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Abstract: Superpixels group perceptually similar pixels into homogeneous sub-regions that act as mean-
ingful features for advanced tasks. However, there is still a contradiction between color homogeneity
and shape regularity in existing algorithms, which hinders their performance in further processing.
In this work, a novel Contour Optimized Non-Iterative Clustering (CONIC) method is presented. It
incorporates contour prior into the non-iterative clustering framework, aiming to provide a balanced
trade-off between segmentation accuracy and visual uniformity. After the conventional grid sampling
initialization, a regional inter-seed correlation is first established by the joint color-spatial-contour dis-
tance. It then guides a global redistribution of all seeds to modify the number and positions iteratively.
This is done to avoid clustering falling into the local optimum and achieve the exact number of user-
expectation. During the clustering process, an improved feature distance is elaborated to measure
the color similarity that considers contour constraint and prevents the boundary pixels from being
wrongly assigned. Consequently, superpixels acquire better visual quality and their boundaries are
more consistent with the object contours. Experimental results show that CONIC performs as well as or
even better than the state-of-the-art superpixel segmentation algorithms, in terms of both efficiency and
segmentation effects.

Keywords: superpixel segmentation; image contour; non-iterative clustering; seeds redistribution;
feature distance measurement

1. Introduction

Superpixel segmentation is an important branch of image segmentation and multi-scale
representation. It is essentially a process that over-segments an image into numerous spatially
connected regions of similar size. Within it, a superpixel is a homogeneous description
of texture, color or other features in accordance with visual perception, which substitutes
for pixel-level features in object modeling. Since being introduced by Ren et al. [1] in 2003,
research on superpixel segmentation gradually has become fundamental and popular in image
processing and pattern recognition domains. Many advanced computer vision applications are
developed on several outstanding superpixel generation algorithms to achieve more desirable
results. Among them are target detection [2], object classification [3], image decomposition [4]
and hierarchical representation [5]. In those works, superpixel segmentation performs as an
efficient pre-processing step to compute image features and significantly reduces the number
of entities in the following steps.

The pursuit of prominent superpixels is still a hotspot in this field from its birth to
the present [6]. In recent years, a growing number of superpixel algorithms have been
proposed to improve the segmentation performance [7]. Generally, the segmentation quality
of superpixels is evaluated by accuracy, uniformity, compactness and time efficiency. Many
state-of-the-art methods compute an eligibly balanced trade-off between these properties
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via various techniques [8–13]. Typically, Simple Linear Iterative Clustering (SLIC) [9] acts
as an enlightening pioneer to generate desirable superpixels, which has been extended in
several latest works [14–21].

1.1. Drawbacks on Clustering Framework

In the practical applications, however, some drawbacks are exposed in SLIC due to the
structure defect by its simple framework [18]. The following deficiencies and shortcomings
are considered to be bottlenecks of performance:

• It utilizes a kind of unstable local K-means in clustering, which is susceptible to cluster
initialization [22].

• It merely relies on local color features and makes a fixed trade-off with spatial distances
to enforce the shape regularity [19].

• Redundant eigenvalue computations in overlapping local regions are repeated in
several iterations [14].

• A split-and-merge heuristic is necessary for region connectivity, which is usually
implemented by a connected components algorithm [17].

To further address the abovementioned limitations within SLIC-like methods,
Achanta et al. [18] proposed the Simple Non-Iterative Clustering (SNIC) algorithm in
their follow-up works. As the name asserts, SNIC works in a non-iterative manner and
removes the limitations of SLIC that iterative label updating processes result in redundant
creations of all elements in each restricted region. In SNIC, each pixel is inspected four times
at most to calculate the feature distance. It adopts a priority queue to sort the inspected
neighboring elements of all seeds, which substantially performs a label expansion process.
Once a new label is assigned, the pixel will no longer be revisited. Consequently, much
redundant computation for label updating can be prevented in overlapping local regions.
Moreover, since all superpixels are generated by seeds expanding that absorb surrounding
pixels, they still maintain the spatial connectivity of homogeneous pixels with the same
labels. Therefore, the split-and-merge post-processing is omitted in SNIC.

Compared with SLIC, another important modification of SNIC is to generate super-
pixels whose clustering barycenters are evolved using online averaging that thoroughly
avoids the iteration. Nevertheless, SNIC adopts a rigid region growing method to generate
superpixels, in which a SLIC-like color-spatial feature distance is calculated. Thus, it may
suffer from the shape compactness that goes against the local homogeneity. As a result,
like other SLIC-like algorithms, it sometimes fails to adhere to image contours accurately,
especially in complicated and textured regions.

1.2. Feasible Optimizations for Superpixels

As mentioned above, there is a large amount of literature on improving the perfor-
mance of superpixels using various strategies. More subtle distance measurements and cost
functions [23], elaborate feature spaces [17], as well as valuable prior information [24] are
utilized in many state-of-the-art superpixel generation methods. Among them is gradient
or contour prior information, which significantly avoids the crossing of image boundaries
when associating a pixel to a superpixel. Giraud et al. [19] put forward a novel framework
that provides a desirably balanced trade-off among segmentation quality and other charac-
teristics of superpixels. The proposed Superpixels with Contour Adherence using Linear
Path (SCALP) takes both regional color feature and contour intensity of all pixels on a
linear path from a pixel to a cluster barycenter. Therefore, a joint color-spatial-contour ho-
mogeneous measurement has emerged. The resultant superpixels not only show regularity
in sizes and shapes but follow regional color homogeneity.

It is also worth noting that, for seed-demand algorithms, a good initialization of seeds
plays an important part in generating desirable superpixels [17]. Specifically, it is beneficial
in the following three aspects:

• The clusters converge rapidly since the adjacent pixels are quite similar to the seed in
each restricted region [18];
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• More homogenous superpixels can be generated because the cluster barycenters avoid
falling into local optimum [25];

• The resultant superpixels are more sensitive to image content, owing to the information-
aware distribution of seeds [26].

Nevertheless, most approaches produce the initial seeds by regularly sampling on the
image grid, thereby creating an even distribution of local information for all rectangular
cells. As a bottom-up implementation based on data-driven, initialization in this way
does not concern any varying content of the real-world images. Therefore, it results in
inferior segmentation performance from the start, even though the positions of the seeds
can be updated by the subsequent regional iterations. Moreover, since superpixels are
often generated to speed up the subsequent visual analysis, the algorithm should perform
efficiently in various practical tasks. Whereas in practice, the additional feature calculations
on pixels along the linear path dramatically increase the computational cost, which severely
limits its application.

Consequently, in the literature, each superpixel algorithm has its own bright spots and
shortcomings. It is still challenging to look for the potential optimization that provides the
best-balanced trade-off for particular applications. Theoretically, an outstanding superpixel
segmentation algorithm could run sufficiently fast and provide the perfect segments. For
example, well adherence to object boundaries or contours, as well as color homogeneity for
complicated texture and small size regions. Moreover, for better visual quality, superpixels
are expected to be compact, placed regularly and exhibit smooth boundaries [7].

1.3. Contributions of the Proposed Work

To achieve the aforementioned properties together, this paper proposes a new su-
perpixel segmentation method, referred to as Contour Optimized Non-Iterative Clus-
tering (CONIC). Enlightened by the structural properties of SNIC and SCALP, CONIC
incorporates contour constraint into the non-iterative clustering (NIC) framework. In the
initialization step, a redistribution strategy is performed that iteratively relocates and
produces/eliminates the incipient seeds by color and contour similarity after uniformly
grid sampling. This is done to achieve a better initial distribution for all seeds that start
from homogeneous areas and avoid being located on the object edges or noisy points.
During the joint online assignment and updating step, a subtle distance measurement is
introduced to depict the similarity of a pixel with a cluster. Unlike the empirically fixed
factor normalizing color and spatial proximity in many SLIC-like approaches, the difference
of contour intensity works synthetically with color variation. The proposed measurement
globally magnifies the feature distance so as to classify pixels in a more accurate manner,
with emphasis on the weak boundary and textured regions. It also preserves a moderate
spatial constraint that facilitates the visual perception of shape uniformity.

To sum up, the main contributions of this paper are:

• A new seed initialization strategy is introduced for the NIC framework. It efficiently
overcomes the limitations of grid sampling via a global redistribution based on con-
tour prior. As a result, it avoids clustering falling into local optimum, thus further
generating more desirable superpixels with exactly the same number required by
the user.

• A novel distance measurement is proposed to depict the similarity of a pixel with a
cluster more accurately. It takes color information, contour prior and spatial constraint
into consideration in a subtle way. Accordingly, the homogeneity and shape regularity
of superpixels can be enhanced effectively, without deteriorating other characteristics.

• The proposed CONIC inherits both the efficiency of the NIC framework and the
accuracy of contour-based distance measurement. Compared with SNIC, SCALP
and other six state-of-the-art methods on a quantitative benchmark, it can generate
comparable superpixels with respect to segmentation accuracy and visual effects in a
limited computational time.
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This paper is organized as follows. The background and related works are reviewed
in the next section. In Section 3, the proposed CONIC method is presented in detail.
Qualitative and quantitative results and discussion are explicated in Section 4. Section 5
displays the potential applications. Finally, Section 6 makes a brief conclusion and prospect.

2. Backgrounds

In this section, a rough categorization is adopted to introduce some representative
state-of-the-art works. It classifies superpixel algorithms into seed-demand methods and
graph-based approaches by the way of superpixel generation [27]. Moreover, the method-
ology of the NIC framework is presented at the end of this section.

2.1. Seed-Demand Superpixel Segmentation

The seed-demand methods, which are data-driven, tend to utilize a number of pre-
set seeds to expand superpixels on the image plane with or without prior knowledge.
Clustering-based, watershed-based and morphology-based approaches are mainly in-
cluded in this category.

Clustering-based. Clustering-based methods usually generate superpixels by K-
means that generate superpixels from the initialized seeds. Color and spatial information
are generally utilized as the regional features. The abovementioned SLIC [9] is considered
to be instructive for the following two aspects. First, the joint color-spatial space distance
measurement could both control the size and compactness of superpixels. In addition, it
localizes the search region for K-means clustering that globally avoids performing redun-
dant distance calculations. Those two properties make SLIC appropriate for deployment
and expansion in the follow-up works.

Linear Spectral Clustering (LSC) [16] and Intrinsic Manifold SLIC (IMSLIC) [17] extend
SLIC by introducing k-means clustering into elaborately designed distance measurements
and feature spaces. LSC applies a weighted k-means method in feature space with higher
dimensions by kernel function, which reduces the time complexity of normalized cut (NC) [10]
to linear and preserves the global image properties. By computing the geodesic centroidal
Voronoi tessellation (GCVT) on a 2-dimensional manifold feature space, IMSLIC makes
superpixels sensitive to image content without post-processing to enforce connectivity.

Preemptive SLIC (preSLIC) [14] and Fast Linear Iterative Clustering (FLIC) [15] are
two representative accelerated optimizations of SLIC. In preSLIC, the deviation of clus-
ter barycenters during each iteration is adopted as a homogeneity criterion to guide the
convergence of candidate regions. Compared with conventional SLIC, only some deviation-
variable superpixels are checked by the local K-means method in the updating step. There-
fore, much redundant revisiting computation can be prevented. A major insight of FLIC
can be generalized as a trade-off between shape uniformity and time efficiency. It assumes
that neighboring pixels have natural continuity that tends to be assigned the same label.
Based on the active search strategy by relationships between neighboring pixels, FLIC takes
place in fixed search ranges in SLIC and achieves rapid convergence of linear clustering.

Watershed-based. Superpixels are essentially a special case of an image over-
segmentation [1]. Therefore, some marker-controlled watershed transformations can also
be classified into superpixel generation methods. Among them are Compact Watershed
(CW) [14], Watershed Superpixels (WS) [28] and Waterpixels [29], which select several mark-
ers similar to sampling seeds in SLIC. Then, the watershed transformation is performed
based on the makers and the image gradient, wherein a spatial constraint is introduced
providing controllability over the compactness.

Morphology-based. Morphology-based algorithms generate superpixels as evolving
outlines starting from initial seeds. In TurboPixels [8], a level-set-based geometric flow
algorithm is adopted to dilate all seeds. It combines a curve evolution model for dilation
with a skeletonization process for spatial constraint, thus generating highly regular su-
perpixels. Topology Preserved Superpixel (TPS) [24] partitions an image into superpixels
by connecting seeds through several optimal paths vertically and horizontally. A contour
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prior is necessary for this method since the seed needs to be relocated to the pixel with
locally maximal edge magnitudes. On this basis, Dijkstra’s algorithm is used to generate
the optimal path. Intuitively, TPS can generate topology preserved regular superpixels
which are topology preserved.

2.2. Graph-Based Superpixel Segmentation

A graph-based superpixel algorithm generally produces superpixels via a graph
model to depict the relationships between adjacent pixels in an image. In this category,
graph cut, boundary evolution and energy optimization are three mainstreams [30].

Graph cut. Normalized Cuts (NC) [10] is a pioneering algorithm used in [1] to partition
an image into regular and compact regions. In this method, each pixel is regarded as a
node, and then the superpixel generation task is converted into recursively cutting the
pixel graph thus minimizing a cost function based on contour and texture information.
Entropy Rate Superpixel (ERS) [11] proposes an objective function based on the entropy
rate of a random walk on the graph topology. It uses a priority queue to obtain edges
to a new graph and calculates the entropy rate from the cut costs on the graph until the
connected area reaches the expected number.

Boundary evolution. Superpixel Lattices (SL) [31] generates superpixels by construct-
ing the vertical and horizontal superpixel boundaries. The optimal paths in both verti-
cal and horizontal are searched within the predefined strips, which are then utilized to
split an image and yield superpixels. Superpixels Extracted via Energy-Driven Sampling
(SEEDS) [32] generate superpixels by iteratively evolving each initial rectangular region
using coarse-to-fine pixel exchanges with neighboring superpixels. It adopts a hill-climbing
algorithm to optimize an energy function formed by the histogram features of superpixels.

Energy optimization. Compact Superpixels (CS) and Constant-Intensity Superpixels
(CIS) [33] are two approaches that formulate the superpixel segmentation problem in energy
optimization. CS assumes that the input image is intensively covered by half-overlapping
square patches of the same size, thus it shows uniform compactness with regular shape
and size. CIS assigns each patch the color of the pixel at the center where every single pixel
belongs to one of the overlapping patches. By adding a constraint to the energy function,
the resultant superpixels have constant intensity. Lazy Random Walk (LRW) [34] converts
segmentation into graph partition. The vertex of the graph is the image pixel and the edge
is defined on the Gaussian weighting function. It iteratively optimizes superpixels by an
energy optimization function based on texture information and object boundaries.

2.3. Preliminaries on Non-Iterative Clustering

Superpixel generation in a one-pass fashion has gained more attention in recent
years [35]. Compared with the iteration-needed methods mentioned above, it fundamen-
tally reduces the computational cost owing to the non-iterative structure. Since the pro-
posed work attempts to combine contour prior with the NIC as a new framework to
generate superpixels, the conventional principle, as well as some key notations in SNIC, is
reviewed as follows:

• Step 1. In an image plane I = {Ii}N
i=1, several pixels are sampled as the incip-

ient seeds {sk}K
k=1 as well as the cluster barycenters {bk}K

k=1 with a unique label
L(sk) = L(bk) = k. A small-root priority queue Q is initialized that always returns the
minimum key value while it is not empty.

• Step 2. For each seed sk, the 4-neighboring unlabeled elements
{

Ij
}4

j=1 are inspected

clockwise. The distance D
(

Ij, bk
)

is individually computed as the key value for each
element Ij before it is pushed on Q.

D
(

Ij, bk
)
= ‖C

(
Ij
)
− C(bk)‖

2
2 + ‖P

(
Ij
)
− P(bk)‖

2
2 ·
(

Ncolor
Nspatial

)2

, (1)
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where C() is the color feature in 3-channel CIELAB space, P() is the coordinate in 2-dimensional
Euclidean space. Ncolor and Nspatial are two constants that represent the maximum color and
spatial difference within the cluster Ωk. ‖ ‖2 represents the Euclidean distance. In addition, a
joint color-spatial 5-dimensional feature F() that describes Ωk specifically

F(Ωk) = F(bk) = ∑i∈Ωk
[C(Ii), P(Ii)] / |Ωk|, (2)

where ||means the number of pixels in a cluster region.

• Step 3. In the priority queue Q, the top-most element Iq is popped and assigned a
label k identical to its seed Ip that previously inspects Iq, i.e., L

(
Iq
)
= L

(
Ip
)
= k

Iq = arg min D(Ii, bk), Ii ∈ Q, k ∈ [1, K]. (3)

Then it updates the cluster Ωk by

F
(
Ω′k
)
= F

(
b′k
)
=

∑i∈Ωk
[C(Ii), P(Ii)] +

[
C
(

Iq
)
, P
(

Iq
)]

|Ωk|+ 1
, (4)

where Ω′k centered at P
(
b′k
)

is the updated cluster Ωk that absorbs Iq as a new element.

• Step 4. In the next loop, Iq becomes the new seed of cluster Ω′k, and the 4-neighboring
unlabeled elements of Iq are processed similar to in Step 2.

• Step 5. Repeat Step 2 to 4 until Q is empty.

Note that an inspected element may not be unique in Q. It would be revisited by other
seed pixels with different labels, and calculated for more than one distance value. In this
case, its final label is decided by the cluster with the minimum distance. A more illustrated
procedure can be found in the literature [18,36].

3. Methods

As shown in Figure 1, the primary insight of the proposed CONIC can be generalized
into three aspects. Firstly, it introduces contour prior to redistribute the grid sampled
seeds, enabling them more adaptive to the image content (Figure 1c). Meanwhile, an
improved feature distance is elaborated to measure the color similarity, which adopts
contour constraint to multiply the feature distance of boundary pixels (Figure 1d). During
the NIC, the joint feature distance could measure the relationship of a cluster barycenter
and unlabeled elements more stably. As a result, CONIC superpixels could acquire better
boundary adherence and visual quality (Figure 1e).
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mentation result (the boundaries of disjoint superpixels are graphically drawn by white curves on (a)). For visualization,
the values are normalized in the range of 0 to 255 in (d), where whiter pixels indicate greater distances from a specific seed
(red dot).
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Moreover, as a plug-and-play role, any efficient contour detection method can be
directly considered in Figure 1b (See [37] and references therein for more information,
and this paper will not expatiate it). The detailed processes are discussed in the
following subsections.

3.1. Optimized Initialization by Redistribution

As previously stated, SNIC is still not perfect, while it structurally overcomes some
drawbacks in conventional SLIC. The most immediate one is the primitive grid sampling in
seed initialization. The primary goal is to produce approximately the same size superpixels
as the expected number. Nevertheless, it fails to concern varying content in the input
image. For example, in some textured regions, it is difficult for superpixels to catch the
boundaries accurately if the compactness constraint is too strong. Moreover, a detailed
region probably needs densely distributed seeds so that the content can be partitioned
homogeneously. Worse still, the rigid square grid cell constraint usually prevents actual
generated superpixels from achieving the exact number of user-expectation [26].

To quickly generate a good seed initialization rather than straight evenly distribution,
an efficient redistribution strategy is supplemented in this process. As shown in Figure 2,
the core is to locally relocate all seeds followed by repeatedly modifying the total number
based on the local color and contour similarity. The first step aims to create a rough
distribution of seeds that avoid being located on the object edges or noisy points. Based on
the inter-seed correlations, in the follow-up steps, a closely adjacent seeds pair would be
merged into one. In another case, a new seed would emerge between a distant pair. After
several instances of modification, the final distribution could work both on content-aware
distribution and user-specified amount.
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the blue rectangle of (a) (red arrows denote the motion of some seeds, and red seeds denote the relocated seeds); (d) Global
perturbation results of all seeds. (e–h) Zoom-in performance of seeds redistribution, wherein a white-marked point denotes
a newly merged/emerged seed in (g). (i) Result of optimized initialization. Another case that the actual number exceeds the
expectation is shown in Figure 1c, which exhibits a consequence of seeds merging.

To begin with, in Figure 2a, the conventional grid sampling initialization is performed
on the image plane with the expected superpixel number K. Theoretically, the initial
seeds are evenly sampled, dividing the image into several square cells with the step of
S =
√

N/K. Nevertheless, the actual side length of each cell bSc (floor operation) is not
always equal to S. It not only results in non-square cells in the image border but alters the
resultant number of sampled seeds into K′.

Aiming at the incipient seeds {sk}K′
k=1 by grid sampling, firstly, a local relocation is

performed on each seed sk within its corresponding cell �k. In Figure 2b,c, it is essentially a
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perturbation process for all seeds that dynamically adjust themselves to the lowest positions
of contour intensity within a range of bSc × bSc. Accordingly, the seeds are relocated to{

s′k
}K′

k=1.
To make full use of the spatial relationship between the neighboring relocated seeds,

as well as the intrinsic image features, inter-seed correlations are introduced to modify the
number of seeds via several merging or emerging operations. Specifically, a region-based
undirected graph G = (V, E) is established to depict the correlations. Unlike many graph-
based algorithms modeling all pixels, a node vertex vk ∈ V merely represents a perturbed
seed s′k in this strategy. Meanwhile, edges E ⊆ V ×V depict the correlation between two
nodes vi and vj by

ωij =

{
DP
(
vi, vj

)
if�i

∣∣�j
0 otherwise

, (5)

where �i
∣∣�j means that the corresponding cells of s′i and s′j are spatially adjacent. In that

case, the value of ωij equals a joint color-spatial-contour homogeneous measurement that
firstly introduced in [19]

DP
(
vi, vj

)
= dcolor

(
s′i, s′j, Pij

)
· dcontour

(
s′i, s′j, Pij

)
+ dspatial

(
s′i, s′j

)
· m2

S2 , (6)

where m is a user-specified compactness parameter. dspatial

(
s′i, s′j

)
is the spatial distance

from s′i to s′j in the image plane

dspatial

(
s′i, s′j

)
= ‖P

(
Ij
)
− P(sk)‖

2
2. (7)

In the first term, dcolor

(
s′i, s′j,Pij

)
is an improved color distance that takes all pixels

along the linear path Pij from s′i to s′j into consideration

dcolor

(
s′i, s′j,Pij

)
= λ‖ C

(
s′i
)
− C

(
s′j
)
‖

2

2
+ (1− λ)

1∣∣Pij
∣∣ ∑

k∈Pij

‖ C(Ik)− C
(

s′j
)
‖

2

2
. (8)

Similarly, dcontour

(
s′i, s′j,Pij

)
accumulates the contour intensity on Pij as

dcontour

(
s′i, s′j,Pij

)
= 1 +

γ∣∣Pij
∣∣ ∑

k∈Pij

(
1− exp

(
−c(Ik)

2/σ2
))

, (9)

where c(Ik) ∈ [0, 1] is the normalized intensity of Ik in the contour map. γ and σ are two
parameters that weight the influence of the contour prior along Pij.

By calculating the edge weight ωij, local information between adjacent seeds s′i and s′j
can be roughly described. That is, if ωij is small enough, it indicates that the spatial distance
is close and contour variation is not obvious. On the contrary, it would be relatively large
if there exist contours between s′i and s′j. Therefore, the homogeneity of �i and �j can
be quantized.

Considering the above correlations, as well as the inequality of K and K′, a priority
queue Q is adopted to iteratively modify the total number of seeds, which adopts the edge
weights as the key value for sorting. As shown in Figure 2e, if the actual grid sampled seeds
are insufficient compared with the expectation, the complementary seeds are resampled
from the image plane. For a newly emerged seed sk in Figure 2f, it starts from the midpoint
of an edge that holds the globally maximal weight. On the other hand, when the actual
number exceeds the expectation, the seed pair with the globally minimal weight is merged
to one that relocated in their spatial midpoint. For obtaining the corresponding extremum
of ωij, a big-root priority queue Qmax or a small-root one Qmin is adopted in the emerging
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or merging operation, respectively. This process is iteratively performed until the actual
number of seeds is adjusted to the user expectation.

Notably, any of the newly emerged or merged seeds from the above operations should
move themselves to the lowest position of contour intensity (Figure 2g,h), which is similar
to the incipient grid sampled seeds. In addition, since the seeds graph G dynamically
changes in the process, it should be updated after each operation, wherein the spatial
relationship of the cell in which a new seed finally locates is utilized to modify the edge.
Moreover, this procedure runs efficiently since there is a small difference between K′ and K
in general.

Eventually, an optimized distribution that is content-aware with the exact pre-set
number of seeds is established. It is more sensitive to the complexity of regional information
than conventional grid sampling, and also remains relatively far from the contour. This
lays the foundation for efficient convergence without local optimum.

3.2. Improved Cluster Distance Measurement

In addition to the initialization, another bottleneck of the linear clustering framework
is a trade-off between color consistency and spatial constraint. In other words, as for some
SLIC-like superpixels, the shape regularity and size uniformity preserved by the second
term in Equation (1) sometimes violates the color content in real-world images. As a result,
some weak boundaries are difficult to adhere to, resulting in heterogeneous partitions.

Theoretically, the maximum spatial distance Nspatial within a cluster is expected to be
the sampling step S =

√
N/K. Nevertheless, the maximum color Ncolor is widely different

from cluster to cluster and image to image [9]. To handle this problem, all SLIC-like
methods adopt an empirical constant m as a substitute. In principle, the adherence of
superpixel to image boundaries generally decreases with respect to a large m. On the
contrary, a small m would lead to irregular superpixels. In consequence, a reasonable value
of Ncolor for a balanced trade-off between segmentation accuracy and visual quality is hard
to evaluate.

To further mitigate that contradiction in the NIC framework, an improved distance
measurement is proposed to balance the abovementioned trade-off from a pixel Ij to a
cluster barycenter bk, which is defined as

D′
(

Ij, bk
)
=

‖C(Ij
)
− C(bk)‖

2
2 + ‖P

(
Ij
)
− P(bk)‖

2
2 ·
(

Ncolor
Nspatial

)2
 · Ncontour, (10)

Ncontour = exp
(
ε · c
(

Ij
))

. (11)

where ε > 0 balances the influence of the contour prior on the feature distance.
Enlightened by Equation (6) in SCALP, the local contour prior is recast into a variable

coefficient in Equation (10), so that the final distance can be adjusted by a joint effort of
color, space and contour. Compared with Equation (1), a new factor Ncontour ∈ [1, exp(ε)]
is introduced to adjust the feature distance from Ij to bk along with Ncolor and Nspatial . As
shown in Figure 3c,d, if the color of an internal pixel is about the same as its neighboring
elements with nearly zero contour intensity, the local region is supposed to be consistently
smooth, wherein the improved feature distance from Ij (blue) to bk (purple) maintains a low
value in Figure 3e according to Equation (10). Since the color difference is negligible, the
joint distance is mainly adjusted by the spatial term, which eliminates the over-smoothed
effect and maintains a regular shape constraint. In addition, Ncontour → 1 keeps a stable
multiplication of final D′

(
Ij, bk

)
. On the other hand, if I′j (red) is a boundary pixel with a

greater contour intensity, the corresponding Ncontour increases sharply, resulting in a local
maximum value of D′

(
I′j , bk

)
.
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Figure 3. The principle of superpixel segmentation via the improved cluster distance measurement. (a,b) Grid sampled
seeds distributed in the input image and its contour map (blacker pixels indicate smaller intensities), respectively; (c,d)
Zoom-in performance of (a,b) in the red rectangle, respectively; (e) Local joint feature distance (whiter pixels indicate
greater distances from bk); (f) Label expansion in the NIC framework; (g) Result of label expansion; (h) Result of superpixel
segmentation. The purple dot denotes a cluster barycenter bk in (c–e).

Considering that in the NIC framework, the distance measurement directly determines
the feature similarity of a cluster and its neighboring pixels and the priority of label assign-
ment. Therefore, in Figure 3f, contour pixels with greater distances tend to be assigned
in the end, behind the other homogeneous elements. More generally, Ncontour increases
monotonically with the contour intensity in Equation (11), thus prevents the boundary
pixels from being assigned prematurely and guarantees accurate convergence of all clusters.
As a result, the outlines of superpixels are more consistent with the object boundary. It
is also worth noting that, as a label expansion process, the framework maintains spatial
connectivity of the same labels [36]. It indicates that an unlabeled pixel would neither be
inspected nor assigned by a cluster if there is a set of continuous contour pixels between
them, which further avoids the updating bias of cluster barycenters and misclassification
of more pixels.

Figure 4 illustrates a set of visual results that adopts a different kind of feature dis-
tances. Both SLIC and SCALP perform on linear iterative clustering framework, while SNIC
and the proposed distance measurement work in a non-iterative manner. In Figure 4b,
SCALP calculates the color and contour intensities of all pixels along the linear path. In
Equation (6), the term dcontour

(
bk, I′j ,Pkj

)
could prevent a pixel I′j to be associated with the

cluster centered at bk in the assignment step. Compared with SLIC based on Equation (1)
in Figure 4a, the irregularity of the superpixel shape is ameliorated, along with better
boundary adherence.

Based on conventional color-spatial distance, the proposed measurement achieves a
more satisfactory performance. It becomes easier for clusters to classify homogeneous pixels
accurately in the NIC framework (Figure 4d). Accordingly, superpixels in smooth regions
maintain the compactness as the initial rectangle. Moreover, boundaries are more consistent
with the object contours in detailed segments. Furthermore, unlike Equations (8) and (9)
which take all pixels along the linear path into the calculation, the proposed measurement
only concerns the feature of the current inspected pixel. In other words, it follows the
measurement style of SNIC that inspects pixels individually, so that time efficiency can
be guaranteed.
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3.3. Synergetic CONIC Framework

Combining the seeds-optimized initialization and distance-improved clustering
synergetically, there is a series of positive effects on the performance of the proposed
CONIC superpixels:

• The optimized initialization strategy helps the improved distance measurement work
better on the NIC, since all clusters should evolve from a flat location in the latter
strategy. Otherwise, there would be some orphaned clusters with very small sizes.

• The optimized initialization strategy could reflect the distribution of image content,
which facilitates the improved distance measurement dealing with some complex
scenes, such as small objects and weak boundaries.

• The combination shows an immediate effect on improving the segmentation quality,
and the parameters lead to very similar performance within a wide adjustment range.
Therefore, it is easy to set a proper value for each parameter in these two strategies.

• The combination makes for a robust and rapid convergence of each cluster in the NIC,
without concerning the boundary pixels. Potentially, these elements can be inspected
only once which avoids calculating feature distance repeatedly.

Overall, CONIC inherits both the computation efficiency of the NIC and adherence
to contour prior that produces desirable segmentation accuracy. Moreover, it shows a
better visual quality that the shape and size of superpixels being consistent and regular. A
pseudocode summary of the framework is presented in Algorithm 1.
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Algorithm 1: CONIC superpixel segmentation framework

Input: the Lab image I, the expected superpixel number K, the normalized contour map M
Output: the label map L of I
/* Initialization */
initialize cluster seeds {sk}K′

k=1 by grid sampling at a regular step S.
initialize a priority queue Q with a small root.
set label L(Ii) = −1 for {Ii}N

i=1.
/* Seeds redistribution */
move {sk}K′

k=1 to the lowest positions of contour intensity within a range of bSc × bSc.
create a region adjacency graph G to depict the correlations of the perturbed seeds

{
s′k
}K′

k=1.
while the number of nodes Ng in G is not equal to K do

if Ng > K then
calculate the midpoint s′mn of s′m and s′n corresponding to the minimum ωmn.

move s′mn to the lowest positions.
update G that replace s′m and s′n with s′mn.

else if Ng < K then
calculate the midpoint s′ij of s′i and s′j corresponding to the maximum ωij.
move s′mn to the lowest positions.
update G that incorporate s′mn.

end if
end while

/* Joint assignment and updating */
for each cluster barycenter bk in {bk}K

k=1 do
create a vector node [F(bk), k, D′(sk, bk)].
push the node on Q that adopts the distance D′() as the key value for sorting.

end for
while Q is not empty do

pop the top-most node
[
F
(

Iq
)
, k, D′

(
Iq, bk

)]
corresponding to Iq from Q.

if Iq is not labeled before then
assign the label of bk to Iq.
update the corresponding cluster by Equation (4).

for each 4-neighboring element Ip of Iq do
if Ip is not labeled before then

push the node
[
F
(

Ip
)
, k, D′

(
Ip, b′k

)]
on Q.

end if
end for

end if
end while
return the label map L of I

4. Results and Discussion

In this section, the proposed CONIC is evaluated to verify the superiority. The
dataset and benchmark are introduced firstly, in which the qualitative and quantitative
performance is tested and demonstrated from part to whole. After that, the computational
efficiency is analyzed.

4.1. Experimental Setup

The experiments are performed on the Berkeley Segmentation Data Set 500 (BSDS500) [37],
which contains 500 images with the size of 481× 321 or 321× 481. The proposed CONIC is
compared with SNIC and SCALP to prove the superiorities, as well as other three seed-
demand methods, namely TPS [24], SLIC [9] and WS [28]. In addition, three popular
graph-based superpixel algorithms, SEEDS [32], ERS [11] and LRW [34] are also introduced
as references. The other eight state-of-the-art methods are all based on available code with
default parameters. CONIC is implemented by C/C++, wherein all parameters are set as
in [38] except ε, which is set to 10 in this paper. Table 1 summarizes the properties of the
algorithms in the experiments, including the category, controllability of superpixel number,
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controllability of shape compactness, dependence of iteration, computational complexity
and implementation. All methods are executed on an Intel Core i7 4.2 GHz with 16 GB
RAM without any parallelization or GPU processing.

Table 1. Properties of the superpixel algorithms in the experiments. •/# means that the algorithm has/has not got the property.

Methods
Seed-Demand Graph-Based

SNIC SCALP TPS SLIC WS SEEDS ERS LRW

Number • • • • • • • •
Compactness • • # • • # # •

Iteration # • # • # • • •
Complexity O(N) O(N) O(N log N) O(N) O(N) O(N) O(N log N) O(N2)

Code C/C++ C/Matlab Matlab C/C++ C/Matlab C/C++ C/Matlab C/Matlab

In the following experiments, the performance of CONIC is evaluated quantitatively
by the following four popular metrics in the field of superpixel segmentation [39]:

• Boundary Recall (BR). BR is the most commonly used metric to assess boundary ad-
herence given ground truth. Mathematically, it is the ratio of ground truth boundaries
covered by superpixel boundaries (higher is better).

• Under-segmentation Error (UE). UE utilizes segmentation regions instead of bound-
aries to penalize superpixels that overlap with multiple objects (lower is better).

• Achievable Segmentation Accuracy (ASA). ASA quantifies the accuracy achievable
by following steps. A higher ASA value indicates the performance of superpixels in
subsequent is unaffected (higher is better).

• Compactness (CO). CO refers to the area covered by individual superpixels that
compares the area of each superpixel with the area of a circle (the most compact
2-dimensional shape) with the same perimeter (higher is better).

4.2. Algorithm Analysis

As mentioned above, the proposed CONIC consists of two main optimizations,
which generate a synergetic effect on the clustering framework. In this subsection, the
initialization-optimized SNIC (IO-SNIC) based on seed redistribution and the distance-
optimized SNIC (DO-SNIC) based on an improved measurement that deploys one strategy
on SNIC is implemented separately for comparison. In addition, the relations among SNIC,
IO-SNIC, DO-SNIC and CONIC are pointed out.

4.2.1. Visual Assessment

Figure 5 illustrates several subjective results for visual analysis of superpixels. Com-
pared with conventional SNIC, IO-SNIC yields desirable performance in two aspects. First,
it modifies some seeds from the initial evenly sampled position so that the superpixels
can be avoided clustering from object contour or noisy points. Accordingly, superpixels
are more aware of the image content that could promote boundary adherence, e.g., small
objects with rich details. Moreover, the dynamic emerged or merged operations in IO-SNIC
also render strict controllability of user-specified superpixel numbers. Compared to the
first two methods, DO-SNIC exhibits strong shape consistency without apparent misclassi-
fication of homogeneous pixels. Moreover, it performs stably in both textured regions and
smooth background that shows better visual effects.
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Owing to the intrinsic properties derived from IO-SNIC and DO-SNIC, the proposed
CONIC could achieve more outstanding segmentation. Some low contrast fragments under-
segmented by a single strategy are partitioned exactly, without large shape deformation.
Moreover, superpixels become more simply connected, the evenly distributed seeds that
might generate isolated clusters are redistributed in the very beginning. The joint color-
spatial-contour homogeneous measurement provides both acceptable boundary adherence
and shape stability. That is, CONIC acquires the best trade-off between segmentation
accuracy and visual uniformity.

4.2.2. Metric Evaluation

Figure 6 quantitatively evaluates the influence of two strategies on the NIC framework
via several metrics mentioned above. As to IO-SNIC, it is more remarkable to further
promote the effectiveness of DO-SNIC rather than simply improve the performance of SNIC.
Theoretically, DO-SNIC pursues strong edge support of superpixels while maintaining
the shape regularity, thus achieving desirable results in terms of UE, ASA and CO. In
general, a higher compactness constraint usually leads to lower boundary adherence in
DO-SNIC. To ameliorate this problem, CONIC adopts the seeds redistribution strategy to
generate superpixels from non-contour seed pixels via the optimized distance measurement.
As shown in Figure 5c,d, the redistributed seeds that concern varying content could
pay sufficient attention to local details. In addition, it also ensures a size uniformity of
superpixel generation. Consequently, it is accepted that the proposed two strategies could
generate a synergetic effect that optimizes the SNIC segmentation result desirably.
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Figure 6. Quantitative evaluation of four algorithms on BSDS500. (a) Boundary recall; (b) Under-
segmentation error; (c) Achievable segmentation accuracy; (d) Compactness. The expected number
of superpixels ranges from 50 to 500.

4.3. Performance Comparison

As shown above, CONIC inherits the advantages of both IO-SNIC and DO-SNIC
that could act synergistically in the NIC framework. To further verify its effectiveness,
the proposed CONIC algorithm is roundly compared with methods in Table 1 (SNIC is
excluded since it is individually analyzed with CONIC in the previous subsection).

4.3.1. Comprehensive Evaluation

Figures 7 and 8 show the qualitative and quantitative performance of eight methods
on BSDS500, respectively. It can be observed from Figure 7f,g that both SEEDS and ERS
generate clutter and sinuous boundaries while the superpixels catch almost all details
in each image, which makes them too chaotic to analyze. On the other hand, all seed-
demand methods could generate regularly shaped superpixels including LRW, which
also obtains superpixels by seed generation. Generally, these algorithms initialize a set
of evenly distributed seeds on a regular grid, so that the produced superpixels tend to
maintain approximately uniformity in shape and size. As an elaborately tailored framework
for superpixel clustering, SLIC performs a balanced trade-off between shape regularity
and boundary adherence. Nevertheless, there are still sinuous boundaries around some
homogeneous superpixels. SCALP introduces a new distance measurement based on
contour prior, whose resultant boundaries are smoother than SLIC to some extent. TPS also
adopts contour information to generate superpixels. Other than linear iterative clustering
of SLIC and SCALP, it aims to find an optimal path between each neighboring seed pairs
that are relocated on the object boundaries. Owing to the shortest path vertically and
horizontally, the TPS superpixels are topology preserved that seems very trim. However, it
performs poorly in aligning to objects. WS introduces a SLIC-like spatial constrain in the
watershed framework to perform over-segmentation. As a result, superpixels are uniform
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in simple backgrounds and variable in objects. On the contrary, it still cannot adhere to the
boundary very well since the shape constrain is too rigid.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 24 
 

 

in Equation (1) in SNIC. As a synergetic result, CONIC superpixels ensure boundary ad-
herence and maintain a stably regular shape. Compared with SCALP that also optimizes 
the distance measure in a similar manner, the spatial constraint is more adaptive to image 
content and performs better in twig objects as well as textured areas. 

        

        

        

        

        

        

        

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 7. Visual comparison of segmentation results with 100 expected superpixels. (a) CONIC; (b) SCALP; (c) Topology
Preserved Superpixel (TPS); (d) SLIC; (e) Watershed Superpixels (WS); (f) Superpixels Extracted via Energy-Driven Sampling
(SEEDS); (g) Entropy Rate Superpixel (ERS); (h) Lazy Random Walk (LRW). Alternating rows show each segmented image
followed by the zoom-in performance.



Remote Sens. 2021, 13, 1061 17 of 23

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 24 
 

 

Figure 7. Visual comparison of segmentation results with 100 expected superpixels. (a) CONIC; (b) SCALP; (c) Topology 
Preserved Superpixel (TPS); (d) SLIC; (e) Watershed Superpixels (WS); (f) Superpixels Extracted via Energy-Driven Sam-
pling (SEEDS); (g) Entropy Rate Superpixel (ERS); (h) Lazy Random Walk (LRW). Alternating rows show each segmented 
image followed by the zoom-in performance. 

Figure 8 plots the quantitative evaluation of all comparison methods. CONIC out-
performs the others in terms of UE and ASA (Figure 8b,c). It indicates that the result su-
perpixels are likely to overlap with only one ground truth object, which could perform 
better in other unsupervised image segmentation applications as well. As for BR that eval-
uates the degree of ground truth boundaries detected by the superpixels, it does not con-
sider the false detection in theory. Thus CONIC lags behind ERS and SEEDS, since there 
are a large number of boundary pixels in the two kinds of extremely irregular superpixels. 
CO is another important indicator to assess the visual quality of superpixels. Although 
CONIC merely exceeds SLIC, ERS and SEEDS in Figure 8d, it still presents relatively clear 
and tidy segmentation results (Figure 8a). From another perspective, regularity and 
smoothness are also crucial in visual assessment. For example, TPS exhibits high compact-
ness but poor regularity, and LRW shows high compactness but inferior smoothness. In 
fact, these two superpixel algorithms are both inferior in segmentation performance. 

  

(a) (b) 

  
(c) (d) 

Figure 8. Quantitative evaluation of eight algorithms on BSDS500. (a) Boundary recall; (b) Under-
segmentation error; (c) Achievable segmentation accuracy; (d) Compactness. The expected num-
ber of superpixels ranges from 50 to 500 (SEEDS is not plotted integrally due to its unsupported 
parameter). 

In general, the performance of an algorithm improves when the superpixel density 
increases. Whereas several seed-demand methods need sufficient initial seeds to maintain 
eligible segmentation results. That is, a proper user-specified input parameter is important 
to the superpixel quality. Specifically, CONIC works stably through the entire range of 

Figure 8. Quantitative evaluation of eight algorithms on BSDS500. (a) Boundary recall; (b) Under-
segmentation error; (c) Achievable segmentation accuracy; (d) Compactness. The expected number of
superpixels ranges from 50 to 500 (SEEDS is not plotted integrally due to its unsupported parameter).

Compared with those results, the proposed CONIC in Figure 7a shows better visual
effects from whole to part. Firstly, it overcomes the instability in grid sampling initialization
of SLIC and WS, in which the seeds are simply perturbed to the lowest gradient positions
in its 3× 3 neighborhood. The inter-seed correlations, established on contour prior, could
both guide seeds to distribute in a content-aware manner and avoid them located on the
image edge. It is also proved by LRW that the seed redistribution strategy could help the
boundaries of final superpixels adhere to object boundaries more tightly. Furthermore,
other than TPS or SCALP which merely adopts the contour prior in initialization or cluster-
ing, CONIC leverages as much of this information as possible. Besides the abovementioned
seeds redistribution strategy, contour prior is also utilized in the distance measurement.
It substitutes the rigid color-spatial by a joint color-spatial-contour distance in Equation
(1) in SNIC. As a synergetic result, CONIC superpixels ensure boundary adherence and
maintain a stably regular shape. Compared with SCALP that also optimizes the distance
measure in a similar manner, the spatial constraint is more adaptive to image content and
performs better in twig objects as well as textured areas.

Figure 8 plots the quantitative evaluation of all comparison methods. CONIC out-
performs the others in terms of UE and ASA (Figure 8b,c). It indicates that the result
superpixels are likely to overlap with only one ground truth object, which could perform
better in other unsupervised image segmentation applications as well. As for BR that evalu-
ates the degree of ground truth boundaries detected by the superpixels, it does not consider
the false detection in theory. Thus CONIC lags behind ERS and SEEDS, since there are a
large number of boundary pixels in the two kinds of extremely irregular superpixels. CO is
another important indicator to assess the visual quality of superpixels. Although CONIC
merely exceeds SLIC, ERS and SEEDS in Figure 8d, it still presents relatively clear and tidy
segmentation results (Figure 8a). From another perspective, regularity and smoothness are
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also crucial in visual assessment. For example, TPS exhibits high compactness but poor
regularity, and LRW shows high compactness but inferior smoothness. In fact, these two
superpixel algorithms are both inferior in segmentation performance.

In general, the performance of an algorithm improves when the superpixel density
increases. Whereas several seed-demand methods need sufficient initial seeds to maintain
eligible segmentation results. That is, a proper user-specified input parameter is important
to the superpixel quality. Specifically, CONIC works stably through the entire range of
user-expected superpixel numbers from 50 to 500 on BSDS500. It not only maintains
superiority at lower densities but retards the slope of superpixel number for better results.
Overall, it could become a desirable region-based feature extractor for advanced visual
tasks without much concentration on setting the parameters.

It is also worth noting that, as the most related work to CONIC, SCALP makes a
balanced trade-off among these metrics. Nevertheless, the split-and-merge post-processing
in the SLIC framework restricts its performance, especially in twig segmentation. As men-
tioned in Figure 7, its distance measurement is not robust to texture, either. On the con-
trary, CONIC deploys the joint color-spatial-contour homogeneous measurement on the
NIC more subtly, along with seed redistribution strategy. It overcomes several inher-
ent shortcomings in SCALP and achieves higher BR, UE and ASA. Moreover, it can
unite better regularity and smoothness together with compactness to promote the visual
quality outstanding.

4.3.2. More Discussion

In addition to the four metrics listed above, there are another two aspects that should
be taken into consideration. The input/output number of user-expected superpixels and
the execution time (ET) usually affect the consequent applications.

Table 2 illustrates the numerical comparison of superpixels between user-expectation
(input value) and actual generation (mean value). If they are equal, the corresponding
method can be considered controlling superpixel numbers exactly. As can be observed,
only CONIC and ERS could generate exactly the same number of superpixels required by
the user. All other seed-demand algorithms merely adopt the grid sampling initialization
in Figure 3a. As mentioned in Section 3.1, it usually adjusts the input number to fit the
requirement of square cells. LRW places the initial seeds in a similar way, but the final
amount after iterative refinement is out of control. Additionally in SLIC and SCALP, the
split-and-merge post-processing step further impact the final results. SEEDS proposes a
block of pixels at different sizes as the initial superpixels, which requires the input number
to proportionate to image size. Whereas in practice, a wide range of expected input is not
suit for SEEDS in BSDS500. ERS searches for a graph topology that has the specific number
of connected subgraphs in a graph model so that it could partition an image into any
number of superpixels. As for CONIC, it maintains the property of IO-SNIC that adjusts
the number of seeds via several merging or emerging operations shown in Figure 2e–h.

Table 2. Comparison of superpixel number between user-expectation and actual generation on BSDS500. Merely CONIC
and ERS (in blue) could generate exactly the same amount.

Method
User-Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CONIC 50 100 150 200 250 300 350 400 450 500
SNIC 40 96 150 187 260 294 330 400 442 504

SCALP 45 88 136 181 226 275 317 367 415 454
TPS 54 96 150 204 247 294 345 384 442 486
SLIC 41 92 143 185 252 289 324 394 436 496
WS 40 96 150 187 260 294 330 400 442 500

SEEDS 50 100 150 200 266 - - - - -
ERS 50 100 150 200 250 300 350 400 450 500
LRW 40 99 153 204 258 311 361 417 470 513
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Figure 9 shows the execution time of CONIC from whole to part. Figure 9a suggests
that it obtains comparable running times to the state-of-the-art methods. It also shows
that CONIC, SNIC, WS and SEEDS are the fastest, which run twice as fast as SLIC on
average. On the other side, SCALP, TPS and ERS are an order of magnitude slower than the
first echelon. Benefited from the NIC framework, CONIC could converge efficiently with
O(N) time complexity. Particularly, it avoids calculating the additional distance of pixels
along the linear path in Equation (10) and therefore the computation cost is dramatically
reduced. As a result, it runs over 15 times faster than SCALP with respect to a wide range
of expected superpixel numbers. Specifically, in Figure 9b, the execution time of SNIC,
IO-SNIC, DO-SNIC and CONIC are plotted, which explains the additional runtime spent
on the NIC framework. As can be seen, compared with conventional SNIC, a little extra
time is spent on deploying the proposed two strategies. Intrinsically, the additional time is
almost spent on IO-SNIC that iteratively performs the seed redistribution. Even though, it
still runs in near real-time and can be considered better than SNIC since it improves the
segmentation quality significantly as shown in Figures 5 and 6.
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Figure 9. Comparison of execution time. (a) CONIC and other eight state-of-the-art methods (LRW
is not plotted due to its relatively slow speed); (b) CONIC and one-strategy-implemented SNIC.

5. Applications

This section shows that superpixels generated by the proposed CONIC facilitate the
application of remote sensing (RS) analysis and image segmentation. Since superpixel
segmentation is generally adopted as a pre-processing step, the extracted superpixels are
expected to improve the performance and efficiency of advanced tasks.

5.1. Multi-Resolution RS Imaging Segmentation

In order to demonstrate the availability in multi-resolution segmentation of RS images,
CONIC superpixels are compared with the state-of-the-art algorithm [40] in eCognition
v9.0, one of the most popular commercial RS software. In addition, this subsection follows
the experimental style in [5] that mainly focuses on the comparison of time efficiency and
visual quality.

As shown in Table 3, RS images from four different earth observation satellites are
utilized with true color images in this experiment. The corresponding segmentation results
are illustrated in Figure 10. By setting proper parameters, there is comparable performance
between the two methods.



Remote Sens. 2021, 13, 1061 20 of 23

Table 3. Information and execution time of different segmented remote sensing (RS) images.

Index
Image Information Execution Time (sec)

Satellite Resolution Image Size Description eCognition CONIC

(a) SPOT-5 2.5 m 6000× 6000 Bandar-e Eman Khomeyn, Iran 51.59 38.891
(b) Landsat-5 30 m 5000× 4000 Blue algae eruption in Lake Erie, USA 29.359 20.609
(c) TerraSAR-X 1 m 2880× 1440 Overlook of Harwell, Britain 6.396 3.155
(d) WorldView-2 0.5 m 1300× 1300 Varyag in the Yellow Sea, China 5.913 1.3
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Figure 10. Multi-resolution segmentation results of remote sensing images acquired by different satellites in Table 3.
(a) SPOT-5; (b) Landsat-5; (c) TerraSAR-X; (d) WorldView-2. From top to bottom, input image, result of eCognition, result of
CONIC, reconstruction from average colors on CONIC superpixels, respectively. Each image is cropped since the original
size is too large to display the details. Note that the parameters in eCognition are fine-tuned to achieve approximate results
with CONIC.

It is also worth noting that the segmentation results and execution time of eCognition
are very sensitive to the segmentation settings. For example, there are three parameters
in eCognition, scale, shape and compactness. A proper combination is widely different
from image to image, resulting in unstable execution time. On the contrary, the proposed
CONIC contains only one pre-set parameter, the expected superpixel number K and runs
with linear complexity in the number of image pixels N. Meanwhile, it could balance
the visual perception that locally catches the details of land cover and globally maintains
shape and size uniformity, with robustness in textured regions. As shown in the last row
of Figure 10 (each image is computed by the average color on each superpixel), CONIC
provides a much more visually satisfying reconstructed result and significantly reduces
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the computational entities. Consequently, it would be an efficient tool for supervised land
cover classification and object detection.

5.2. Pre-Process of Image Segmentation

Similar to the experiments demonstrated in [27], the achievable segmentation results
are visualized in Figure 11, wherein the ground-truth labels are assigned to the superpixels
whose elements mostly belong to a specific object class. Accordingly, the final label map
can be regarded as the result of image segmentation based on an ideal classifier. Therefore,
the original image with objects identified can be analyzed intuitively.
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Figure 11. Achievable segmentation of superpixels on BSDS500. From left to right, (a) input image; (b) ground-truth
segmentation; (c) CONIC; (d) SCALP; (e) TPS; (f) SLIC; (g) WS; (h) SEEDS; (i) ERS; (j) LRW. Alternating r show the local
details of each image to facilitate close visual inspection.

It is worth noting in Figure 11 that the performance of CONIC is very similar to the
hand-labeled ground truth. Moreover, the performance is similar to the metric evaluation
of ASA in Figure 8c that gains insight into the quantitative results. Taking time efficiency
into consideration, the proposed CONIC is more suitable for superpixel-based image
segmentation among the state-of-the-art methods.

6. Conclusions

In this paper, a novel superpixel segmentation method termed Contour Optimized
Non-Iterative Clustering (CONIC) is presented. Adopting the contour intensity as the
prior information provides a balanced trade-off between segmentation accuracy and visual
uniformity. The major improvement can be generalized into two aspects, including a seed
redistribution strategy to promote the initialization step, and a subtle similarity measure-
ment for the clustering step. Both optimizations generate a synergetic effect and perform
significantly better than conventional SNIC and SCALP. Experimental results demonstrate
that CONIC runs in a limited computational time with state-of-the-art performance on the
public dataset.

Future work will focus on advanced computer vision applications based on the
proposed algorithm. For example, since the CONIC superpixels could be more accurate
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and regular in representing some artificial objects and homogeneous regions, it is more
suitable to classify specific features from natural scenes.
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