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Abstract: Crop monitoring throughout the growing season is key for optimized agricultural pro-
duction. Satellite remote sensing is a useful tool for estimating crop variables, yet continuous high
spatial resolution earth observations are often interrupted by clouds. This paper demonstrates
overcoming this limitation by combining observations from two public-domain spaceborne optical
sensors. Ground measurements were conducted in the Hula Valley, Israel, over four growing seasons
to monitor the development of processing tomato. These measurements included continuous water
consumption measurements using an eddy-covariance tower from which the crop coefficient (Kc) was
calculated and measurements of Leaf Area Index (LAI) and crop height. Satellite imagery acquired
by Sentinel-2 and VENµS was used to derive vegetation indices and model Kc, LAI, and crop height.
The conjoint use of Sentinel-2 and VENµS imagery facilitated accurate estimation of Kc (R2 = 0.82,
RMSE = 0.09), LAI (R2 = 0.79, RMSE = 1.2), and crop height (R2 = 0.81, RMSE = 7 cm). Additionally,
our empirical models for LAI estimation were found to perform better than the SNAP biophysical
processor (R2 = 0.53, RMSE = 2.3). Accordingly, Sentinel-2 and VENµS imagery was demonstrated to
be a viable tool for agricultural monitoring.

Keywords: Sentinel-2; VENµS; Eddy covariance; crop coefficient; LAI; vegetation indices

1. Introduction

Agriculture accounts for 70% of global freshwater usage [1,2], and therefore, increas-
ing the agricultural water-use efficiency will improve agricultural sustainability. Where
water is a limited resource, optimal water management is vital for food security. Crop
coefficient (Kc)-based estimation of crop water consumption is one of the most commonly
used irrigation management methods [3,4]. Kc is defined as the ratio between the actual
evapotranspiration from a crop field and the environmental evaporative demand [3]. One
of Kc estimation’s most reliable sources is vegetation indices (VIs) derived from optical
remote sensing [5–14]. Until recently, this method’s application was hampered by the insuf-
ficient amount of public domain imagery at a high revisit time with fine spatial resolution.
Since 2017 the Sentinel-2 constellation consists of two satellites and serves as a reliable
satellite imagery source with high spatial (10, 20, or 60 meters; depending on the band) and
temporal resolution (5 days). Despite that, in cloudy regions, even such a high temporal
resolution might not be sufficient [15]. For example, despite the Sentinel-2 five-day revisit
time, no cloud-free images were acquired for one and a half months in February and March
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2018 over one of our experimental sites in Israel. Optical imagery from one satellite system
could supplement the imagery from another system to address this problem. Previous
studies have analyzed the performance of such conjunction of imagery from different
platforms, for example, Landsat-7 and Landsat-8 [16], MODIS and Landsat-8 [17], as well
as Landsat-8 and Sentinel-2 [18–21], and finally, Landsat-7, Landsat-8, and Sentinel-2 com-
bined [22]. Similarly, the present study exploits the possibility of conjoint use of imagery
acquired by the Sentinel-2 and the new Vegetation and Environment monitoring on a
New MicroSatellite (VENµS) satellite, which has similar spectral bands in the visual, near
infrared spectral region, and a 5–10 m spatial resolution (depending on the Collection) as
Sentinel-2 in addition to a very high temporal resolution of two days [23].

Tomatoes are grown in many regions around the world. Previously, several studies
were devoted to estimating tomato Kc based on lysimeters [24,25] or eddy covariance
measurements [26,27] without the correlation to the satellite remote sensing data. Another
approach previously used a mechanistic crop model to derive the crop evapotranspiration
and correlate it with optical remote sensing data. In this way, previous work [28] used the
EPIC model [29], which, in turn, used variables derived from Sentinel-2 imagery.

Additionally, satellite imagery was previously used to estimate other vegetation
variables such as LAI and height [11,30–34]. Much like with Kc, VIs are good surrogates for
other crop variables since there are similarities in the temporal change dynamics of VIs with
LAI and height [35,36]. LAI is a good proxy of the vegetation state [37–39] and a good yield
predictor [40]. Similarly, vegetation height estimation is useful for crop management [41].
Therefore accurate estimations of LAI and height from satellite imagery are desired.

Recently, the use of machine learning algorithms has become widespread in remote
sensing. In the present study, the LAI biophysical processor [42] implemented in the ESA
SNAP (Sentinel Application Platform) 7.0 software (http://step.esa.int/main/download/
snap-download/, accessed on 21 February 2021) was tested. The LAI biophysical processor
is a "black-box" module developed for Sentinel-2 imagery that cannot currently be used
with other imagery.

Therefore, this study’s overarching aim was to derive empirical models to estimate
vegetation variables based on a combined time series of spaceborne optical imagery from
VENµS and Sentinel-2 and field measurements. Specifically, the goal was to develop
reliable Kc, LAI, and height estimation models for processing tomato based on Sentinel-2
and VENµS imagery.

2. Materials and Methods
2.1. Test Sites and Field Measurements

The field data used in this study were collected during four experiments in commercial
processing tomato fields in the Hula Valley, Israel (Figure 1, Table 1). Two experiments
took place in Gadash farm in 2018 and 2019, and two more experiments were conducted in
Kibutz Gadot in 2019 and 2020. LAI was measured by a SunScan Canopy Analysis System–
SS1 manufactured by Delta-T Company (Cambridge, UK) during the two experiments
conducted in 2019 and one experiment conducted in 2020. The SunScan is a widely used,
accurate, nondestructive LAI measurement system that was successfully employed in
many previous studies [31,43,44]. Plant height was measured using a measuring tape
during all four experiments conducted in 2018–2020. Each LAI and vegetation height value
used in the empirical modelling presented here is an average value of at least 30 field
measurements. Both LAI and vegetation height were measured throughout the growing
seasons; therefore, they represent the typical range of these variables.

http://step.esa.int/main/download/snap-download/
http://step.esa.int/main/download/snap-download/
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Figure 1. The locations of experimental plots: (A) Map of Northern Israel; (B) Map of the Hula Valley; (C) Gadash;
(D) Gadot. The fragmented shape of the analysis polygons results from excluding unvegetated paths in the fields. Sources
of the basemaps: Esri, Sentinel-2, VENµS.



Remote Sens. 2021, 13, 1046 4 of 25

Table 1. The summary of four field experiments conducted in two locations in Israel.

Site Period * # Crop Height
Measurements

# LAI
Measurements

Polygon Size (#
Sentinel-2 Pixels)

ET0 Data
Source

Distance and
Bearing To The
Meteorological

Station

Gadash 9-May-18
30-Jul-18 8 - - - -

Gadash 3-May-19
24-Jul-19 7 6 425 Gadash 250 m SE

Gadot 25-Apr-19
14-Aug-19 11 11 249 Gadot 1.5 km SW

Gadot 7-May-20
3-Aug-20 9 6 332 Kavul 7 km NNW

* Period indicating the start and end date of the eddy covariance measurement.

The number of satellite images used for the development of the various models was
not uniform because each model was based on the period for which field measurements
were available, and therefore, a different number of corresponding satellite images. For
example, LAI could not be measured using the SunScan system when the plants were very
small, while vegetation height was easily measured at any time. Accordingly, the LAI
models were based on shorter time-spans and fewer images than height models.

Each processing tomato field consisted of ridges and furrows. The distance between
the rows was 2 m. Even during the vegetation development peak, the plants did not cover
the furrows completely; thus, some soil reflectance signal is mixed with vegetation over the
entire growing season. This mix of soil and vegetation reflectance hinders the vegetation
variables estimation using remote sensing [45]. The Sentinel-2 and VENµS spectral bands
used to derive vegetation indices were averaged for an area corresponding with the eddy-
covariance footprint. In-field paths and their surrounding area were masked out from
analysis polygons to remove bare soil areas and avoid edge effects. These excluded areas
consisted of roughly 20% of the overall polygon areas. Therefore, each analysis consisted
of either two or four vegetated regions separated by the paths (Figure 1).

2.2. Agro-Meteorological Measurements

The reference evapotranspiration, ET0, was calculated based on nearby meteorological
stations according to the FAO56 Penman–Monteith method based on meteorological mea-
surements of air temperature, relative humidity, wind speed, and solar irradiance [3]. The
actual evapotranspiration (ETc) was measured using eddy covariance systems [26]. Based
on these two measurements, the crop coefficient, Kc, was calculated as: Kc = ETc/ET0. Kc
is an important variable used to determine the irrigation dose [9]. The resulting Kc time
series were smoothed using cubic or second-order splines.

2.3. Satellite Imagery

Sentinel-2 is an Earth observation mission and part of the European Space Agency
(ESA) Copernicus program. It includes two satellites, each equipped with a Multi-Spectral
Instrument (MSI), namely, Sentinel-2A (launched June 2015) and Sentinel-2B (launched
March 2017). VENµS is a joint satellite mission of the Israeli and French space agencies
(ISA and CNES) launched in August 2017. VENµS has a two-day revisit time over Israel
and a multispectral camera with 12 narrow spectral bands in the range of 415–910 nm [46].
VENµS and Sentinel-2 produce 10 and 12-bit radiometric data, respectively. The radiometric
correction procedure of VENµS imagery was updated in 2020. The imagery acquired before
the update is known as Collection 1; the imagery acquired after the update is known as
Collection 2. VENµS captures s imagery with a spatial resolution of 10 m. Sentinel-2 RGB
and NIR bands also have a spatial resolution of 10 m, and other bands are coarser: narrow
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NIR, SWIR, and red edge bands, 20 m; coastal aerosol, water vapour, and SWIR-cirrus
bands used mostly for atmospheric correction, 60 m. Atmospherically corrected reflectance
products from both sensors were used in this analysis. Level-2 VENµS products, initially
distributed at 10 m spatial resolution, were later distributed at a resolution of 5 m when
an updated processing procedure was initiated in 2020. This product was used for the
analysis of the 2020 experiment in Gadot. Sentinel-2 level-2A data were obtained from the
ESA Copernicus Open Access Hub website (https://scihub.copernicus.eu/dhus/#/home,
accessed on 21 February 2021). VENµS level-2 products were obtained from the Israel
VENµS website maintained by Ben-Gurion University of the Negev (https://venus.bgu.ac.
il/venus/, accessed on 21 February 2021). Table 2 lists the overlapping spectral bands of
the Sentinel-2 and VENµS sensors used in this study to derive vegetation indices. The LAI
and Kc estimation models were derived based on three seasons, and crop height models
were based on four seasons. An inventory of the Sentinel-2 and VENµS images used
in the present study can be found in Table 3, alongside the number of LAI and height
measurements taken during each season and used for model derivation.

Table 2. Central wavelengths and bandwidths (nm) of Sentinel-2 and VENµS equivalent bands used in this study.

Band Sentinel-2A Sentinel-2B VENµS

Central
Wavelength

(nm)

Bandwidth
(nm)

Central
Wavelength

(nm)

Bandwidth
(nm)

Central
Wavelength

(nm)

Bandwidth
(nm)

Blue 492.4 66 492.1 66 491.9 40

Green 559.8 36 559.0 36 555 40

Red 664.6 31 664.9 31 666.2 30

Red Edge 704.1 15 703.8 16 702 24

740.5 15 739.1 15 741.1 16

782.8 20 779.7 20 782.2 16

NIR 832.8 106 832.9 106

864.7 21 864.0 22 861.1 40

Table 3. Imagery inventory from which processing tomato Kc, LAI, and height models were derived.

Site Satellite
Tomato Kc Models Tomato LAI Models Tomato Height Models

Period * Number of
Images Period * Number of

Images Period * Number of
Images

Gadash 2018 Sentinel-2 - - - - 16 May 2018
15 Jul 2018 11

Gadash 2018 VENµS - - - - 15 Jun 2018
08 Aug 2018 17

Gadash 2019 Sentinel-2 16 May 2019
20 Jul 2019 8−9 **

21 May 2019
25 Jul 2019 8−9 ** 16 May 2019

25 Jul 2019 9−10 **

Gadash 2019 VENµS 11 May 2019
24 Jul 2019 28 17 May 2019

24 Jul 2019 25 03 May 2019
24 Jul 2019 30

Gadot
2019 Sentinel-2 01 May 2019

14 Aug 2019 13−14 ** 21 May 2019
14 Aug 2019 12−13 ** 21 May 2019

14 Aug 2019 12−13 **

Gadot
2019 VENµS 01 May 2019

13 Aug 2019 39 17 May 2019
13 Aug 2019 34 17 May 2019

13 Aug 2019 34

Gadot
2020 Sentinel-2 20 May 2020

03 Aug 2020 14 20 May 2020
19 Jul 2020 11 20 May 2020

03 Aug 2020 14

Gadot
2020 VENµS 11 May 2020

03 Aug 2020 29 21 May 2020
20 Jul 2020 22 13 May 2020

03 Aug 2020 28

* Period indicating the start and end date of the experiment. ** A defective red edge band in a Sentinel-2 image acquired on 10 June 2019
prevented the derivation of red edge-based vegetation indices for that date.

https://scihub.copernicus.eu/dhus/#/home
https://venus.bgu.ac.il/venus/
https://venus.bgu.ac.il/venus/
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2.4. Vegetation Indices and Model Validation

All Sentinel-2 and VENµS bands were resampled to 10 m spatial resolution. After that,
thirteen vegetation indices (Appendix A) were derived based on the Sentinel-2 and VENµS
imagery, including transformed VENµS imagery that utilised a corrective transformation
(Table 4) derived for collection 1 VENµS imagery [23]. Since the radiometric processing of
VENµS was improved in collection 2, the applicability of the transformation functions to
the re-calibrated VENµS imagery was studied by comparing the performance of models
based on the imagery transformed for all seasons against the models based on transformed
imagery for 2018–2019 seasons (collection 1) and not transformed for 2020 (collection 2).
The performance of the former was found to be better than the latter. Therefore, the
transformed VENµS imagery models were applied to all seasons. Overall, three types of
tomato estimation models were derived: models based on Sentinel-2; models based on
Sentinel-2/non-transformed VENµS; models based on the Sentinel-2/transformed VENµS
imagery. Hereafter the combined Sentinel-2/transformed VENµS models will be referred
to as S2/VT, and combined Sentinel-2/non-transformed VENµS models will be referred to
as S2/VNT.

Table 4. Coefficients for the linear transformation from VENµS to Sentinel-2 surface reflectance (after
[23]).

Bands
(Central Wavelength) Slope Intercept

10 m

Blue (490 nm) 1.0307 0.0194
Green (560 nm) 1.0035 0.0271
Red (665 nm) 0.9588 0.0287
NIR (842 nm) 0.8082 0.0768

20 m

Red edge 1 (705 nm) 0.9589 0.0481
Red edge 2 (740 nm) 0.8632 0.0648
Red edge 3 (783 nm) 0.8347 0.0796

NIR (865 nm) 0.7841 0.0980

Linear regression models were derived for the time series of field-measured Kc, LAI,
height, and each spectral index time series. Each model was based on all available field
measurements of each vegetation variable collected during all seasons when the variable
was measured. For every model, the R2 and root mean square error (RMSE) values were
calculated. RMSE was calculated for each model based on all available data and also for
each field experiment separately. In addition to vegetation index-based models, an LAI
estimation from the ESA SNAP 7.0 biophysical processor for Sentinel-2 imagery was also
produced [42].

The S2/VT and S2/VNT models were compared, and the Steiger variation [47] of the
two-tailed Fisher’s Z-score tests [48] was performed to determine whether the difference in
the models’ R2 is significant (α ≤ 0.05). The same test was also performed to determine
whether the difference in R2 of the LAI Biophyscal processor and DVI was significant.

The field-measured processing tomatoes LAI and height measured in Gadash 2019
and Gadot in 2019 and 2020 were used to calibrate prediction models for Kc, as was done
previously [49].

3. Results

Figure 2 presents the experiments’ measured LAI and crop height, field measured Kc,
the smoothed Kc, and the standard Kc table of the Israeli Extension Service. Figure 2A–D
shows height values measured during four experiments and LAI values measured during
three experiments. Figure 2E–G shows the three types of the aforementioned variations of
the Kc associated with three experiments conducted in Israel. The standard Kc recommen-
dation differs from the measured Kc values. Early in the season, during the crop vegetative
development, the standard table recommendation is slightly higher than the measured
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water consumption. In Gadot 2019, the standard recommendation and measured water
consumption are about the same at the peak. In Gadot 2020 and Gadash 2019, the stan-
dard recommendation’s peak is higher than the measured water consumption. However,
from the mid-late season, the measured water consumption drops below the standard
recommendation. Interestingly, in Gadash 2019, the crop height and LAI and the Kc were
lower compared to the other seasons. Moreover, the changes in LAI and height in Gadash
2019 were different compared to other seasons. These discrepancies in behavior between
tomato variables and differences in the variables’ values from season to season demonstrate
the variance in crop development and water consumption between seasons. Therefore,
real-time estimations of those variables are advantageous over the use of standard tables.

GEMI and WDVI were found to be the best VIs for the tomato Kc, crop height, and LAI
estimation. These results repeated in all three types of models: Sentinel-2-based, S2/VNT,
and S2/VT. Tables 5–7 show Sentinel-2, S2/VNT, and S2/VT-based Kc, crop height, and LAI
estimation models based on the five best-performing VIs: DVI, GEMI, WDVI, SAVI, and
MSAVI. The best combined Sentinel-2/VENµS models in the present study are presented
in Figure 3. The data points in Figure 3 are not clustered by sensors or experiments,
which is indicative of the models’ generality. Therefore, both sensors used in the study
can be employed interchangeably. The tomato Kc, height, and LAI estimation models’
performance is based on eight other VIs (NDVI, MTCI, IPVI, IRECI, S2REP, REIP, GNDVI,
and TNDVI), which can be found in Appendix B, Appendix C, Appendix D. Table 5 shows
that the RMSE of LAI derived from the biophysical processor is higher and the R2 is lower
than VIs such as GEMI, DVI, WDVI, SAVI, and MSAVI. The biophysical processor’s R2

was found significantly lower than the R2 of DVI (p = 0.016). It was found that the majority
of S2/VT and S2/VNT models do not present significant differences in performance and
that the transformation of VENµS imagery is mostly beneficial for the red edge VIs such
as MTCI and S2REP (Appendix E). Table 8 shows the difference in performance between
S2/VT models and S2/VNT models of the best performing VIs (DVI, GEMI, WDVI, SAVI,
and MSAVI). Appendix E shows the difference in performance between S2/VT models and
S2/VNT models for eight additional VIs (NDVI, MTCI, IPVI, IRECI, S2REP, REIP, NDVI,
and TNDVI).
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Figure 2. Processing tomato experiments data: measured height, measured LAI, and Sentinel-2
and VENµS satellite image acquisition dates: (A) Gadash 2018; (B) Gadash 2019; (C) Gadot 2019;
(D) Gadot 2020. The field measured Kc, a smoothed Kc, the standard Kc from tables of the Israeli
Extension Service (IES), and Sentinel-2 and VENµS satellite image acquisition dates: (E) Gadash 2019;
(F) Gadot 2019; (G) Gadot 2020.
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Table 5. Performance statistics of newly developed Sentinel-2-based LAI, Height, Kc models for the best performing VIs,
and the SNAP biophysical processor LAI estimation algorithm’s performance. Performance statistics of additional VIs can
be found in Appendix B.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

GEMI Sentinel-2 Gadash 2018 9
Sentinel-2 Gadash 2019 1.3 11 0.0727
Sentinel-2 Gadot 2019 1.2 6 0.1102
Sentinel-2 Gadot 2020 1.3 9 0.0576

All seasons 0.7444 1.3 0.651 9 0.7424 0.0855
DVI Sentinel-2 Gadash 2018 8

Sentinel-2 Gadash 2019 1.1 9 0.0705
Sentinel-2 Gadot 2019 1.4 4 0.1122
Sentinel-2 Gadot 2020 0.9 6 0.0635

All seasons 0.7677 1.2 0.7727 7 0.7244 0.0872
WDVI Sentinel-2 Gadash 2018 5

Sentinel-2 Gadash 2019 1.1 8 0.0739
Sentinel-2 Gadot 2019 1.4 5 0.1135
Sentinel-2 Gadot 2020 0.9 6 0.0632

All seasons 0.7636 1.2 0.8237 6 0.7165 0.0884
SAVI Sentinel-2 Gadash 2018 9

Sentinel-2 Gadash 2019 1.2 10 0.0720
Sentinel-2 Gadot 2019 1.5 5 0.1016
Sentinel-2 Gadot 2020 1.0 8 0.0583

All seasons 0.7322 1.3 0.7168 8 0.7627 0.0809
MSAVI Sentinel-2 Gadash 2018 8

Sentinel-2 Gadash 2019 1.2 10 0.0705
Sentinel-2 Gadot 2019 1.4 4 0.1070
Sentinel-2 Gadot 2020 1.0 7 0.0601

All seasons 0.7456 1.2 0.7382 8 0.746 0.0837
Biophysical Sentinel-2 Gadash 2019 1.5
Processor Sentinel-2 Gadot 2019 2.9

Sentinel-2 Gadot 2020 2.1
All seasons 0.5299 2.3
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Table 6. Performance statistics of newly developed S2/VNT-based LAI, Height, Kc models for the best performing VIs
models. Performance statistics of additional VIs can be found in Appendix C.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE (cm) R2 RMSE

GEMI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.2 11 0.0638
VENµS Gadash 2019 1.1 10 0.0732
Sentinel-2 Gadot 2019 1.3 6 0.1094

VENµS Gadot 2019 1.4 6 0.1031
Sentinel-2 Gadot 2020 1.3 9 0.0734

VENµS Gadot 2020 1.1 6 0.0801
All seasons 0.7544 1.2 0.7033 8 0.8215 0.0880

DVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 8

Sentinel-2 Gadash 2019 1.0 9 0.0568
VENµS Gadash 2019 0.9 9 0.0795
Sentinel-2 Gadot 2019 1.5 4 0.1155

VENµS Gadot 2019 1.3 6 0.1161
Sentinel-2 Gadot 2020 1.4 9 0.0864

VENµS Gadot 2020 1.0 6 0.0963
All seasons 0.776 1.2 0.7681 7 0.7756 0.0984

WDVI Sentinel-2 Gadash 2018 8
VENµS Gadash 2018 8

Sentinel-2 Gadash 2019 0.7 7 0.0718
VENµS Gadash 2019 1.2 10 0.0887
Sentinel-2 Gadot 2019 2.1 9 0.1622

VENµS Gadot 2019 1.2 5 0.1087
Sentinel-2 Gadot 2020 0.9 6 0.0674

VENµS Gadot 2020 1.1 6 0.1039
All seasons 0.7418 1.3 0.7627 7 0.7431 0.1052

SAVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 8

Sentinel-2 Gadash 2019 1.2 10 0.0627
VENµS Gadash 2019 1.0 9 0.0678
Sentinel-2 Gadot 2019 1.5 5 0.1019

VENµS Gadot 2019 1.4 7 0.1089
Sentinel-2 Gadot 2020 1.0 8 0.0718

VENµS Gadot 2020 1.1 7 0.0886
All seasons 0.7637 1.2 0.7437 8 0.8138 0.0896

MSAVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 8

Sentinel-2 Gadash 2019 1.1 9 0.0590
VENµS Gadash 2019 0.9 9 0.0737
Sentinel-2 Gadot 2019 1.5 5 0.1087

VENµS Gadot 2019 1.4 6 0.1136
Sentinel-2 Gadot 2020 1.0 7 0.0737

VENµS Gadot 2020 1.1 6 0.0948
All seasons 0.7739 1.2 0.7612 8 0.7932 0.0944
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Table 7. Performance statistics of newly developed S2/VT-based LAI, Height, Kc models for the best performing VIs.
Performance statistics of additional VIs can be found in Appendix D.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE (cm) R2 RMSE

GEMI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.6 13 0.0798
VENµS Gadash 2019 0.9 9 0.0714
Sentinel-2 Gadot 2019 1.0 6 0.0944

VENµS Gadot 2019 1.5 7 0.1183
Sentinel-2 Gadot 2020 1.5 10 0.1120

VENµS Gadot 2020 1.0 7 0.0713
All seasons 0.7502 1.3 0.7101 8 0.7956 0.0942

DVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.3 10 0.0609
VENµS Gadash 2019 0.8 8 0.0868
Sentinel-2 Gadot 2019 1.3 4 0.0996

VENµS Gadot 2019 1.4 7 0.1266
Sentinel-2 Gadot 2020 1.3 8 0.1225

VENµS Gadot 2020 1.0 6 0.0832
All seasons 0.7731 1.2 0.7725 7 0.755 0.1028

WDVI Sentinel-2 Gadash 2018 5
VENµS Gadash 2018 8

Sentinel-2 Gadash 2019 0.9 8 0.0531
VENµS Gadash 2019 0.6 7 0.1038
Sentinel-2 Gadot 2019 1.6 6 0.1286

VENµS Gadot 2019 1.3 5 0.1167
Sentinel-2 Gadot 2020 0.9 4 0.0901

VENµS Gadot 2020 1.2 8 0.1161
All seasons 0.7883 1.2 0.81 7 0.7214 0.1096

SAVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 10

Sentinel-2 Gadash 2019 1.7 12 0.0843
VENµS Gadash 2019 0.8 8 0.0791
Sentinel-2 Gadot 2019 1.2 4 0.0774

VENµS Gadot 2019 1.6 8 0.1255
Sentinel-2 Gadot 2020 1.4 9 0.1195

VENµS Gadot 2020 1.0 6 0.0742
All seasons 0.7383 1.2831 0.7317 8 0.7765 0.0982

MSAVI Sentinel-2 Gadash 2018 6
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.6 12 0.0755
VENµS Gadash 2019 0.8 8 0.0846
Sentinel-2 Gadot 2019 1.3 4 0.0865

VENµS Gadot 2019 1.6 7 0.1290
Sentinel-2 Gadot 2020 1.4 9 0.1238

VENµS Gadot 2020 1.0 6 0.0787
All seasons 0.7484 1.3 0.7456 8 0.7585 0.1020
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Figure 3. Vegetation Index linear regression models based on Sentinel-2 and VENµS imagery: (A) Kc–GEMI Sentinel-2
and non-transformed VENµS images acquired during three processing tomato growing seasons; (B) Vegetation height
(dm)–WDVI Vegetation Index regression model based on Sentinel-2 and transformed VENµS images acquired during four
processing tomato growing seasons; (C) Vegetation LAI–WDVI Vegetation Index regression model based on Sentinel-2 and
transformed VENµS images acquired during three processing tomato growing seasons.
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Table 8. Difference in performance statistics between newly developed S2/VT and S2/VNT-based LAI, Height, Kc models
for the best performing VIs. Positive R2 and negative RMSE indicate the superior performance of the S2/VT model compared
to the equal parameter of the S2/VNT model. Significant differences are marked with (*). Performance statistics of the
difference of additional VIs can be found in Appendix E.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE (cm) R2 RMSE

GEMI Sentinel-2 Gadash 2018 −2
VENµS Gadash 2018 1

Sentinel-2 Gadash 2019 0.4 2 0.0159
VENµS Gadash 2019 −0.2 −2 −0.0018
Sentinel-2 Gadot 2019 −0.3 0 −0.0151

VENµS Gadot 2019 0.1 1 0.0152
Sentinel-2 Gadot 2020 0.2 1 0.0386

VENµS Gadot 2020 −0.1 0 −0.0088
All seasons −0.0042 0.0 0.0068 0 −0.0259 * 0.0062

DVI Sentinel-2 Gadash 2018 −2
VENµS Gadash 2018 1

Sentinel-2 Gadash 2019 0.3 2 0.0041
VENµS Gadash 2019 −0.1 −1 0.0073
Sentinel-2 Gadot 2019 −0.2 0 −0.0158

VENµS Gadot 2019 0.1 1 0.0105
Sentinel-2 Gadot 2020 −0.2 −1 0.0360
VENµS Gadot 2020 0.0 0 −0.0131

All seasons −0.0029 0.0 0.0044 0 −0.0206 0.0044
WDVI Sentinel-2 Gadash 2018 −3

VENµS Gadash 2018 0
Sentinel-2 Gadash 2019 0.2 2 −0.0187

VENµS Gadash 2019 −0.6 −3 0.0151
Sentinel-2 Gadot 2019 −0.5 −3 −0.0336

VENµS Gadot 2019 0.1 0 0.0080
Sentinel-2 Gadot 2020 0.0 −2 0.0227
VENµS Gadot 2020 0.1 1 0.0122

All seasons 0.0465 −0.1 0.0473* −1 −0.0217 0.0044
SAVI Sentinel-2 Gadash 2018 −3

VENµS Gadash 2018 1
Sentinel-2 Gadash 2019 0.5 3 0.0216

VENµS Gadash 2019 −0.2 −1 0.0113
Sentinel-2 Gadot 2019 −0.3 0 −0.0244

VENµS Gadot 2019 0.2 1 0.0166
Sentinel-2 Gadot 2020 0.4 2 0.0477

VENµS Gadot 2020 −0.1 −1 −0.0144
All seasons −0.0254 0.1 −0.012 0 −0.0373 * 0.0086

MSAVI Sentinel-2 Gadash 2018 −3
VENµS Gadash 2018 1

Sentinel-2 Gadash 2019 0.5 3 0.0165
VENµS Gadash 2019 −0.2 −1 0.0109
Sentinel-2 Gadot 2019 −0.3 0 −0.0222

VENµS Gadot 2019 0.2 1 0.0154
Sentinel-2 Gadot 2020 0.4 2 0.0501

VENµS Gadot 2020 −0.1 −1 −0.0160
All seasons −0.0255 0.1 −0.0156 0 −0.0347 * 0.0076

Figure 4 shows data acquired during two experiments in 2019 and one experiment
in 2020. Figure 4A shows LAI and height measurements (in dm; to fit them to the same
Y-axis) recorded during three field campaigns in 2019 and 2020. Interestingly, in Gadot
2019, height continued to increase in the middle of the season, while LAI has already
started to decrease. In the other fields measured in this study, LAI and height varied
simultaneously. Figure 4B shows the smoothed measured Kc curve, the standard Kc
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table values provided by the Israeli Extension Service (IES), and the estimated Kc values
based on the S2/VNT GEMI model. The field measured Kc varied from season to season,
and in Gadash 2019, the measured Kc showed the most considerable difference from the
recommended curve, especially in the middle part of the season (approximately 60 days
after planting). Moreover, the measured Kc increase, especially during experiments in 2019,
does not match the timing of the Kc increase provided by the IES. This demonstrates the
significance of using Kc values estimated for a specific field at a specific season for efficient
irrigation. The low values of Kc, LAI, and height in Gadash 2019 might be explained by the
high amount of weeds present in the field during the experiment.
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The performance of processing tomato height and LAI-based Kc estimation models
using field measurements is shown in Table 9.

Table 9. Kc prediction models based on field measurements of processing tomatoes height and LAI.

Kc Prediction by Height Kc Prediction by LAI

Measurements 24 21
R2 0.7467 0.6629

RMSE 0.0948 0.1024

4. Discussion

The field experiments conducted in Israel in 2018–2020 showed that Kc, LAI, and crop
height in processing tomato differ from season to season but can be estimated correctly in
near-real-time from satellite remote sensing imagery. Consequently, agricultural decisions,
including the irrigation dose determination, can rely on remote sensing data rather than
standard tabular recommendations until late in the season. During the last stage of the
season, deficit irrigation is applied according to the percentage of ripe fruit (the ratio of red
to green tomatoes on the plant) to delay ripening or expedite it according to the desired
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harvest schedule [50]. Thus, the irrigation dose at the end of the season cannot be estimated
using the remote sensing approach described here.

The field-measured Kc in this study yielded high correlations with VIs from Sentinel-2
and VENµS. Consequently, this study paves the way for more precise Kc, LAI, and crop
height estimations on a local and global scale based on the freely available optical satellite
imagery. These crop variable estimations could be used for better irrigation and fertilization
management [51], as well as for early detection of crop disease [52,53], waterlogging [54,55],
pest management, and biological control [56].

This study’s most important result was the demonstration of effectively joining
Sentinel-2, and VENµS imagery for agricultural monitoring suggested before the launch of
those missions [38]. This was possible because of the close resemblance of Sentinel-2 and
VENµS spectral response functions and a good radiometric and atmospheric correction.
Application of corrective transformation functions [23] improved the performance of VIs
based on the red edge bands (MTCI, S2REP, and REIP), while for the other VIs, the trans-
formation was found unnecessary or provided only marginal performance improvement.

Many VIs showed good Kc estimation performance; the best performing Kc estimation
was achieved with the GEMI S2/VNT model (R2 = 0.82, RMSE = 0.09). In an earlier study,
a canopy cover-based Kc estimation model achieved R2 = 0.96 [27]. In that study, the
canopy cover was calculated using cameras installed in the field. Unlike this approach that
relies on in-field sensors, the approach suggested in this paper, based on satellite remote
sensing, facilitates the estimation of vegetation variables over more extensive areas at a
low cost. This study shows that Kc estimation from optical satellite remote sensing can
serve as a reliable source for irrigation decisions and potentially for other agricultural
activities throughout the whole growing season of processing tomato. The best performing
LAI estimation models showed promising results (S2/VT WDVI LAI estimation model:
R2 = 0.79, RMSE = 1.2). This result agrees with a previous study that found WDVI, which
takes soil reflectance into account, as a good indicator of LAI [57]. In comparison to the
newly-obtained processing tomato LAI models, multi-crop models derived in previous
studies demonstrated lower performance, e.g., R2 = 0.62 [58], R2 = 0.66 [59], R2 = 0.72 [60].
A tomato LAI model from previous work [28] showed a lower coefficient of determination
(R2 = 0.69) and lower RMSE = 0.56 compared to this study. However, this model was based
on only four days of field measurements. Moreover, that work [28] did not include LAI
measurements in the final stage of a growing season, while the LAI models in the present
study were based on three full growing seasons. Consequently, the processing tomato LAI
estimation models developed in the present study are suitable for general use in precision
agriculture applications throughout the growing season. Additionally to LAI estimation
based upon the VIs, the performance of the SNAP biophysical processor LAI estimation
algorithm was studied (R2 = 0.53, RMSE = 2.3) and found to be significantly less accurate
compared to the empirical model based on DVI, which was found to be the most accurate
Sentinel-2-based VI for LAI estimation.

Similar to Kc and LAI estimation models, the tomato height estimation models were
found to perform well throughout the processing tomato growing season. The S2/VT
WDVI-based height estimation model (R2 = 0.81, RMSE = 7 cm) was found to be the best,
and this approach shows great promise for agricultural crop monitoring. The obtained
results confirmed the previously found conclusion that WDVI is a well-suited VI for crop
LAI and height estimations [33].

Kc, LAI, and height estimation models based solely on Sentinel-2 data were as accurate
as the combined Sentinel-2/VENµS models. Subsequently, a pooled time-series of imagery
from both sensors increases the available satellite imagery’s temporal resolution. In cloudy
regions, either sensor could fill gaps in the acquisitions of the other, and either sensor can
efficiently monitor crop development when imagery from the other sensor is not available.
For example, during both experiments in 2019, many VENµS images filled in a long gap in
Sentinel-2 data in April–May, and one Sentinel-2 image filled a gap in VENµS images in
May–June.
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Additionally to the Kc estimation based on the remote sensing data, Kc estimation
models based on the field measured LAI and height were derived. These models’ perfor-
mance was similar to the remote sensing-based models and might be used on the local
scale in the absence of remote sensing imagery. The Kc-height model is of particular in-
terest from a practical viewpoint since farmers can easily and routinely take plant height
measurements.

While this study provided useful results from thirteen VIs (including VIs based on the
red edge bands and soil adjusted VIs) to estimate Kc, LAI, and height in the processing
tomato using Sentinel-2 and VENµS imagery, there is merit in future studies on other crops.
Future efforts could follow the procedure suggested in this paper to empirically calibrate
and test prediction models for different indices and identify those that achieve the best
performance. Studies based on two or more different sensors should make sure to perform
a radiometric calibration between sensors.

5. Conclusions

This work demonstrates the conjoint use of Sentinel-2 and VENµS imagery for esti-
mating Kc, LAI, and height of processing tomato. It was found that red edge VIs should
be based on Sentinel-2 and transformed VENµS imagery. At the same time, other VIs can
be derived directly from imagery obtained by both systems, and no corrective transforma-
tion is required to match the two sensors. In addition, models based solely on Sentinel-2
showed similar performance as the joint Sentinel-2 and VENµS imagery models. The Kc,
LAI, and height estimation models derived empirically using field measurements show
good performance and are ready for application. The LAI estimation performance from
the SNAP biophysical processor was also studied and found inferior to the VI-based LAI
estimation models. The irrigation in the early and middle parts of the processing tomato
growing season can rely on remote sensing-based models rather than standard table values
to best match the actual crop development and capture within-field variability.
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Appendix A

Table A1. Vegetation indices used in the present study.

Index Name Formula Reference

1 Normalised Difference Vegetation Index
(NDVI)

(NIR−RED)
(NIR+RED)

[61]

2 Global Environmental Monitoring Index
(GEMI)

ή ∗ (1 − 0.25 ∗ ή)− [(RED−0.125)]
(1−RED)

where ή = [2∗(NIR2−RED2)+1.5∗NIR+0.5∗RED]
(NIR+RED+0.5)

[62]

3 Weighted Difference Vegetation Index
(WDVI)

NIR − S ∗ RED
where: S is the slope of the soil line. [63]

4
Green Normalized Difference Vegetation

Index
(GNDVI)

(NIR−GREEN)
(NIR+GREEN)

[64]

5 Modified Soil Adjusted Vegetation Index
(MSAVI)

(NIR−RED)∗(1+L)
(NIR+RED+L)

where: L = 1 − 2∗s∗(NIR−RED)∗(NIR−s∗RED)
(NIR+RED)

where s is the slope of the soil line from a plot of
red versus near infrared brightness values

[65]

6 Difference Vegetation Index
(DVI) NIR − RED [61]

7 MERIS terrestrial chlorophyll index
(MTCI)

(NIR−RE)
(RE−RED)

[66]

8 Infrared Percentage Vegetation Index
(IPVI)

NIR
(NIR+RED)

[67]

9 Inverted Red Edge Chlorophyll Index
(IRECI)

(NIR−RED)
(RE1/RE2)

[68]

10 Sentinel-2 Red Edge Position
(S2REP) 705 + 35 ∗

(
p783+p665

2

)
−p705

p740−p705
[68]

11 Red Edge In-flection Point
(REIP) 700 + 40 ∗

p670+p780
2 −p700

p740−p700
[69]

12 Soil Adjusted Vegetation Index
(SAVI)

(NIR−RED)
(NIR+RED+L) ∗ (1 + L) [70]

13
Transformed Normalized Difference

Vegetation Index
(TNDVI)

√(
(NIR−RED)
(NIR+RED)

+ 0.5
)

[71]
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Appendix B

Table A2. Performance statistics of newly developed Sentinel-2-based LAI, Height, Kc models, and the performance of the
SNAP biophysical processor LAI estimation algorithm. Performance statistics of better performing VIs can be found in
Table 5.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

NDVI Sentinel-2 Gadash 2018 9
Sentinel-2 Gadash 2019 1.5 11 0.0919
Sentinel-2 Gadot 2019 1.5 5 0.0961
Sentinel-2 Gadot 2020 1.2 9 0.0558

All seasons 0.6594 1.4 0.6387 9 0.7524 0.0826
MTCI Sentinel-2 Gadash 2018 12

Sentinel-2 Gadash 2019 2.0 11 0.1608
Sentinel-2 Gadot 2019 2.6 11 0.1804
Sentinel-2 Gadot 2020 2.1 8 0.0724

All seasons 0.16 2.3 0.5216 10 0.2653 0.1433
IPVI Sentinel-2 Gadash 2018 9

Sentinel-2 Gadash 2019 1.5 11 0.0919
Sentinel-2 Gadot 2019 1.5 5 0.0961
Sentinel-2 Gadot 2020 1.2 9 0.0558

All seasons 0.6594 1.4 0.6387 9 0.7524 0.0826
IRECI Sentinel-2 Gadash 2018 9

Sentinel-2 Gadash 2019 1.1 8 0.1084
Sentinel-2 Gadot 2019 1.7 6 0.1646
Sentinel-2 Gadot 2020 1.2 6 0.0674

All seasons 0.6927 1.4 0.7688 7 0.4636 0.1233
S2REP Sentinel-2 Gadash 2018 11

Sentinel-2 Gadash 2019 2.1 12 0.1619
Sentinel-2 Gadot 2019 2.5 10 0.1750
Sentinel-2 Gadot 2020 2.1 9 0.0730

All seasons 0.1642 2.3 0.5359 10 0.2893 0.1411
REIP Sentinel-2 Gadash 2018 16

Sentinel-2 Gadash 2019 2.1 14 0.1619
Sentinel-2 Gadot 2019 2.5 8 0.1750
Sentinel-2 Gadot 2020 2.1 10 0.0730

All seasons 0.1642 2.3 0.3176 12 0.2893 0.1411
GNDVI Sentinel-2 Gadash 2018 10

Sentinel-2 Gadash 2019 1.6 12 0.1138
Sentinel-2 Gadot 2019 1.6 6 0.1287
Sentinel-2 Gadot 2020 1.4 9 0.0660

All seasons 0.6093 1.5 0.6314 9 0.6048 0.1059
TNDVI Sentinel-2 Gadash 2018 9

Sentinel-2 Gadash 2019 1.6 12 0.0955
Sentinel-2 Gadot 2019 1.5 6 0.0931
Sentinel-2 Gadot 2020 1.3 9 0.0538

All seasons 0.6456 1.5 0.6222 9 0.7572 0.0818
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Appendix C

Table A3. Performance statistics of S2/VNT-based LAI, Height, Kc models. Performance statistics of better performing VIs
can be found in Table 6.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

NDVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.5 11 0.0939
VENµS Gadash 2019 1.0 10 0.0718
Sentinel-2 Gadot 2019 1.5 5 0.0887

VENµS Gadot 2019 1.6 8 0.1115
Sentinel-2 Gadot 2020 1.2 9 0.0700

VENµS Gadot 2020 1.2 8 0.0844
All seasons 0.8099 1.4 0.6885 9 0.7009 0.0905

MTCI Sentinel-2 Gadash 2018 17
VENµS Gadash 2018 11

Sentinel-2 Gadash 2019 1.6 6 0.1439
VENµS Gadash 2019 2.1 13 0.1869
Sentinel-2 Gadot 2019 2.8 14 0.2325

VENµS Gadot 2019 2.8 10 0.1845
Sentinel-2 Gadot 2020 2.4 10 0.0869

VENµS Gadot 2020 2.1 11 0.1559
All seasons 0.0804 2.4 0.4062 12 0.2945 0.1750

IPVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.5 11 0.0939
VENµS Gadash 2019 1.0 10 0.0718
Sentinel-2 Gadot 2019 1.5 5 0.0887

VENµS Gadot 2019 1.6 8 0.1114
Sentinel-2 Gadot 2020 1.2 9 0.0701

VENµS Gadot 2020 1.2 8 0.0841
All seasons 0.7012 1.4 0.687 9 0.8103 0.0904

IRECI Sentinel-2 Gadash 2018 10
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.0 7 0.0964
VENµS Gadash 2019 0.9 7 0.1378
Sentinel-2 Gadot 2019 1.8 7 0.1753

VENµS Gadot 2019 1.7 6 0.1605
Sentinel-2 Gadot 2020 1.0 5 0.0670

VENµS Gadot 2020 1.7 9 0.1493
All seasons 0.661 1.5 0.7684 7 0.5179 0.1447

S2REP Sentinel-2 Gadash 2018 12
VENµS Gadash 2018 10

Sentinel-2 Gadash 2019 1.9 9 0.1456
VENµS Gadash 2019 2.0 11 0.1538
Sentinel-2 Gadot 2019 2.8 15 0.2199

VENµS Gadot 2019 2.7 9 0.1752
Sentinel-2 Gadot 2020 2.1 8 0.0790

VENµS Gadot 2020 2.0 10 0.1514
All seasons 0.1541 2.3 0.5588 10 0.4066 0.1616

REIP Sentinel-2 Gadash 2018 14
VENµS Gadash 2018 13

Sentinel-2 Gadash 2019 2.5 18 0.2019
VENµS Gadash 2019 1.8 8 0.1307
Sentinel-2 Gadot 2019 2.4 8 0.1611

VENµS Gadot 2019 2.8 11 0.1940
Sentinel-2 Gadot 2020 2.1 13 0.1398

VENµS Gadot 2020 2.0 9 0.1235
All seasons 0.1509 2.3 0.4815 11 0.4223 0.1591



Remote Sens. 2021, 13, 1046 20 of 25

Table A3. Cont.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

GNDVI Sentinel-2 Gadash 2018 11
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.3 10 0.0963
VENµS Gadash 2019 1.0 9 0.0779
Sentinel-2 Gadot 2019 1.9 7 0.1411

VENµS Gadot 2019 1.7 7 0.1048
Sentinel-2 Gadot 2020 1.3 8 0.0752

VENµS Gadot 2020 1.5 8 0.1075
All seasons 0.6477 1.5 0.6934 9 0.7631 0.1014

TNDVI Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 9

Sentinel-2 Gadash 2019 1.6 12 0.0992
VENµS Gadash 2019 1.1 10 0.0711
Sentinel-2 Gadot 2019 1.5 6 0.0849

VENµS Gadot 2019 1.6 8 0.1101
Sentinel-2 Gadot 2020 1.3 9 0.0675

VENµS Gadot 2020 1.1 8 0.1006
All seasons 0.6899 1.4 0.6706 9 0.7978 0.0934

Appendix D

Table A4. Performance statistics of S2/VT-based LAI, Height, Kc. Performance statistics of better performing VIs can be found in
Table 7.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

NDVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 12

Sentinel-2 Gadash 2019 2.0 14 0.1223
VENµS Gadash 2019 1.0 9 0.0665
Sentinel-2 Gadot 2019 1.2 5 0.0662

VENµS Gadot 2019 2.0 10 0.1461
Sentinel-2 Gadot 2020 1.4 10 0.0926

VENµS Gadot 2020 1.2 8 0.0863
All seasons 0.623 1.5 0.6156 10 0.743 0.1053

MTCI Sentinel-2 Gadash 2018 12
VENµS Gadash 2018 14

Sentinel-2 Gadash 2019 2.1 12 0.1649
VENµS Gadash 2019 1.5 6 0.1368
Sentinel-2 Gadot 2019 2.6 10 0.1802

VENµS Gadot 2019 2.7 11 0.1823
Sentinel-2 Gadot 2020 2.0 9 0.0906

VENµS Gadot 2020 2.0 12 0.1561
All seasons 0.2094 2.2 0.5212 11 0.4222 0.1583

IPVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 11

Sentinel-2 Gadash 2019 2.1 14 0.1253
VENµS Gadash 2019 0.7 7 0.0906
Sentinel-2 Gadot 2019 1.2 5 0.0635

VENµS Gadot 2019 1.9 9 0.1431
Sentinel-2 Gadot 2020 1.5 10 0.0971

VENµS Gadot 2020 1.2 8 0.0904
All seasons 0.646 1.5 0.6454 9 0.7233 0.1092
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Table A4. Cont.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

IRECI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 11

Sentinel-2 Gadash 2019 1.4 10 0.0916
VENµS Gadash 2019 0.8 7 0.1394
Sentinel-2 Gadot 2019 1.4 6 0.1527

VENµS Gadot 2019 1.9 8 0.1713
Sentinel-2 Gadot 2020 1.9 11 0.1588

VENµS Gadot 2020 1.3 5 0.1125
All seasons 0.6527 1.5 0.7349 8 0.5139 0.1453

S2REP Sentinel-2 Gadash 2018 9
VENµS Gadash 2018 12

Sentinel-2 Gadash 2019 2.3 16 0.1905
VENµS Gadash 2019 1.7 7 0.1186
Sentinel-2 Gadot 2019 2.5 8 0.1636

VENµS Gadot 2019 2.7 10 0.1556
Sentinel-2 Gadot 2020 2.1 11 0.1208

VENµS Gadot 2020 1.9 8 0.0978
All seasons 0.1992 2.3 0.5893 10 0.5709 0.1366

REIP Sentinel-2 Gadash 2018 11
VENµS Gadash 2018 15

Sentinel-2 Gadash 2019 2.8 22 0.2433
VENµS Gadash 2019 1.6 7 0.1249
Sentinel-2 Gadot 2019 2.4 10 0.1658

VENµS Gadot 2019 2.8 11 0.1785
Sentinel-2 Gadot 2020 2.3 14 0.1563

VENµS Gadot 2020 2.1 9 0.0887
All seasons 0.1446 2.3 0.4117 12 0.4658 0.1529

GNDVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 12

Sentinel-2 Gadash 2019 2.3 16 0.1527
VENµS Gadash 2019 0.6 7 0.1004
Sentinel-2 Gadot 2019 1.3 5 0.0980

VENµS Gadot 2019 2.1 10 0.1518
Sentinel-2 Gadot 2020 1.8 11 0.1216

VENµS Gadot 2020 1.4 7 0.0952
All seasons 0.5782 1.6 0.6342 9 0.6596 0.1216

TNDVI Sentinel-2 Gadash 2018 7
VENµS Gadash 2018 11

Sentinel-2 Gadash 2019 2.2 15 0.1303
VENµS Gadash 2019 0.7 8 0.0858
Sentinel-2 Gadot 2019 1.2 5 0.0588

VENµS Gadot 2019 1.9 9 0.1379
Sentinel-2 Gadot 2020 1.5 10 0.0940

VENµS Gadot 2020 1.2 8 0.0849
All seasons 0.6401 1.5 0.6354 9 0.7432 0.1052
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Appendix E

Table A5. Difference between performance statistics of S2/VT and S2/VNT-based LAI, Height, Kc models. If R2 is positive
and RMSE is negative, it means that this parameter performance of the combined S2/VT model is higher than the equal
parameter of the S2/VNT model. Significant differences are marked with (*). Performance statistics of better performing VIs
can be found in Table 8.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

NDVI Sentinel-2 Gadash 2018 −2
VENµS Gadash 2018 3

Sentinel-2 Gadash 2019 0.5 3 0.0284
VENµS Gadash 2019 0.0 0 −0.0054
Sentinel-2 Gadot 2019 −0.3 0 −0.0226

VENµS Gadot 2019 0.4 2 0.0346
Sentinel-2 Gadot 2020 0.2 1 0.0226

VENµS Gadot 2020 0.0 0 0.0019
All seasons −0.1869 * 0.2 −0.0729 * 1 0.0421 * 0.0147

MTCI Sentinel-2 Gadash 2018 −6
VENµS Gadash 2018 3

Sentinel-2 Gadash 2019 0.5 6 0.0210
VENµS Gadash 2019 −0.6 −7 −0.0501
Sentinel-2 Gadot 2019 −0.1 −5 −0.0523

VENµS Gadot 2019 −0.1 1 −0.0022
Sentinel-2 Gadot 2020 −0.4 −1 0.0038

VENµS Gadot 2020 −0.1 1 0.0002
All seasons 0.129 * −0.2 0.115 * −1 0.1277 * −0.0166

IPVI Sentinel-2 Gadash 2018 −2
VENµS Gadash 2018 2

Sentinel-2 Gadash 2019 0.6 3 0.0314
VENµS Gadash 2019 −0.4 −2 0.0188
Sentinel-2 Gadot 2019 −0.3 0 −0.0252

VENµS Gadot 2019 0.3 2 0.0317
Sentinel-2 Gadot 2020 0.2 1 0.0270

VENµS Gadot 2020 0.0 0 0.0063
All seasons −0.0552 * 0.1 −0.0416 * 1 −0.087 * 0.0188

IRECI Sentinel-2 Gadash 2018 −3
VENµS Gadash 2018 3

Sentinel-2 Gadash 2019 0.4 3 −0.0048
VENµS Gadash 2019 −0.1 0 0.0016
Sentinel-2 Gadot 2019 −0.4 −1 −0.0225

VENµS Gadot 2019 0.2 2 0.0108
Sentinel-2 Gadot 2020 0.8 7 0.0917

VENµS Gadot 2020 −0.4 −3 −0.0368
All seasons −0.0083 0.0 −0.0335 1 −0.004 0.0006

S2REP Sentinel-2 Gadash 2018 -3
VENµS Gadash 2018 2

Sentinel-2 Gadash 2019 0.5 7 0.0449
VENµS Gadash 2019 −0.3 −3 −0.0352
Sentinel-2 Gadot 2019 −0.3 −6 −0.0563

VENµS Gadot 2019 0.0 1 −0.0196
Sentinel-2 Gadot 2020 0.0 3 0.0418

VENµS Gadot 2020 0.0 −2 −0.0536
All seasons 0.0451 −0.1 0.0305 0 0.1643 * −0.0250

REIP Sentinel-2 Gadash 2018 −3
VENµS Gadash 2018 2

Sentinel-2 Gadash 2019 0.3 4 0.0414
VENµS Gadash 2019 −0.2 −1 −0.0058
Sentinel-2 Gadot 2019 0.0 3 0.0047

VENµS Gadot 2019 0.0 1 −0.0155
Sentinel-2 Gadot 2020 0.1 1 0.0164

VENµS Gadot 2020 0.1 0 −0.0347



Remote Sens. 2021, 13, 1046 23 of 25

Table A5. Cont.

Vegetation
Index

Dataset
LAI Height Kc

R2 RMSE R2 RMSE
(cm) R2 RMSE

All seasons −0.0063 0.0 −0.0698 * 1 0.0435 −0.0062
GNDVI Sentinel-2 Gadash 2018 −5

VENµS Gadash 2018 3
Sentinel-2 Gadash 2019 1.0 6 0.0564

VENµS Gadash 2019 −0.4 −3 0.0225
Sentinel-2 Gadot 2019 −0.6 −2 −0.0431

VENµS Gadot 2019 0.4 3 0.0470
Sentinel-2 Gadot 2020 0.4 2 0.0464

VENµS Gadot 2020 −0.1 0 −0.0123
All seasons −0.0695 0.1 −0.0592 1 −0.1035 * 0.0202

TNDVI Sentinel-2 Gadash 2018 −2
VENµS Gadash 2018 2

Sentinel-2 Gadash 2019 0.5 3 0.0311
VENµS Gadash 2019 −0.4 −2 0.0147
Sentinel-2 Gadot 2019 −0.3 0 −0.0260

VENµS Gadot 2019 0.3 2 0.0278
Sentinel-2 Gadot 2020 0.2 1 0.0266

VENµS Gadot 2020 0.1 0 −0.0158
All seasons −0.0498 0.1 −0.0352 0 −0.0546 * 0.0118
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