVI, and EVI.

Figure 3. Soil spectral reflectance corresponding to maximum and minimum values of measured soil
organic carbon (SOC), as well as to two random values of measured SOC.

Figure 4. Distribution of variance importance in projection values for bands and all spectral indices.
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Table 3. Definition and calculation of the selected specific spectral indices based on the Sentinel-2A image reflectance data
(see index abbreviation definitions in the text).

Index Definition Calculation Based on S2A Image Bands

NDVI NIR−Red
NIR+Red

B8−B4
B8+B4

TVI (
ρNIR−ρRed
ρNIR+ρRed + 0.5)

1/2
× 100 ( B8−B4

B8+B4 + 0.5)
1/2

100

EVI 2.5 ρNIR−ρRed
ρNIR+6×ρRed−7.5×ρBlue+1 2.5 B8−B4

B8+6B4−7.5B2+1

GNDVI ρNIR−ρGreen
ρNIR+ρGreen

B8−B3
B8+B3

GRVI ρGreen−ρRed
ρGreen+ρRed

B3−B4
B3+B4

MSI SWIR1
NIR

B11
B8

SATVI ρSWIR1−ρRed
ρSWIR1+ρRed+1 × 2− ρSWIR2

2
B11−B4

B11+B4+1 2− B12
2

SAVI (ρNIR−ρRed)×1.5
ρNIR+ρRed+0.5

(B8−B4)×1.5
B8+B4+0.5

MSAVI2 2×ρNIR+1−
√
(2×ρNIR+1)2−8×(ρNIR−ρRed)

2
2×B8+1−

√
(2×B8+1)2−8×(B8−B4)

2
BI

√
(ρRed× ρRed) + (ρGreen× ρGreen)/2

√
(B4× B4) + (B3× B3)/2

BI2
√

(ρRed×ρRed)+(ρGreen×ρGreen)+(ρNIR×ρNIIR)
2

√
(B4×B4)+(B3×B3)+(B8×B8)

3
RI ρRed×ρRed

ρGreen×ρGreen×ρGreen
B4×B4

B3×B3×B3

CI ρRed−ρGreen
ρRed+ρGreen

B4−B3
B4+B3

V ρNIR
ρRed

B8
B4

3. Methods
3.1. Models for SOC Prediction

We tested four different multivariate models for retrieving SOC concentration from
spectral data: PLSR, SVM, RF, and ANN. The variable importance was calculated for each
regression method. Prediction accuracy was compared among the models.

The PLSR method is a mathematical optimization technology [57]. The method con-
structs a multivariate regression model by compressing uncorrelated independent variables.
That is, the independent variable and dependent variable are projected into a new coordi-
nate system so that it is relatively easy to construct a linear correlation between the two
datasets. In this coordinate system, the multi-linear model is constructed, and it is usually
used in situations where the variable dimension is equal to or less than the observation
value and the multiple correlation between variables. For example, a spectral band and op-
tical transmission model can be integrated with principal component analysis and typical
correlation analysis methods to extract more abundant and deeper information from the
original data. In this study, the matrix of the independent variable (spectral band spectral
index) and the dependent variable (measured value of SOC) is taken into account in the
selection of PLSR components, the number of which was set by selecting what number
provided the lowest root mean square error (RMSE) for 10-fold cross validation. Finally, the
variance importance in projection (VIP) values were calculated to estimate the importance
of each independent variable in the PLSR model [25,58], taking into account the amount of
explained variance for each component of the model.

The SVM regression is an algorithm based on statistical learning theory that belongs
to supervised learning [24,59]. It is mainly applied to situations where the sample size is
not massive and the feature dimension is far less than the sample number. Based on the
selected kernel function, the techniques are able to approximate nonlinear relationships
between multidimensional spaces and to derive a linear hyperplane as a decision function
for nonlinear problems. In this paper, the soil spectral model was constructed based on
the radial basis kernel, and the best parameters for the model were determined by the grid
search method.

The RF composed of decision trees is one of an ensemble of learning algorithms, and
is widely used for classification and regression problems [60]. Similar to SVM, it is also a
supervised learning algorithm that combines multiple regression trees by resampling of the
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training dataset, and then constructs a “forest.” In this case, the user inputs the dependent
data (training dataset) and independent data (remote sensing data), and then lets each
tree in the forest judge and estimate separately, with each tree getting its own value. Then,
the results of all decision trees are averaged as the outputs of the model. Therefore, to
a great extent, this method avoids over-fitting issues. In addition, the relative variable
importance (RVI) in the model can be calculated, and is used to evaluate the contribution of
each independent variable to the model. The mean square error before and after permuting
each predictor is calculated, after which the mean difference of all trees is normalized to
the standard deviation for each variable. The RVI can be obtained by dividing these values
by their sum [25].

The ANN is an unsupervised learning algorithm that is mainly used for classification
and regression. It refers to clustering unlabeled data, determining the category of data, and
predicting continuous values [61]. The ANN regression algorithm mainly includes three
layers: input layer, hidden layer, and output layer. The hidden layer performs a weighted
linear combination of multiple independent variables. Before output, a nonlinear function
is used to modify the combination result to reduce the influence of extreme input values.
In this process, the variable weight (that is, the importance of the variable) needs to be
restricted to prevent it from being too large. The parameter that limits the weight is called
the attenuation parameter, and is usually set to 0.1. Different random starting points are
selected to train for many times, and the VIP of each variable is obtained by averaging
several results.

For the four regression models, the ratio of training datasets to validation dataset was
3:1. Prediction accuracy of the models was evaluated by RMSE (Equation (1)), coefficient of
determination (R2), and relative percent difference (RPD, Equation (2)). After discretization,
a randomly sampled spectral dataset of bare land area in the study area was input into
the best performing model to retrieve the SOC content, after which the SOC was mapped.
In the model classification system of Chang et al. [62] when the RPD is less than 1.0, the
prediction ability of the model is poor and is not recommended; when the RPD is between
1.0 and 1.4, the prediction ability is only enough to detect high and low values; when
the RPD is between 1.4 and 2.0, prediction ability is fair; when the RPD is between 2.0
and 2.5, the model has strong prediction ability and quantitative inversion ability; and
RPD values greater than 2.5 indicate excellent prediction ability. The construction and
evaluation of the models were completed in the RStudio (https://rstudio.com/ (accessed
on 2 February 2021)).

RMSE =

√
∑n

i=1
(
y0 − yp

)2

n
(1)

RPD =
std

RMSE
(2)

where y0 are the observed SOC values, yp are the SOC values predicted by the model, std is
the standard deviation of the observed SOC values, and n is the number of samples.

3.2. Variograms of Predicted SOC

The SOC distribution map was obtained by applying the four predictive regression
models to all bare soil fields. The predicted values of SOC content based on spectral image
values were modeled by a geostatistical method. The spatial structure could be described
according to the variogram related to spatial dependence or the semi variance between
samples [63]:

γ(h) =
1

2n

n

∑
i=1
{p(xi)− p(xi + h)}2 (3)

where γ(h) is the average semi-variance of SOC, n is the number of pairs of sampling points,
p is the SOC value, x is the coordinate of the point, and h is the distance between pairs or
the lag value.

https://rstudio.com/
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The semi-variance was calculated from a series of discrete distances (h) between the
SOC point pairs (Equation (3)). As one of the theoretical functions, the variance model was
obtained by fitting the variance to analyze the variation of SOC under any h [64]. All of the
geostatistical analyses were performed using ArcGIS in ESRI.

4. Results
4.1. Description of Soil Dataset

We described the SOC statistical information for the bare soil dataset and differentiated
the selected models using calibration and validation datasets (Table 4). The mean value of
SOC in the total soil dataset was 8.27 g/kg with values ranging from 4.495 to 17.284 g/kg.
The coefficient of variation for the total dataset was 22.88%. When comparing the statistical
characteristics of the calibration and validation SOC datasets, no significant differences
were detected among the models (RF, SVM, PLSR, and ANN) or among the calibration
and validation datasets for the mean, minimum, maximum, SD, and CV values. Because
calibration and validation datasets were randomly selected for the four models, the kurtosis
values were quite different among the models. The kurtosis was higher in the validation
dataset (>0) than in the calibration dataset (>0) for all models except PLSR.

Table 4. General statistical description of soil organic carbon predictions from four models used in the western Guanzong
Plain, China.

Model Samples Mean g/kg Min g/kg Max g/kg SD g/kg Kurtosis CV (%)

Total 8.27 4.495 17.284 1.897 1.581 22.88

RF
Calibration 8.236 4.495 14.152 1.816 −0.077 22.04

Validation 8.378 5.22 17.284 2.148 3.626 25.64

SVM
Calibration 8.22 4.495 14.152 1.861 −0.154 22.642

Validation 8.429 5.568 17.284 2.015 4.931 23.903

PLSR
Calibration 8.267 4.495 17.284 1.987 1.601 24.033

Validation 8.281 4.698 13.05 1.595 0.123 19.257

ANN
Calibration 8.241 4.495 13.05 1.774 −0.338 21.526
Validation 8.362 4.698 17.284 2.258 3.083 27.002

RF, random forest; SVM, support vector machine; PLSR, partial least squares regression; ANN, artificial neural network; SD, standard
deviation; CV, coefficient of variation.

4.2. Performance of the Prediction Models and Variable Importance

We built four SOC prediction models from S2A spectra (that included 10 single bands
and 14 spectral indices) and from observed SOC from soil samples. The models were
constructed by fitting the independent variable and measured SOC content through certain
rules. During the process of model building, we found that not all variables contributed
to model performance, so some of the independent variables were removed according to
the VIP and RPD values. We ranked the importance of the variables in each model, then
selected the top variables to input into the model, added one at a time, and iterated in
turn until the change in RPD was no longer obvious. Finally, nine spectral bands and six
selected spectral indices (shown in bold in Table 3) remained and were used as inputs into
predictive models.

The prediction accuracy was quite different among the models, as evaluated by RMSE,
R2, and RPD (Table 5). In terms of RPD, the differences among the four models appeared
to be significant; however, in terms of the other two indicators (RMSE and R2), except for
the PLSR model, the differences between the remaining three models were not so obvious,
but should not be ignored. Generally speaking, the performance of the RF regression
model was the best among all models, with an RPD value of greater than 2.25, RC

2 of
0.873, and RMSEC less than 0.15. Therefore, the model has strong generalization and
consistency, and its capability to quantitatively monitor SOC in the field is outstanding.
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The ANN model also performed well, with RPD greater than 2.0, and RC
2 greater than

0.73. However, its consistency and generalization were slightly weaker than the RF model.
Compared with the ANN prediction model, all of the indices of the SVM model were
lower (RC

2 = 0.6674, RMSEC < 0.3), but its RPD value was greater than 1.4, indicating
intermediate performance of the SVM model. The predictive ability of the PLSR model was
the weakest (RMSEC = 0.612, RC

2 = 0.606 and RPD = 1.3014), indicating that the stability
and generalization of this model was too poor to be used for quantitative prediction (Table 5
and Figure 5).

Table 5. Model prediction performance statistics for random forest (RF), partial least squares regression (PLSR), support
vector machine (SVM), and artificial neural network models applied to spectral image data from the western Guanzhong
Plain, China.

Model
Calibration Dataset Validation Dataset

RPD Formula
RMSEC (g.kg−1) RC

2 RMSEV (g.kg−1) RV
2

RF 0.146 0.8737 0.202 0.5712 2.2573 y = 0.7468x + 2.025
PLSR 0.612 0.6060 0.265 0.5518 1.3014 y = 0.6089x + 3.1471
SVM 0.208 0.6674 0.646 0.5967 1.4268 y = 0.619x + 2.9723
ANN 0.196 0.7395 0.292 0.4251 2.0124 y = 0.7857x + 1.7082

RF, random forest; SVM, support vector machine; PLSR, partial least squares regression; ANN, artificial neural network.

Figure 5. Predicted versus observed soil organic carbon (SOC) for the calibration dataset using four different models over
the western Guanzhong Plain, China. RF = random forest; PLSR = partial least squares regression; SVM = support vector
machine; ANN = artificial neural network.
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The selected variables importance in models is shown in Figure 6. The figure shows
that the variable with the highest relative importance in all models (except ANN) was B11,
corresponding to the wavelength band of 1565–1655 nm, followed by B12 (1610 nm). This
result is consistent with the higher reflectance of graded SOC content in the SWIR spectral
ranges (Figure 2). It is significant that the variable importance of the RF and PLSR models
had similar variation tendency, and the variables in SWIR have higher weight. These
variables included B11, B12, and SATVI, while BI2 in the PLSR model was important as
well. However, for the other two models, the variable importance in the visible wavebands
was higher, especially in the ANN model. B6 had the highest weight in the ANN model,
but the importance of variables in the SWIR should not be ignored.

Figure 6. Distribution of variance importance in projection values for independent variables from
four models used to predict soil organic carbon in the western Guanzong Plain, China. RF = random
forest; PLSR = partial least squares regression; SVM = support vector machine; ANN = artificial
neural network.

4.3. SOC Map Variability Analysis

Because the RF model had the best prediction accuracy, it was applied to retrieve the
SOC distribution of all bare cropland in the study area. The resultant dataset was used
to map SOC (Figure 6) in order to quantify, simulate, and interpret the dependence of
SOC on the spatial environment of the study area through Kriging technique. Because of
the left-skewed distribution, a BOX-COX transformation was carried out. In the process
of interpolation, it was found that SOC had no anisotropy in the north-south and east-
west directions. Therefore, an isotropic nested model was used to fit the environmental
variance (Figure 7). The semi-variance fitting model contains two basic structures, the
nugget effect and the exponential model. The nugget value was 1.33597, and the partial
sill, i.e., the difference between sill and nugget values, was 0.8295. The results showed that
spatial dependence of SOC in the study area was marginally obvious, even variability was
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calculated when the distance was less than 1500 m, and the maximum semi-variogram is
only 0.021.

Figure 7. Semi-variograms computed for soil organic carbon from the predicted dataset of bare soils in the western
Guanzhong Plain, China.

In order to better express the geographical differences of the SOC content, the in-
terpolation results were manually divided into five classes and shown on a map of the
Guanzhong Plain study area (Figure 8) in which the spatial dependence of SOC is shown. In
the lower terrace of the Wei River, the SOC content was generally higher, and about 60% of
the fifth class of SOC (9–12.7 g/kg) was found here. The SOC content of the higher terrace
and Loess Plateau far away from the Wei River was relatively low. From the perspective of
administrative divisions, the soil of the Chencang district has relatively high SOC content,
followed by Qishan county because of proximity to the Wei River. Moreover, SOC content
over the study area ranged from 5.39 g/kg to 12.7 g/kg, with an average value of 7.23 g/kg.
The interpolation result was still a left-skewed distribution, with more than two-thirds of
the area belonging to 5–8 g/kg class.

Figure 8. Predicted soil organic carbon (SOC) spatial distribution in the western Guanzhong Plain,
China, based on the random forest model.



Remote Sens. 2021, 13, 1072 14 of 19

5. Discussion

Rapid progress in satellite sensors and easy access to remote sensing images has
aroused great attention for research on soil classification and soil property prediction
based on spectral reflectance information, resulting in the promotion of comprehensive
exploration of soil digital mapping and soil remote sensing. The S2A satellite provides
a new generation of multispectral imagers equipped to acquire some wavelengths in the
SWIR region, and is considered to be an intensely interesting remote sensing data source
related to the reflectivity features of SOC. Both Vaudour and Castaldi et al. evaluated the
capability of S2A data for soil property prediction, and reported positive potential [25,26].
However, only intermediate or near intermediate prediction performance outcomes were
obtained, with low R2 (0.3–0.5) and RPD (<1.4) for seven soil attributes in results from
Vaudour et al. [26]. Castaldi et al. [25] found that only three out of seven study areas
obtained satisfactory prediction accuracy (RPD > 2) when evaluating the capability of the
S2A data for SOC prediction in croplands. The non-negligible factor that determines soil
attribute prediction accuracy based on spectral reflectance is the vegetation on the soil
surface. Gholizadeh et al. [24] selected four areas less than 1 km2 in central Europe for SOC
inversion and verification. They reported moderate model performance (maximum RPD
was 1.92). During our field investigation, we found a large area of continuous bare land
that was not planted in the autumn and had an area of 773.44 km2, accounting for 26.43%
of the total area of the western Guanzhong Plain. This area of autumnal bare land provided
the opportunity to eliminate the effects of vegetation on soil property prediction based on
S2A data. We found that we could accurately predict SOC with higher R2 (ranging 0.6674 to
0.8737) and RPD (the highest value was 2.2573) than reported in previous research results.

Selecting the correct prediction model was an essential factor determining soil at-
tributes prediction accuracy from multispectral images. Based on the spectral reflectance
values extracted from the same satellite image and the same sample dataset, the current
research compared the ability of training soil surface SOC and predicting SOC by RF, PLS,
SVM, and ANN regression algorithms. Even though Castaldi et al. [25] indicated that the
performance of the RF model was not optimal and that the correlation between variables
was weak, the RF algorithm was still used to bond reflectance and SOC, and a predictive
model with high consistency was, indeed, obtained (Table 5 and Figure 5). Even though
PLSR is the most commonly used multivariate statistical technology in soil science [65–68],
it was not satisfactory in this study. This may be because PLSR is a linear model, but the
relationship between organic carbon and the soil spectrum may be nonlinear, especially
for the region with strong variability and large range. While RF is a nonlinear model, it
performed regression tasks by multiple decision regression trees, and retrieved the sur-
face organic carbon content value by weighted average of regression results according to
variable importance (Figure 6). Meanwhile, RF makes comprehensive and in-depth data
mining analysis on independent variables both in regression and classification [69–71].
Therefore, RF had more advantages than PLSR in this study. In addition, model perfor-
mance is not only related to the algorithm itself. The tendency of variable importance in
the ANN model was significantly different from the other models. This may be because
ANN is an unsupervised algorithm. Farifteh et al. [35] reported that both methods have a
great potential for retrieving and mapping soil salinity, but PLSR performed better, after
comparing PLSR and ANN in quantitative analysis of salt affected soil reflectance spectra,
because the relation between soil salinity and soil reflectance can be approximated as a
linear correlation. Although the importance of variables in the SWIR was high for all of the
models, there were obvious differences in the importance distribution of other variables.
It was also shown that, in line with previously reported results, S2A has outstanding
inversion ability for soil properties [23], and may be higher than the Landsat series, the
SPOT series, and other land resource satellites. Therefore, S2A is expected to be applied at
a large scale in the future.

In recent years, many scholars have explored the relationship and differences between
soil properties and spectral reflectance, as well as between soil properties, including
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SOC, soil texture (sandy soil, clayey soil, and loam), CEC, pH, CaCO3, and iron content,
among which SOC and soil texture have been more widely studied [72]. If there is a
direct correlation between attributes, then the spectral sensitive attributes can be used to
predict attributes not sensitive to the spectrum. In fact, both pH and CEC are insensitive to
the spectrum. Gholizadeh et al. [24] found a relationship between soil texture and SOC.
Relatively high organic carbon content is more likely to be found in areas with higher
clay and silt content, especially clay content, because with the increase of clay and silt
content, soil aggregate or agglomeration capability will be enhanced, thereby avoiding
the rapid or direct degradation of organic carbon. SOC concentration in sandy soils has
a positive influence on the CEC, and higher pH is often associated with higher SOC in
sandy soils [73]. However, Goidts et al. [74] studied the change of SOC on cultivated land
surface over a 50-year period, and found that soil texture was not one of the significant
driving factors of SOC change. In this study, large SOC content ranges (4.495–17.284 g/kg,
Table 4) and negative correlations between SOC and S2A spectral reflectance were detected
(Figure 3), indicating that SOC is a vital factor affecting spectral reflectance characteristics.
Soil moisture concentration influence soil reflectance (i.e., soil reflectance decreases with
increasing soil moisture [28]). Soil texture affects soil spectral reflectance by affecting soil
water storage capacity, resulting in differences in soil water content. Soil texture also
affects soil particle size, i.e., soil roughness, and thereby has a significant impact on soil
reflectance [75,76]. The western Guanzhong Plain is located in the Wei River valley and
is surrounded by the Qinling Mountains and the Loess Plateau in the south, west and
north direction. Therefore, the climate and soil were relatively homogeneous with similar
precipitation and evaporation, and loamy soil texture. Therefore, the soil moisture and soil
texture were not included in the SOC prediction models in the current research [37].

In fact, hyperspectral datasets obtained in the laboratory have a strong predictive
ability for the soil properties mentioned in this paper. SOC and clay are more sensitive
to the spectrum, so they are widely used and mostly meet expectations. However, the
performance of inversion models for the same attribute and evaluated by the same indica-
tors in different studies is not always the same, likely because sample selection methods,
measuring instruments, sample processing, spectrum acquisition methods, and analysis
algorithms all play important roles [10,77]. Until now, multispectral data have been mainly
used for soil classification in digital thematic maps. However, with the continuous im-
provement and optimization of radiation resolution, spatial resolution, and band location
of multispectral sensors, multispectral data now has the ability to retrieve soil property
information. In particular, the new generation of sensors can simultaneously obtain the
reflectance spectrum information of visual-near infrared (VNIR) and SWIR wavelengths,
covering the range of typical spectral characteristics of soil. Gholizadeh et al. [24] compared
the retrieval and mapping capabilities of the S2A, airborne, and near-end handheld sensors
for SOC and soil texture. The results showed that the three types of spectral data were
all suitable for SOC monitoring in most areas, but the performance of the clay content
retrieval model was slightly weaker. At the same time, with the gradual increase in the
platforms’ height, the ability of a sensor to predict soil parameters gradually decreases,
especially with regard to soil particles and sand particles that are less sensitive to the
spectrum. After all, the light source, signal-to-noise ratio, spatial resolution, atmospheric
conditions, and pixel purity are quite different among the three platforms. In addition, the
actual remote sensing product can be disturbed by many factors, such as soil roughness,
soil moisture, and soil cover. Even so, some studies on soil property monitoring using S2A
as a single data source have overcome many problems and have achieved certain results,
and the verification results are consistent with the conclusions of this study, i.e., S2A has
the capability to monitor soil properties, and it is expected to develop the potential for
retrieving soil properties.

It should be noted that there are still some limitations in our research. First, space-
borne data are controlled by the data acquisition condition, which mainly associates with
atmospheric attenuation and plant litter, and the acquisition time must be as close as
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possible to the sampling time. Second, we did not take into account the effect of the soil
moisture and soil texture on SOC prediction because they were assumed to be relatively
homogeneous by us, but this needs to be confirmed. Third, the simultaneous existence of
large bare tilled agricultural fields and high-quality remote sensing images is an important
prerequisite for replicability.

In the future, the continuous research of machine learning and deep learning will
promote further development of remote sensing inversion technology. On the one hand,
more algorithms will be introduced to retrieve land surface parameters. These algorithms
include genetic algorithm and multivariate adaptive regression splines functions that have
been applied in recent years. On the other hand, the traditional algorithms (RF, PLSR, etc.)
will be analyzed and integrated to better assimilate the land surface process model and
remote sensing data. In addition, even with continuous sensor improvement and increasing
data quality, it is difficult to monitor soil properties and conduct mapping using a single
image or sensor on a large scale, let alone implement the direct application of the results
by end users. Therefore, it is necessary to incorporate S2A data into the large framework
of digital soil mapping. Interested users may use variograms that closely resemble those
obtained from actual measurements as proxy input data to quantitatively analyze specific
soil properties, or to directly optimize digital soil mapping models.

6. Conclusions

We studied the correlation between the bare soil spectrum and soil surface organic
carbon in the western Guanzhong Plain of China. We tested the ability of S2A data to
retrieve SOC content in bare soil. The performance abilities of four machine learning
models to link spectral reflectance data and measured SOC content were compared. The
results showed that the RF model had the highest prediction accuracy, followed by the
ANN model. Regarding the importance of prediction variables in the models, B11 and
B12 were of high importance in all four models, and SATVI performed unstably in the
models. The SOC map derived from the RF model showed that the spatial resolution and
spectral resolution of S2A were good enough to monitor SOC content at the regional scale,
and to describe the spatial dependence of soil structure. In addition, in order to carry out
large-scale organic carbon monitoring, having bare land without obvious foreign matter
(vegetation) coverage is very important, and the terrain, soil moisture, and soil quality of
the study area will also play an important role. Future studies may be necessary to continue
to verify the monitoring performance of S2A spectral data with regard to soil properties in
different environments, to explain the dependence of soil properties on structure, and to
use more auxiliary data or auxiliary data from digital models to improve model prediction
accuracy. In recent decades, more sensors with high spectral collection efficiency in the
SWIR (e.g., EnMAP, PRISMA, HyspIRI) will greatly contribute to the study of spectral
characteristics of soil properties, such as clay and calcium carbonate content.
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