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Abstract: The accuracy of the rain distribution could be enhanced by assimilating the remotely sensed
and gauge-based precipitation data. In this study, a new nonparametric general regression (NGR)
framework was proposed to assimilate satellite- and gauge-based rainfall data over southeast China
(SEC). The assimilated rainfall data in Meiyu and Typhoon seasons, in different months, as well
as during rainfall events with various rainfall intensities were evaluated to assess the performance
of this proposed framework. In rainy season (Meiyu and Typhoon seasons), the proposed method
obtained the estimates with smaller total absolute deviations than those of the other satellite products
(i.e., 3B42RT and 3B42V7). In general, the NGR framework outperformed the original satellites
generally on root-mean-square error (RMSE) and mean absolute error (MAE), especially on Nash-
Sutcliffe coefficient of efficiency (NSE). At monthly scale, the performance of assimilated data by NGR
was better than those of satellite-based products in most months, by exhibiting larger correlation
coefficients (CC) in 6 months, smaller RMSE and MAE in at least 9 months and larger NSE in
9 months, respectively. Moreover, the estimates from NGR have been proven to perform better than
the two satellite-based products with respect to the simulation of the gauge observations under
different rainfall scenarios (i.e., light rain, moderate rain and heavy rain).

Keywords: precipitation; assimilation; nonparametric modeling; multi-source

1. Introduction

As a key component within the water and energy cycle system, precipitation plays a
crucial role in the fields of hydrology, meteorology and water resources management [1–7].
Accurate precipitation is an essential model input to predict the hydrological responses of
the selected watershed and the potential rain-induced hazards [8–11]. Therefore, attention
is drawn to estimating the precipitation distribution using different methods. The ground
rain gauge is a common approach for measuring precipitation at specific locations during
a prescribed period, which is of high credibility after calibration. In many cases, how-
ever, the sparsely distributed rain gauges could not provide sufficient precipitation data
which can represent its spatial variability in detail [1,12]. Alternatively, remote sensing
techniques can supply precipitation data on a global scale [13], which is exempt from the
topographic restriction.

During the past two decades, on the merits of satellite sensors and signal-processing
algorithms, rainfall products are emerging, such as the Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) (as listed
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in Table 1) [14], the precipitation dataset based on the Climate Prediction Center (CPC)
Morphing (CMORPH) technique [15] derived using the motion vectors and morphed
method, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
(IMERG) dataset [16] and the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) [17]. Particularly, the TRMM satellite started to serve
on 27 November 1997 and was decommissioned in 2015, nevertheless the corresponding
blended rainfall data is still provided to the public until the transition (from TRMM to
IMERG) is completed. The TMPA precipitation dataset including post-real time product
(3B42V7) and near-real-time product (3B42RT) has been widely used over China [18–21].

Table 1. The information of rainfall datasets employed in this study.

Products Spatial/Temporal Resolution Time Period Available Coverage Source of Data

3B42V7 0.25◦/3 h January 1998 to January 2020 50◦ S to 50◦ N Goddard Space Flight
Center (GSFC)

3B42RT 0.25◦/3 h February 2000 to January 2020 60◦ S to 60◦ N GSFC

PERSIANN 0.25◦/3 h March 2000 to present 60◦ S to 60◦ N
Center for

Hydrometeorology and
Remote Sensing (CHRS)

Rain gauge observation Point/Daily 1951 to present China China Meteorological Data
Service Center (CMDC)

The satellite-based rainfall products with fine spatio-temporal resolution is desir-
able, but the uncertainty and error originated from indirect measurements of precipita-
tions inferred from micro-wave and infrared radar measurements are non-negligible [22].
Moreover, according to the evaluation of the satellite-based precipitation products over
China [20,23,24], the performance of these products varies with different spatial and tempo-
ral scales. For instance, 3B42RT and PERSIANN significantly overestimate rainfall amounts
across the Tibetan Plateau [25], but 3B42RT can detect the most flood warning events
compared to IMERG [23]. Guo et al. [20] reported that 3B42V7 performed relatively better
in northwestern China, but overestimated rain rates in southern China. Therefore, to obtain
more accurate estimates which incorporate the merits of satellite-based and ground-based
rainfall, multi-source precipitation datasets need to be assimilated. The satellite-based
rainfall, ground-based gauge/radar rainfall data and some reanalysis precipitation datasets
are typically selected as one of the assimilated sources [22,26,27]. Moreover, meteorological
and land surface data, such as temperature, elevation and soil moisture, could also be
adopted to estimate precipitation [22,28,29]. Introducing the meteorological and land
surface data, however, might cause uncertainties due to the relatively low correlation
between precipitation and the corresponding factors at a daily scale [30]. Moreover, the
meteorological factors may involve lag effects or/and spatial variance, which should be
investigated and discussed ahead. In addition, the accuracy of the precipitation products
as part of the source datasets could be evaluated specifically with comparison to the gauge
data under a certain assimilation framework. Therefore, two groups of TMPA dataset,
namely the real-time product of 3B42RT and the post-real-time product of 3B42V7, were
employed as source data in this study.

In general, the methodologies for assimilating multi-source precipitation datasets can
be categorized into two major types, i.e., parametric and nonparametric methods [31,32].
In terms of parametric algorithms, a functional form with finite number of parameters
must be specified by users, and the unknown parameters can be determined by evaluating
the attributes of input–output data [33]. Nonparametric methods, alternatively, can reduce
the complexity of determining the unknown parameters, which can construct the input–
output relationship without prior knowledge of specifying functional form [34]. Moreover,
nonparametric methods can be exempt from limitation of data types, such as spatial
non-stationary rainfall data [24], and modeling of the relationships among independent
and dependent variables. That is, nonparametric methods employ relatively weaker
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assumptions of data than traditional parametric approaches and model the nonadditive
effects without explicit functional form.

In light of its advantages, some nonparametric algorithms have been developed
recently and applied to assimilate the rainfall data. Bhuiyan et al. [35] combined multiple
precipitation datasets using quantile regression forests (QRF) and evaluated the results
from the perspective of stream simulations on the Iberian Peninsula. Ma et al. [36] derived
the merged rainfall data over the Tibet Plateau by adopting the dynamic Bayesian model
averaging scheme, and also evaluated the assimilated precipitation data in four seasons
and at different elevations over Tibet. The artificial neural networks (ANNs) have also been
used to assimilate multi-source precipitation data including satellite-based, gauge-based
and radar datasets in different regions [37–39]. There are also other nonparametric methods,
such as the general regression neural network (GRNN) [40] and Bayesian nonparametric
general regression [41]. The performance of these nonparametric models in assimilating
the rainfall data has not been tested. Nevertheless, studies to evaluate the application
scenarios, such as the rainfall events with different intensities on different time scales, are
still insufficient. The applicability of a certain fusion algorithm needs to be assessed for
rainfall in Meiyu and Typhoon seasons, in different months, as well as rainfall events with
various rainfall intensities.

In this study, a framework based on a nonparametric general regression (NGR) is
proposed for assimilating gauge- and satellite-based precipitation data, and then it is
applied to southeast China (SEC). Besides, this study yields more insights into evaluations
of assimilated data on multiple scales. The study area and precipitation data resources are
introduced first. Then, the proposed framework is depicted. Thereafter, the performance of
the nonparametric framework is analyzed and the comparisons of assimilated results using
NGR and multiple linear regression (MLR), as well as PERSIANN products, are conducted.
In the end, some major conclusions are drawn.

2. Materials and Methods
2.1. Study Area

The southeast China (SEC) was selected as the study area, ranging from (15◦ N, 105◦ E)
to (35◦ N, 125◦ E). Figure 1 shows the location of the study area, and the distribution of rain
gauges. In this area, East Asian monsoon dominates. Influenced by the summer monsoon,
the majority of rainfall occurs in summer, which accounts for 60–85% of the annual total
precipitation in SEC [42]. The precipitation is characterized by the trend of increasing
from northeast to southeast, which shares a similar pattern with that of temperature over
this region [43]. It is in general warm and humid in summer, while mild in winter [44].
The complex topography and climate features of SEC result in prominent spatiotemporal
variability of precipitation [45]. Due to the increasing extreme precipitation events, SEC is
becoming more and more prone to floods, landslides and other natural disasters [46].

2.2. Data Sources

Under the influence of the super El Nino, 20 severe rainstorms occurred in 2016 over
SEC [47]. As a result, deadly floods and landslides were triggered, leading to serious
damages [48]. Furthermore, 88% of severe rainstorms occurred from June to September.
Therefore, the daily rainfall data at 330 rain stations (as shown in Figure 1) across SEC,
covering a period from 01 January to 31 December in 2016, were adopted in this study.
The gauge dataset was provided by China Meteorological Data Service Center (CMDC),
which has been examined by extreme values check, internal consistency check and spatial
consistency check [36].
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Figure 1. (a) The location of study area, and (b) rain gauge stations.

The latest Version-7 TRMM TMPA near-real-time (3B42RT) and post-real-time (3B42V7)
products were adopted in this study. The National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (GSFC) developed 3B42V7 and 3B42RT datasets with
the spatial resolution of 0.25◦ × 0.25◦ and the temporal resolution of 3 h, respectively [49].
In order to match the temporal resolution between gauge and satellite-based data, the 3-
hourly satellite-based products were adjusted to daily accumulated datasets in Beijing time.
To keep consistent with the format of gauge data, the rainfall value at the corresponding
location was derived from the satellite product (in grid format) using the inverse distance
weighting (IDW) method [50]. The information of rainfall data employed in this study is
listed in Table 1.

2.3. Methods
2.3.1. The Framework Based on Nonparametric General Regression

In this study, a new framework based on nonparametric general regression is proposed.
This method is composed of the general regression network and the parameter identify-
ing model. The nonparametric general regression network is designed as follows. Let
T = [T1, T2, . . . , TN ] ∈ R2×N be the satellite-derived datasets, namely 3B42V7 and 3B42RT
datasets, and G = [G1, G2, . . . , GN ] ∈ RN denotes the gauge-based data in this study. N is
the number of samples, i.e., N = Ndays ∗ Nstations, where Ndays and Nstations are the number
of days and stations, respectively. There is the following relationship between T and G:

G = F(T), (1)

Then, use θ to represent the unknown parameter vector in the nonparametric gen-
eral regression network. The conditional probability density function (PDF) of G based
on T and θ can be expressed by Equation (2), which is also called the likelihood in a
frequentist framework.

p(G|θ, T) = p(G1, G2, . . . , GN |θ, T) =
N

∏
m=1

p(Gm|G1, . . . , Gm−1,θ, T), (2)
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The conditional PDFs in the right hand of Equation (2) can be given by:

p(Gm|G1, . . . , Gm−1,θ, T)= (2 πσ2
2,m)

−1/2 exp

− [Gm − Ĝm|m−1(Tm)]
2

2σ2
2,m

, (3)

where Ĝm|m−1(Tm) is

Ĝm|m−1(Tm) =
∑m−1

n=1 Gn exp[−(Tm − Tn)
2/(2σ2

1,m)]

∑m−1
n=1 exp[−(Tm − Tn)

2/(2σ2
1,m)]

, (4)

where σ2
1,m and σ2

2,m are the smooth parameters and the prediction-error variances respec-
tively, m = 1, 2, . . . , N. Ĝm|m−1(Tm) is one estimate of G. σ2

1,m and σ2
2,m are computed using

the following forms:

σ2
1,m =

v1

m− 1

m−1

∑
n=1

(Tm − Tn)
2, (5)

σ2
2,m =

v2

∑m−1
n=1 exp[−2(Tm − Tn)

2]
, (6)

where v1 and v2 are two unknowns: θ = [v1, v2]
T.

Based on the general regression network, there are now two unknown parameters
to be determined. Note that we can rewrite the likelihood in Equation (2) in terms of the
unknown parameters as:

p(G|v1, v2, T) ∝ (v2)
(− N

2 ) exp[− 1
2v2

N

∑
m=1

Ωm(Gm − Ĝm|m−1,v1
(Tm))

2

], (7)

where Ωm can be given by:

Ωm =
m−1

∑
n=1

exp[−2(Tm − Tn)
2], (8)

Particularly, if v1 is given, v̂2 (v̂2 is the estimation of v2) can be expressed by Equation (9)
by solving ∂p(G|v1,v2,T)

∂v2
= 0, which means that only one parameter needs to be calculated.

v̂2(v1) =
1
N

N

∑
m=1

Ωm(Gm − Ĝm|m−1,v1
(Tm))

2, (9)

v̂1 (estimation of v1) can be obtained by maximizing the function of v1:
f (v1) = p(G|v1, v̂2(v1), T) , which is usually realized by standard optimization algorithms,

such as genetic algorithm (GA) herein. Thereafter, v̂1, v̂2 and Ĝ can be obtained.

2.3.2. Data Processing for the Framework Validation

To comprehensively assess the NGR framework, k-fold cross-validation was per-
formed. In this study, k was set to 11. In the 11-fold cross-validation, the data derived from
the 330 stations is divided into 11 mutually exclusive subsets, one of which is employed
as a validation dataset, while the other 10 are used as the training datasets. This process
needs to be repeated 11 times. When k equals to 1, k-fold cross-validation is a special case,
which is also termed as hold-out validation. The hold-out validation method is mainly
conducted in this study as suggested by previous studies [28,36,51]. The data is divided
into two non-overlapping sets. One is referred to as training dataset, which is adopted to
train the framework, and the other is referred to as validation dataset, which is used to
compare with the assimilated rainfall to assess the performance of NGR. The flowchart of
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training and validating the framework for assimilating multi-source rainfall datasets based
on hold-out validation is shown in Figure 2. Under the framework, the 330 sites over SEC
were assigned into training and validation sites from which the training and validation data
were extracted, respectively. With reference to previous studies, the ratio of the training
data to the validation data was set to be 10:1 [36,38,52]. That is, 30 out of 330 sites were
selected randomly as validation sites, and the remaining 300 sites were set as training sites
(in Figures 1b and 2). Note that the satellite-based data was derived from the original
gridded satellite-based data using the inverse distance weighting (IDW) method. In the
training process, the proposed nonparametric framework was trained using the satellite-
based training data extracted at 300 training sites as inputs and the gauge-based training
data recorded at 300 training sites. After that, the gauge-based validation data recorded by
30 validation sites was adopted to validate the performance of the NGR framework.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 22 
 

 

2.3.2. Data Processing for the Framework Validation 
To comprehensively assess the NGR framework, k-fold cross-validation was per-

formed. In this study, k was set to 11. In the 11-fold cross-validation, the data derived from 
the 330 stations is divided into 11 mutually exclusive subsets, one of which is employed 
as a validation dataset, while the other 10 are used as the training datasets. This process 
needs to be repeated 11 times. When k equals to 1, k-fold cross-validation is a special case, 
which is also termed as hold-out validation. The hold-out validation method is mainly 
conducted in this study as suggested by previous studies [28,36,51]. The data is divided 
into two non-overlapping sets. One is referred to as training dataset, which is adopted to 
train the framework, and the other is referred to as validation dataset, which is used to 
compare with the assimilated rainfall to assess the performance of NGR. The flowchart of 
training and validating the framework for assimilating multi-source rainfall datasets 
based on hold-out validation is shown in Figure 2. Under the framework, the 330 sites 
over SEC were assigned into training and validation sites from which the training and 
validation data were extracted, respectively. With reference to previous studies, the ratio 
of the training data to the validation data was set to be 10:1 [36,38,52]. That is, 30 out of 
330 sites were selected randomly as validation sites, and the remaining 300 sites were set 
as training sites (in Figures 1b and 2). Note that the satellite-based data was derived from 
the original gridded satellite-based data using the inverse distance weighting (IDW) 
method. In the training process, the proposed nonparametric framework was trained us-
ing the satellite-based training data extracted at 300 training sites as inputs and the gauge-
based training data recorded at 300 training sites. After that, the gauge-based validation 
data recorded by 30 validation sites was adopted to validate the performance of the NGR 
framework. 

 
Figure 2. The flowchart of the framework based on NGR for assimilating multiple-source rainfall 
data based on hold-out cross-validation. 

2.3.3. Statistical Metrics for Evaluating the Performance of the NGR Framework 
In order to compare the outputs (assimilated rainfall data) of the trained NGR frame-

work from different perspectives, four statistical metrics, i.e., Pearson correlation coeffi-
cient (CC), root mean square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe 
coefficient of efficiency (NSE), were adopted in this study. CC denotes the linear agree-
ment between the assimilated data and the validation gauge observations. RMSE and 
MAE are the measures of errors between the estimated and the gauge data. NSE, whose 
best value is 1, is used to assess the fit of two data pairs. The mentioned statistical indices 
are calculated by the following formulas: 

Figure 2. The flowchart of the framework based on NGR for assimilating multiple-source rainfall
data based on hold-out cross-validation.

2.3.3. Statistical Metrics for Evaluating the Performance of the NGR Framework

In order to compare the outputs (assimilated rainfall data) of the trained NGR frame-
work from different perspectives, four statistical metrics, i.e., Pearson correlation coefficient
(CC), root mean square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe coef-
ficient of efficiency (NSE), were adopted in this study. CC denotes the linear agreement
between the assimilated data and the validation gauge observations. RMSE and MAE are
the measures of errors between the estimated and the gauge data. NSE, whose best value is
1, is used to assess the fit of two data pairs. The mentioned statistical indices are calculated
by the following formulas:

CC =
∑k

i=1 (ŷi − ŷ)∑k
i=1 (yi − y)√

∑k
i=1 (ŷi − ŷ)

2
√

∑k
i=1 (yi − y)

2
, (10)

RMSE =

√√√√1
k

k

∑
i=1

(ŷi − yi)

2

, (11)

MAE =
∑k

i=1|ŷi − yi|
k

, (12)

NSE = 1− ∑k
i=1 (ŷi − yi)

2

∑k
i=1 (yi − yi)

2 , (13)
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where k is the number of samples, yi is the ith data of the validation rainfall dataset y, ŷi
is the assimilated rainfall data, and ŷ and y are the mean values of the assimilated and
gauge-based validation data, respectively.

In addition, the Kling-Gupta efficiency (KGE) [53], as a statistical metric combin-
ing with correlation coefficient, standard deviation and simulation mean, is increasingly
employed to evaluate models. It can be expressed as:

KGE = 1−
√
(CC− 1)2 + (

σestimates
σobservations

− 1)
2
+ (

µestimates
µobservations

− 1)
2
, (14)

where σestimates and µestimates are the standard deviation and mean of estimates respectively,
and σobservations and µobservations stand for the standard deviation and mean of gauge-based
observations. According to these studies [54–56], although KGE = 1 indicates perfect
agreement between the estimates and observations, various KGE values should be set as
the index of good agreement in order to ensure more accurate evaluation of different models.
Therefore, negative KGE values are considered as bad agreement between estimates and
observations in this study.

2.3.4. Multiple Linear Regression Method

The MLR method [57] is usually adopted to model the linear relationship between
dependent and independent variables, which is described by the following general form:

Y = a0 + a1 × X1 + . . . + aM × XM + ε, (15)

where Y is the dependent variable, X1, X2, . . . , XM are the independent variables,
a0, a1, a2, . . . , aM are the coefficients for independent variables, M is the number of in-
dependent variables and ε is the model’s error term. In this study, the independent
variables and dependent variables denote two satellite-based datasets and assimilated
rainfall data, respectively. According to the form of MLR, it is obvious that the mapping
relationship between independent and dependent variables has been set to be linear in
advance, whereas it is unnecessary to prescribe the mapping function when using NGR.
Based on the mentioned characteristics of MLR and NGR, comparison was performed to
evaluate the blended results calculated from the two schemes.

3. Results

The mean values of daily statistical metric of rainfall estimates originated from the
eleven-fold cross-validation are listed in Table 2. The proposed scheme in general per-
formed better on RMSE, MAE and NSE, while a little worse on CC. Although all the KGE
values are positive, 3B42V7 obtained the largest KGE.

Table 2. The mean values of daily statistical metric of rainfall estimates originated from the eleven-
fold cross-validation.

Products CC RMSE (mm) MAE (mm) NSE KGE

Estimates 0.68 9.76 3.61 0.45 0.58
3B42V7 0.70 9.98 3.78 0.43 0.70
3B42RT 0.67 11.38 4.19 0.25 0.63

Note: The numbers in bold indicate the optimum values for the indices.

To evaluate the applicability of the framework, the rainfall in Meiyu (June and July)
and Typhoon (July, August and September) seasons, in different months and rainfall events
with different rainfall intensities, were included. According to the China Meteorological
Association (http://www.cma.gov.cn, accessed on 11 January 2020), the severity of rain
events in China can be categorized in terms of the 24 h accumulated rainfall, which are
light rain (0.1–10 mm/day), moderate rain (10–25 mm/day), heavy rain (25–50 mm/day),
rainstorm (50–100 mm/day), heavy rainstorm (100–250 mm/day) and severe rainstorm

http://www.cma.gov.cn
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(>250 mm/day). In this study, the rainfall events with rainfall intensity > 50 mm/day were
considered as a rainstorm. Since there were quite a few heavy and severe rainstorms in
SEC during 2016, only four rainfall intensities (i.e., light rain, moderate rain, heavy rain
and rainstorm) were discussed in this study. Note that in order to show the performance of
rainfall estimates spatially, the assimilated rainfall data at the 30 validation sites (Figure 1b)
from the hold-out validation was evaluated at different scales in the following sections.

3.1. Assimilated Precipitation Data at Meiyu Seasons

Figure 3 shows the bias from 3B42V7, 3B42RT and NGR at 30 selected validation
sites (Figure 1b) during Meiyu season, which was the absolute deviation between the
mean daily estimates and gauge-based observations at each validation site. A bounding
circle in Figure 3 indicates that the estimates yield the smallest absolute deviation at this
validation site compared to those from the other two products at the same location. Table 3
summarizes the numbers of stations corresponding to the best performance of estimates
on CC, RMSE, MAE and smallest absolute deviation in Meiyu and Typhoon seasons. The
absolute deviation from NGR exhibited the smallest value at 18 validation sites, followed
by 3B42V7 (11 validation sites) and 3B42RT (1 validation site), respectively. Specifically,
the large deviations from 3B42RT data (in Figure 3b) corresponded to the sites in the
south of Guangxi, Hunan province, and coastal areas, where smaller errors were obtained
by 3B42V7 and NGR. Regarding to the spatial distribution of errors, NGR and 3B42V7
tended to exhibit lager bias in inland areas, while the major errors from 3B42RT were
discovered across the middle and south of the study area. From the perspective of error
values, 3B42RT yielded the largest bias with value of 8.40 mm at the site located at the
south of Guangxi province, while 3B42V7 and NGR obtained relatively smaller bias values
of 4.61 and 5.21 mm, respectively. The minimum bias with value of 0.05 mm was from
NGR, followed by 0.07 mm from 3B42V7 and 0.41 mm from 3B42RT. The mean value of the
total absolute deviation at the 30 validation sites from 3B42RT was the largest with value
of 2.97 mm, followed by 3B42V7 with value of 1.30 mm and NGR with value of 1.17 mm.
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Figure 3. Absolute deviation of mean daily rainfall estimates against gauge observations at each validation site in Meiyu
season from (a) 3B42V7, (b) 3B42RT and (c) NGR in 2016.

Figure 4 presents the distribution of the statistical metrics between estimates (assimi-
lated NGR data and satellite products) and gauge observations at each validation site in
Meiyu season. In general, the spatial variations of CCs from the three products are of high
spatial consistency, especially those between 3B42V7 and NGR. Moreover, NGR exhibited
the largest CC values at 40% of validation sites, but 3B42V7 and 3B42RT data corresponding
to 36% and 24% of validation sites were highly correlated with gauge observations (Table 3).
As for RMSE, the indicator from 3B42RT corresponding to the majority of validation sites
was larger than those from NGR and 3B42V7. Meanwhile, there were 19 out of 30 stations
having smaller RMSEs from estimated datasets compared to satellite products. The largest
MAE was originated from 3B42RT and located south of Sichuan province, where the MAE
values from 3B42V7 and NGR were relatively smaller. MAE from NGR at 16 validation
sites were smaller than those from 3B42V7 (14 validation sites) and 3B42RT (none of the
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validation sites), as shown in Table 3. According to the definition of NSE, the closer the
value is to 1, the better fit between the two models. Therefore, as for NSE values, the
estimated rainfall data at 12 sites from 3B42RT, 9 sites from 3B42V7 and 2 sites from NGR
did not match the gauge observations well (i.e., NSE was smaller than 0). The proposed
nonparametric framework yielded the largest NSE values at the majority of validation sites,
which were mainly located at in inland areas of the study area.

Table 3. The number of validation stations corresponding to the best performance in Meiyu and Typhoon seasons.

Statistical Metrics Products Number of Stations (Meiyu) Number of Stations (Typhoon)

3B42V7 11 12
CC 3B42RT 7 6

Estimates 12 12

3B42V7 11 8
RMSE 3B42RT 0 2

Estimates 19 20

3B42V7 14 10
MAE 3B42RT 0 3

Estimates 16 17

3B42V7 11 8
NSE 3B42RT 0 2

Estimates 19 20

3B42V7 11 8
Deviation 3B42RT 1 4

Estimates 18 18

Note: The numbers in bold indicate the maximum number of stations.

Figure 5 shows the box plots for statistical metrics of daily precipitation at the 30 vali-
dation sites. In terms of CC, the performance of three datasets was in general in the same
level, whereas the median value from 3B42V7 was the largest. Besides, the values of CC
at the 25th and 75th percentile corresponding to NGR were both higher than those from
the other two products. NGR yielded the lowest median values for RMSE and MAE (in
Figure 5b,c). As for NSE in Figure 5d, the outliers based on the assimilated NGR dataset
were closer to the median line. In contrast to satellite-based products, NGR yielded larger
NSE values at the 25th and 75th percentile, as well as a smaller range between these two
quartiles, indicating that the assimilated rainfall data using NGR agreed better with gauge
data overall.
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3.2. Assimilated Precipitation Data at Typhoon Seasons

The blended precipitation in Typhoon season, as another rainy period in SEC, was
also evaluated. Figure 6 shows the spatial distributions of absolute deviation of the
mean merged precipitation products against mean gauge data at each validation site in
the Typhoon season of 2016. Neither satellite-based datasets can accurately estimate the
rainfall amounts on the seashores of Guangxi, Jiangxi, Fujian and Zhejiang provinces, as
shown in Figure 6a,b. Moreover, the largest errors from 3B42RT were marked at the sites in
Sichuan and Guangxi provinces, where the estimates (Figure 6c) attained comparatively
smaller errors. The total errors from NGR were substantially smaller than those generated
by 3B42RT and 3B42V7 in the Typhoon season. From Table 3, estimates based on the
NGR framework obtained the smallest absolute deviations at 18 sites, while the 3B42V7
and 3BN42RT yielded the smallest errors at 8 sites and 4 sites, respectively. NGR tended
to obtain the estimates with the smallest deviations along coastal lines. In general, the
proposed approach was capable of effectively diminishing more absolute errors compared
to the two satellite-based products in the Typhoon season of 2016 across SEC.
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season from (a) 3B42V7, (b) 3B42RT and (c) NGR in 2016.

Figure 7 demonstrates the spatial patterns of daily metrics at each validation site in
the Typhoon season over SEC. There were no significant spatial variances among NGR-,
3B42V7- and 3B42RT-Gauge CCs, but obvious spatial variances for RMSE, MAE and NSE.
Specifically, the assimilated rainfall and satellite products exhibited highly different RMSE
across SEC, with the range between 0 and 23 mm. The larger RMSE from 3B42V7 and
3B42RT was found in Hainan province, while a lower value was observed from NGR in this
area. Moreover, 3B42RT tended to obtain larger RMSE values than the other two products
over SEC. In terms of MAE, all the maximum values of MAE from the three approaches
appeared in the south of the study area, where NGR exhibited the best performance,
followed by 3B42V7 and 3B42RT. There were more stations with smaller RMSE (20 out
of 30 sites) and MAE (17 out of 30 sites) yielded by NGR than those from 3B42V7 and
3B42RT. For NSE (in Figure 7), there were more NSE values from satellite-based datasets far
smaller than 1. In other words, the estimates from the nonparametric framework at each
validation site matched the gauge precipitation better than those by 3B42V7 and 3B42RT in
the Typhoon season.
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Figure 8 depicts the box plots of metrics of the indices in the Typhoon season. The 
maximum CC value was obtained by NGR while the minimum was attained by 3B42RT, 
whereas the median lines from the three products were almost at the same level. Although 
3B42V7 exhibited the smallest range between upper quartile and lower quartile in terms 
of RMSE (in Figure 8b) and MAE (in Figure 8c), the median values from NGR were the 
smallest. Figure 8d shows that the 25th/75th percentile and the upper/lower end of outliers 
from NGR were much closer to 1 compared to the corresponding values from satellite-
based data, indicating that the estimates obtained by the proposed scheme better captured 
the gauge observations at each validation site in the Typhoon season. 

Figure 7. Spatial distribution of statistical metrics for precipitation at daily scale from 3B42V7 data,
3B42RT data and estimated rainfall data at 30 validation sites during the Typhoon season in 2016
over SEC.

Figure 8 depicts the box plots of metrics of the indices in the Typhoon season. The
maximum CC value was obtained by NGR while the minimum was attained by 3B42RT,
whereas the median lines from the three products were almost at the same level. Although
3B42V7 exhibited the smallest range between upper quartile and lower quartile in terms
of RMSE (in Figure 8b) and MAE (in Figure 8c), the median values from NGR were the
smallest. Figure 8d shows that the 25th/75th percentile and the upper/lower end of
outliers from NGR were much closer to 1 compared to the corresponding values from
satellite-based data, indicating that the estimates obtained by the proposed scheme better
captured the gauge observations at each validation site in the Typhoon season.
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Figure 8. Box plots depicting the difference of statistical metrics including (a) CC, (b) RMSE, (c) MAE and (d) NSE for daily
assimilated and satellite-based rainfall datasets at each validation site in the Typhoon season in 2016. The line in the box
stands for the median value. NGR performed the best on the median values of RMSE, MAE and NSE.

3.3. Assimilated Daily Precipitation at Monthly Scale

Due to the climatic features in SEC, precipitation amounts vary significantly at differ-
ent time scales. Therefore, in order to capture the accurate temporal patterns of rainfall, the
accuracy of precipitation at monthly scale needs to be evaluated. Figure 9 demonstrates
the statistical metrics of blended and original satellite-based daily rainfall data from 30 val-
idation sites in 12 months over SEC. All three datasets had similar trends of RMSE and
MAE, which decreased from January to February, increased from February to June and
then decreased from July to December. CCs dominated by values larger than 0.5 and varied
slightly in each month, whereas RMSEs, MAEs and NSE changed significantly from month
to month. According to the three datasets, 3B42RT performed worst, as indicated by the
smallest CCs and NSE, largest RMSEs and MAEs in almost all of months except for October.
Moreover, compared to satellite-based data, the NGR-based rainfall data exhibited larger
CC values in 6 months, smaller RMSE in 9 months and smaller MAE in 10 months, as well
as larger NSE in 9 months. CCs from 3B42V7 in February, March, May, July and November
were higher than those from NGR, whereas NGR performed better on RMSE, MAE and
NSE in two of the five months. Overall, compared to these two satellite-based schemes,
the estimates based on the proposed NGR framework exhibited the best performance
with respect to the four statistical metrics in April, June, August and September of 2016
over SEC.
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Figure 9. Bar graphs of daily metrics of (a) CC, (b) RMSE, (c) MAE and (d) NSE from the estimated and satellite-based
precipitation datasets at validation sites in different months of 2016.

3.4. Assimilated Rainfall with Different Intensities

The metrics from 3B42V7, 3B42RT and NGR precipitation datasets with different
rainfall intensities during 2016 are listed in Table 4. All the CCs were relatively small and
mainly ranged from 0.124 to 0.295, except for those corresponding to rainstorm events,
whereas the CC from NGR was the largest in each category. In terms of errors, both RMSE
and MAE increased with the rainfall intensities, indicating that as the rainfall amounts
increased, the inaccuracy of estimated rainfall datasets was enlarged, even though, when
the rainfall intensity is light rain, moderate rain, as well as heavy rain, NGR yielded
estimates with smaller RMSE and MAE than the other two satellite products. As for NSE,
all the values were negative, but compared to those from 3B42V7 and 3B42RT, the NSE
values from NGR were the largest with rainfall intensities of light rain, moderate rain
and heavy rain, indicating that the estimated data can simulate the gauge observations
better when rainfall intensity was less than 50 mm/day. The metrics, especially RMSE and
MAE from rainstorm events, were quite large, and the root relative mean squared errors
(RRMSE) from 3B42V7, 3B42RT and NGR rainfall datasets were more than 50%. According
to Chen and Li [58], the monthly satellite-based datasets were unreliable if the RRMSE was
more than 50%. Thus, all three products cannot precisely estimate the large precipitation
amounts, especially under the circumstances that the rainfall is more than 50 mm.
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Table 4. Statistical metrics for daily precipitation with various rainfall intensities at 30 validation sites in 2016.

Classification of
Rainfall Intensities Products CC RMSE (mm) MAE (mm) NSE

Light rain 3B42V7 0.284 8.75 4.61 −9.86
3B42RT 0.263 9.99 5.01 −13.16

Estimates 0.295 6.77 4.01 −5.45

Moderate rain 3B42V7 0.161 17.01 13.00 −14.41
3B42RT 0.124 20.27 14.45 −20.90

Estimates 0.163 12.63 10.28 −7.49

Heavy rain 3B42V7 0.148 24.09 19.79 −11.95
3B42RT 0.150 27.42 22.23 –15.79

Estimates 0.152 21.47 18.77 −9.29

Rainstorm 3B42V7 0.541 44.88 34.89 −0.33
3B42RT 0.501 47.05 37.38 −0.46

Estimates 0.600 53.11 43.88 −0.86

Note: The numbers in bold indicate the optimum values for the indices.

4. Discussion
4.1. Comparison with the Blended Rainfall Data Obtained by MLR and ANN

The assimilated precipitation data from the multiple linear regression (MLR) method
and PERSIANN product was adopted for comparison to the proposed approach. Table 5
summarizes the daily statistical metrics in the rainy season (from June to September) of
assimilated precipitation computed by the NGR, MLR and ANN approaches at 30 valida-
tion sites of SEC in 2016. For the daily statistical metrics in the rainy season, compared
with those of satellite-based and MLR methods, as well as PERSIANN rainfall data, the
performance of NGR was better in terms of CC, RMSE and NSE, with values of 0.715,
11.54 and 0.51 mm respectively, and marginally larger MAE (4.83 versus 4.76 mm from the
MLR method). MLR estimates are better than the PERSIANN products, as indicated by
the indicators in Table 5. The daily KGE of rainfall estimates from four methods against
gauge-based observations in the rainy season are shown in Figure 10. Positive KGE values
can be observed from MLR and NGR, indicating that MLR and NGR rainfall data in the
rainy season can simulate the gauge-based rainfall well. Furthermore, KGE values from
NGR at 18 validation sites were larger than those from MLR at the same sites, which means
that NGR can achieve better results at these stations compared to MLR. However, negative
KGE values (one from 3B42V7 and three from 3B43RT) and fluctuant variation of KGE of
the two satellite products were observed, indicating worse consistency compared to the
estimates from the proposed NGR framework. Figure 11 shows the spatial distribution of
absolute deviations of mean daily rainfall estimates from MLR and NGR against gauge-
based observations. Obviously, in comparison to NGR, MLR tended to underestimate
or overestimate the mean rainfall amount in the rainy season at some validation sites,
especially at Sichuan and Hainan provinces. In addition, the mean value (0.91 mm) of the
total absolute deviation from MLR was larger than that (0.80 mm) of NGR, indicating that
NGR can reduce errors more effectively than the MLR method in the rainy season.

Table 5. Daily metrics of assimilated precipitation obtained by the proposed framework, MLR and
ANN at validation sites in rainy season over SEC.

Products CC RMSE (mm) MAE (mm) NSE

Estimates 0.715 11.54 4.83 0.51
MLR 0.701 11.79 4.76 0.49

3B42V7 0.700 12.31 5.08 0.44
3B42RT 0.673 13.94 5.78 0.29

PERSIANN 0.571 13.73 5.49 0.31
Note: The bold text stands for the optimum values for the indices.
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4.2. Uncertainties, Strengths and Weaknesses

Uncertainty, as a factor that disturbs the accuracy of evaluation, should be considered.
The uncertainty may be from several aspects. In this study, gauge data was used as a
reference to verify the assimilated rainfall data. Nevertheless, gauge precipitation data
also suffers from errors. Ye et al. [59] reported that the annual rainfall amount recorded
by gauges over China was increased by 8 to 740 mm after bias corrections by considering
wind-induced under-catch, wetting loss and light rain. Hence, these error-induced factors
should be considered and eliminated as much as possible. Moreover, the scale discrepancy
also introduces uncertainty. In order to transform the gridded satellite rainfall data into
point-based data, the IDW method was employed during the training and validation
process, which is likely to induce errors.

The modeling errors between the estimates and gauge-based rainfall data are assumed
to follow a Gaussian distribution, which is suggested by the previous study [21]. For each
data point, the obtained σ2

2,m in Equation (3) represents the variance of the modeling error.
Then, the confidence interval (CI) of the estimated value of a data point can be directly
acquired with the assumption of Gaussian residuals. Figure 12 shows the percentages
of gauge-based data falling in different confidence intervals of estimates based on the
nonparametric framework under light rain, moderate rain, heavy rain and rainstorm
scenarios. The proposed model can provide accurate quantifications of the uncertainties
for the large confidence intervals (CI) under the light, moderate and heavy rain scenarios.
Specifically, the percentage corresponding to 95% CI is the largest one (in Figure 12a)



Remote Sens. 2021, 13, 1057 17 of 21

among the three, indicating that most of the gauge-based rainfall data falls within 95% CI
during light rain scenarios. That is, estimates from NGR during light rain are the most
accurate, followed by the ones during moderate rain, heavy rain and rainstorms.
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Although uncertainties were inevitable, the estimated NGR rainfall data were substan-
tially improved upon almost all of the statistical indicators, except for the similar daily CCs
in Meiyu and Typhoon seasons (in Figures 5 and 8). According to the aforementioned com-
parisons, the 3B42V7 data, in general, performed better than 3B42RT data at 30 validation
sites across SEC in 2016. Figure 13 plots daily assimilated and satellite-based rainfall data in
Meiyu and Typhoon seasons at 30 validation sites. The CCs between the estimates and the
satellite-based data were calculated and marked in the sub-figures. The CC between NGR
and 3B42V7 daily rainfall data was larger than that between NGR and 3B42RT daily rainfall
data, indicating that the 3B42V7 dataset, as one of the data sources, contributed more to
the NGR rainfall data than those from 3B42RT. In addition, because of the relatively worse
performance of 3B42RT on statistical indexes, less information from the 3B42RT dataset
and more details from the 3B42V7 dataset were retained by NGR during the process of
framework construction. Thus, although similar CC values were observed between the
NGR and 3B42V7 rainfall data in Meiyu and Typhoon seasons, the NGR framework is
capable of automatically selecting the original satellite-based dataset with better perfor-
mance. Moreover, this proposed NGR framework can not only be used in SEC, but also in
other places where the derived satellite-based rainfall data is available. Nevertheless, the
performance of this proposed framework applied in other regions, especially the data-gap
areas, still needs to be evaluated.
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The proposed framework also has its limitations. As listed in Table 4, the statistical
indictors of RMSE and MAE became more and more fluctuant as the rainfall intensity
increased, especially for rainstorm events. NGR cannot precisely estimate the large pre-
cipitation amounts based solely on two satellite-based rainfall data as merged sources,
as indicated by Figure 12. The uncertainty of assimilated precipitation data using NGR
originated from the satellite-based datasets, i.e., 3B42V7 and 3B42RT, whose RRMSEs were
both more than 50% during rainstorm events. Thus, to improve the performance of merged
data during rainstorm events, higher quality of remote sensing rainfall data needs to be
utilized as the blended sources.

5. Conclusions

In this study, a new framework was proposed to assimilate multi-source precipitation
datasets in regions of SEC based on nonparametric general regression. The daily training
datasets, including 3B42V7, 3B42RT and gauge-based data, corresponding to 300 training
sites in 2016, were adopted to train the NGR framework. The gauge-based data at 30
validation sites was used to assess the trained framework. To evaluate the applicability
of the framework, the rainfall in Meiyu and Typhoon seasons, in different months and
rainfall events with different rainfall intensities, were included. Based on the study, the
major findings were summarized as follows:

(1) During Meiyu season, the proposed framework in general outperformed 3B42V7 and
3B42RT on the mean value of the total absolute deviation, with a value of 1.17 mm.
NGR exhibited the largest CC values at 40% of validation sites and the minimum
RMSE at 19 out of 30 validation sites. For NSE, the estimates from NGR can match
the gauge observations much better at 28 validation sites.

(2) During Typhoon season, the total absolute deviation from NGR was smaller than
those from satellite-based schemes. Except for similar CC over SEC, NGR exhibited
smaller RMSE and MAE, as well as larger NSE at most of the validation sites.

(3) At a monthly scale, NGR performed better on CC in 6 months, RMSE in 9 months
and MAE in 10 months, as well as NSE in 9 months. Compared with 3B42V7 and
3B42RT, NGR yielded estimates with larger CC, smaller RMSE and MAE, as well as
larger NSE, when the rainfall intensity was less than 50 mm/day.
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(4) The 3B42V7 data, in general, performed better than 3B42RT data at 30 validation sites
across SEC in 2016, which contributed more to the assimilated rainfall data than those
from 3B42RT. The NGR framework is capable of automatically selecting the original
satellite-based dataset with better performance.
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