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Abstract: Colorado’s water supply is under threat due to climate change pressures and population
growth, however Colorado has been recognized to have some of the most progressive water con-
servation programs in the country. Limiting outdoor water consumption is an increasingly popular
approach to conserving water in semi-arid cities, yet in order to implement effective water reduc-
tion and conservation policies, more utilities and city managers need a firm understanding of the
local drivers of outdoor water consumption. This research explores the drivers of outdoor water
consumption in a semi-arid, medium-sized Colorado city that is projected to undergo significant
population growth. We used a combination of correlation and linear regression analyses to identify
the key descriptive variables that predict greater water consumption at the household scale. Some
results were specific to the development patterns of this medium-sized city, where outdoor water
use increased 7% for each additional mile (1.6 km) a household was located from the historic urban
center. Similarly, more expensive homes used more water as well. Surprisingly, households with a
higher ratio of vegetation cover to parcel size tended toward less water consumption. This result
could be because parcels that are shaded by their tree canopy require less irrigation. We discuss
these results to assist city managers and policymakers in creating water-efficient landscapes and
provide information that can be leveraged to increase awareness for water conservation in a growing,
semi-arid city.

Keywords: water consumption; water conservation; urban landscapes; tree canopy; lifestyles; urban
structure; urban ecology; semi-arid; climate change

1. Introduction

By the turn of the 20th century, Colorado began to experience a significantly warmer
and drier climate compared with the early 20th century [1]. Climate change models pre-
dict temperature increases up to 4 ◦F by 2050, relative to the 1950–1999 baseline; these
temperature increases are expected to escalate the severity of droughts and exacerbate
their impacts throughout the state [2]. Precipitation patterns remain relatively uncertain in
climate projections, while a reduction in snowpack and earlier snowmelt and runoff are
already evident [2]. Such climatic changes pose a serious threat to Colorado’s water supply,
yet water demand is expected to increase as a result of imminent population growth [3].
The pressures of climate change and urbanization underscore the need for innovative and
sustainable water management in Colorado cities.

One way to manage urban water supply is by increasing outdoor water efficiency [4,5].
The effectiveness of this strategy was demonstrated by the 2002 drought crisis in Colorado.
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In response to the drought, the state imposed temporary water restrictions, curbing overall
water consumption by 13–53% across several different municipalities [6]. However, many
local water managers are now focusing on more sustainable, long-term strategies to reduce
water consumption, such as xeriscape incentive programs [7,8]. Responsive and adaptive
conservation efforts will require more programs and policies for water efficiency that can
become a regular part of residents’ lives [9]. To help estimate the effects of policy changes
on residential consumption patterns, cities need to have a firm understanding of the local
drivers of urban water consumption [10].

Variables that describe households, neighborhoods, and the overall urban environ-
ment can play a significant role in predicting outdoor water consumption [11,12]. In fact,
studies have shown bio-physical variables describing land cover and urban structure
(e.g., house density, lawn orientation, tree canopy) can impact household-level water
use. However, some of these bio-physical variables are also a function of people’s deci-
sions and behaviors. Social-demographic descriptors (e.g., income, tenure) and marketing
datasets that are meant to characterize lifestyle preferences (e.g., conservation motives,
purchasing preferences) can play a role either directly on water use or indirectly through
landscape preferences.

To date, many studies have found inconsistent results in the relative importance of
bio-physical variables and social-demographic characteristics when trying to understand
water consumption. Some of these differences in results could be a function of both scale
and resolution of the data and analyses. For instance, some social-demographic data are
only available at the scale of a neighborhood, or what the US Census Bureau defines as a
“Block Group” [13]. Neighborhood or block group level data can be subsidized with other
household level explanatory variables of social-demographic characteristics, like housing
prices, yet these data are not entirely indicative of household socio-economic status either.
On the other hand, because of advances in remote sensing techniques, scientists often
have access to very high-resolution land cover data for cities (e.g., imagery with sub-meter
resolution) so that it is possible to distinguish between different vegetation types, and map
every single tree around each residence; therefore, the bio-physical data can be analyzed at
high resolution across multiple scales, from the entire city, to one or more neighborhoods,
to a single individual parcel surrounding one home.

Due in part to the availability of fine-resolution data on urban structure and form,
many studies have shown that bio-physical variables are important predictors of water
consumption. Most of these findings indicate that parcel size, the presence of swimming
pools, home age, and building size are important variables, but the direction and degree of
these relationships differ across studies [14–16]. For example, Stoker and Rothfeder [14]
found newer homes use more water in Salt Lake City, Utah, while Chang et al. [16]
found that older homes use more water in Portland, Oregon. Further, Sanchez et al. [17]
found that while spatial patterns of structural development drive water consumption in
North Carolina, they also noted that the bio-physical landscape was a key component in
understanding consumption patterns.

In particular, tree canopy cover is a widely studied bio-physical characteristic of cities,
and there has been a lot of interest in the relationship between tree cover and water con-
sumption in the context of residential landscaping preferences [8,18]. While urban trees are
associated with several ecological, physical, and social benefits, these benefits may be offset
by their potential cost in water consumption, especially in arid or semi-arid landscapes
where water is already scarce [19]. If trees are associated with more water consumption in
arid and semi-arid urban landscapes, cities may want to consider promoting alternative,
water-efficient residential landscapes; however, the studies on residential landscaping and
its impacts on outdoor water consumption are also inconclusive. For instance, Olmost and
Loge [20] studied landscaping techniques in Davis, California, and found that increasing
the cover of drought-tolerant grass could reduce water use by up to 40%. Alternatively,
Wentz and Gober [10] found that xeric landscaping in Phoenix, Arizona did not explain as
many residential consumption patterns as they expected, concluding that residents may not
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be adjusting their water practices to coincide with different seasonal water requirements of
their new water-efficient landscapes.

Wentz and Gober’s [10] findings exemplify the complex interplay between urban
characteristics, residents’ behaviors, and their impact on water consumption. Despite
testing for the effects of the bio-physical landscape, they found social and lifestyle watering
practices to significantly affect their results. Many studies have further investigated the
role of social characteristics on water consumption, and often they find similar trends. One
common trend is that households of higher socio-economic status use more water to main-
tain lawns, gardens, swimming pools, and other water features [11,12,21]. Additionally,
homeowners tend to use more water than renters [21]. The age of household members
and household size can also influence water consumption due to differing daily household
choices, including the fact that, families with young children or teenagers may be more
likely to install swimming pools [22].

Some of these household-level decisions are influenced by lifestyle choices. Lifestyles
are a more complex facet of social characteristics, encompassing attitudes, opinions, values,
feelings, intentions, and habits [23]. Jorgensen et al. [21] found that consumer conservation
motives were highly impacted by perceptions of how other people behaved, indicating
social norms and “trust in others” play a significant role in conservation behavior. Bollinger
et al. [24] analyzed peer effects on water conservation in Phoenix and found that households
are more likely to switch to water-efficient landscapes if their peers do the same, supporting
the notion that the perception of others’ behavior may be important for understanding
water consumption patterns.

It is indisputable that a wide range of variables influence water consumption, as
identified by previous studies. The complex nature of these studies suggests that trends in
outdoor water consumption will be dependent on the study region as well as the unique bio-
physical, social-demographic and resident lifestyle characteristics exhibited by households
in that city. Furthermore, many of the studies investigating water consumption drivers
have been conducted in highly developed urban systems such as Phoenix, Arizona [25] and
Los Angeles, California [26]. Few studies have investigated water consumption drivers
in growing, semi-arid cities where increased population is expected to exert substantial
stress on local water supplies [27], and where there is the opportunity to improve water
efficiency and literacy in the local community during the urbanization process. To better
understand the drivers of water consumption and compare across cities, scientists must
analyze more cities of different sizes and development stages.

Our study adds to the scientific literature by investigating the relationships between
single-family households and outdoor water consumption in a growing, semi-arid Col-
orado city, hereafter known as the “City”. The objectives of this study were to (1) determine
which bio-physical, urban structural, social-demographic and lifestyle variables may be
driving outdoor water consumption and compare their importance; and (2) discern relation-
ships between vegetation type (trees vs. herbaceous cover) and outdoor water consumption
at a single-family residential parcel scale. We expected water consumption in this City to
be predominantly driven by bio-physical characteristics, as it is a water-limited landscape
that is sensitive to vegetation preferences. Specifically, we hypothesized that the presence
of trees would decrease outdoor consumption due to tree shading and evaporative cooling
effects, whereas herbaceous cover would increase consumption because people tend to
prefer, and therefore water, green and thriving grass. We then discuss our results in context
of planning and policy for municipalities and local government.

2. Materials and Methods
2.1. Study Area

This growing city in northern Colorado is a vibrant community transitioning from a
large, suburban town to a small urban city [28]. Currently, the population is 174,871 [29],
but it is expected to experience significant population growth and development in the
coming decades. Located at the base of the Rocky Mountains of the northern Front Range, it
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lies approximately 5000 ft (1524 m) above sea level. It sits about an hour north of Denver via
a major interstate (I-25), and 40 min northeast of Boulder. The region is semi-arid, receiving
an average of about 14.44 in (36.68 cm) of precipitation per year from 2016–2019 [30]. The
area is primarily dominated by grassland east of the foothills, but the City itself contains
an extensive urban forest. Near the north-central part of the City is a historic urban center
comprised of natural open spaces, tourist attractions, restaurants, and retail and novelty
shops. This historic center regularly attracts many residents and tourists alike [31] and
serves as an important place for the community in the City.

The local municipality also prioritizes the well-being of the community through
proactive and informed urban planning. For decades, the municipal water utility has
promoted innovative water policies that focus on conservation and efficiency. Recognizing
local population growth, the municipal water utility seeks to develop and promote water-
efficient landscapes that will support long-term water availability for all residents, reflect
its semi-arid climate, and encourage greater integration of water efficiency into land use
planning and building codes [32]. To encourage sustainable living at the personal and
community level, this City hopes to leverage metered water use data to communicate
better and increase awareness of consumption and to help promote water literacy in the
community.

Due to the preferences of the local utility, we performed this analysis using English
units; however, we have added metric conversions in parentheses.

2.2. Water Consumption Data

Metered household-level water consumption data were provided by the local munici-
pality. In the original dataset, all households had different billing dates, resulting in billed
monthly consumption data that did not align with the calendar months. To make all the
household level data comparable, we standardized water use according to the calendar
month (Table 1).

Table 1. Average monthly consumption across all single-family parcels in total gallons (liters) and gallons
per day (liters per day), provided by the utilities department in a semi-arid city in Northern Colorado.

Time Period Total Gallons (L) Gallons/Day (L/Day)

January 3983.36 (15,078.66) 128.50 (486.43)

February 3724.79 (14,099.86) 128.44 (486.20)

March 4088.88 (15,478.09) 131.90 (499.30)

April 4314.89 (16,333.64) 143.83 (544.46)

May 6968.23 (26,377.62) 224.78 (850.88)

June 13,211.25 (50,010.02) 440.38 (1667.02)

July 16,032.09 (60,688.06) 517.16 (1957.66)

August 14,151.63 (53,569.75) 456.50 (1728.04)

September 11,229.00 (42,506.39) 374.30 (1416.88)

October 7108.23 (26,907.58) 229.30 (867.99)

November 4461.60 (16,888.99) 148.72 (562.97)

December 4177.59 (15,813.90) 134.76 (510.12)

Once we had corrected the metered water use for each calendar month, we isolated
outdoor water use, as our primary goal was to identify the characteristics that may ex-
plain outdoor irrigation. To distinguish between indoor and outdoor use, we used the
following formulas:

Cs = JunT + JulT + AugT (1)

Cw = DecT + JanT + FebT (2)
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Co = Cs − Cw (3)

where Cs refers to total summer consumption (indoor and outdoor), Cw refers to winter
consumption (indoor) and Co is the resulting summer outdoor consumption. JunT, JulT,
and AugT denote the total gallons/liters used in June, July and August, while DecT,
JanT, and FebT denote the total gallons/liters used in December, January and February. Cw
represents indoor consumption because we assumed that no one waters outdoor landscapes
in Colorado during the winter months. Across all households, the average winter indoor
use was approximately 4000 gallons (15,000 L)/month (Figure 1) and the average summer
use was approximately 14,000 gallons (53,000 L)/month.
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Figure 1. Metered water consumption. Blue bars represent the average household monthly consump-
tion trends (total gallons/liters) across all single-family parcels, while the orange line represents
winter monthly average.

2.3. Response Variable

Given that the size of each parcel can directly influence the amount of water needed
during the summer season, we normalized outdoor water use by the amount of available
irrigatable space within each parcel. We assumed that people are not intentionally watering
impervious surfaces, such as driveways or patios, but rather they are only watering the
pervious area within the parcel boundary (e.g., lawns, trees).

We used high-resolution raster land cover data (1 m2), derived from a combination
of WorldView-2 satellite imagery and LiDAR using object-based feature extraction tech-
niques [33,34] to distinguish irrigatable space from non-irrigatable space. This land cover
dataset consisted of seven classes: trees, herbaceous vegetation, bare soil, water, buildings,
roads and railroads, and “other” paved surface cover (e.g., driveways, parking lots, side-
walks, etc.) (Figure 2). The overall accuracy of the land cover dataset was calculated to
be 95% based on a hybrid stratified-random accuracy assessment using 2400 points [35].
We used the ArcGIS Pro (Version 2.5.1) Erase tool to remove buildings and other paved
surfaces from each parcel, leaving only the area of irrigatable space (Figure 3).
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Our final response variable was calculated by taking summer water use (total gallons)
and dividing it by the amount of irrigatable space (ft2) on each parcel, resulting in summer
water use that ranged from approximately 0–218 gallons/ft2 (0–8883 L/m2) (Figure 4). Since
the response was heavily skewed, we performed a log-transformation to meet normality
assumptions for analysis.
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2.4. Explanatory Variables

Social-demographic data, as well as house density, were provided by the US Census
Bureau’s American Community 5-Year Survey program [13] for 2016. Based on previous
studies [11,12,14–16], we chose predictor variables that describe features such as ethnicity,
tenure, household size, income and educational attainment (Table 2). These data were
provided at a block group scale, which consists of several census blocks within the same
census tract. Since we were unable to attain parcel-scale data, we disaggregated the broader-
scale census block group data to estimate the social characteristics of each household. In
doing so, we made assumptions about the social structure of each household, which does
not necessarily depict its true condition.

Table 2. Descriptive statistics of continuous bio-physical, urban structural and social-demographic explanatory variables.
Data obtained at the census block group scale were disaggregated, where each household was assigned the value for their
respective block group.

Variable Scale Obtained Min Mean Max

Population Density per hectare (10,000 m2) Census block group
Census block group
Census block group

1.66 17.57 68.87

% White 33.71 83.87 97.95

% Black/African American 0.00 0.99 6.16

% Hispanic/Latino Census block group
Census block group

0.00 10.21 63.21

% Asian 0.00 2.34 16.14

% College Graduates Census block group
Census block group
Census block group
Census block group

2.69 20.29 34.41

House Density per hectare (10,000 m2) 0.68 7.23 29.51

% Owner 0.65 23.13 42.78

% Renter 1.63 15.98 53.66

% Single Person Households Census block group
Census block group

1.47 9.30 38.76

% 3+ Person Households 0.00 2.30 11.69

% Family Households Census block group 2.21 23.13 35.52

% Married Households Census block group 0.72 18.51 31.47

Median Household Income ($) Census block group 15,833 66,311 124,643

Parcel Size in ft2 (m2) Household 1066 (99) 9410 (874) 840,129 (78,050)

% Trees (in irrigatable space) Household 0.00 48.66 100.00

% Herbaceous (in irrigatable space) Household 0.00 48.25 100.00

Age of Home (years) Household 2 40.67 152

Home Value ($) Household 96,100 423,365 2100,000

% Herbaceous * % Trees Household 0 1925 2500

Vegetation/Parcel size Household 0.02 0.61 0.99

Distance to Historic Center in mi (km) Household 0.17 (0.27) 3.01 (4.84) 5.95 (9.58)

LST (◦F) 100 m2 (resampled to 30 m2) 80.68 92.52 101.39

NDVI 100 m2 (resampled to 30 m2) 0.13 0.46 0.72

To estimate the effects of trees versus herbaceous vegetation within parcels, we used
the land cover dataset to calculate percent cover of both vegetation types within the
irrigatable space. Bare soil also comprised an extremely small proportion of irrigatable
space per parcel (0–1%), but since it is not considered a land cover class that requires water,
it was not included in this analysis. We created an interaction term by multiplying the
percentage of trees and percentage of herbaceous cover in irrigatable space to obtain the
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effects of combined vegetation cover, and a second interaction term dividing irrigatable
area by the total area of the parcel to obtain a ratio of vegetation to parcel size (Table 2).

We utilized the United States Geological Survey Landsat 8 Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS) imagery to derive variables for Land Surface
Temperature (LST) and Normalized Difference Vegetation Index (NDVI). LST provided
an average estimation of surface temperature over the course of the summer months,
while NDVI provided a measure of “greenness”, where higher NDVI values imply greener
vegetation. Using imagery for five dates in 2016 (29 May, 14 June, 16 July, 1 August, and
17 August), we derived a mean composite image to calculate LST, and a median composite
image to calculate NDVI (Table 2). These data were gathered at a 100 m2 spatial resolution
but were resampled and provided at a 30 m2 resolution. Using data that are resampled
to a finer resolution inherently limits the ability to capture the true spatial variation of
LST and NDVI at the household scale, as we are inferring fine-scale variation based on
broad-scale information.

Lifestyle indicators were obtained from ESRI’s 2018 Tapestry LifeMode Group data [36],
a demographic dataset that provides detailed descriptions of neighborhood block group
residential areas based on their purchasing preferences (Table 3). These data were also dis-
aggregated from the census block group scale. These data describe lifestyle characteristics
such as financial investments, common recreational activities, preferred media platforms,
and generational trends.

Table 3. Categorical explanatory variables. The lifestyle classification data were obtained from ESRI
Tapestry Segmentation data. Lawn orientation for each household was calculated based on the angle
of the front lawn from the nearest road.

Category Variable Scale Obtained Parcel Count

Affluent Estates Census block group 1367

Upscale Avenues Census block group 1896

Uptown Individuals Census block group 49

Family Landscapes Census block group 2319

GenXurban Census block group 4999

Lifestyle Classification Middle Ground Census block group 8247

Senior Styles Census block group 91

Rustic Outposts Census block group 151

Midtown Singles Census block group 901

Next Wave Census block group 17

Scholars and Patriots Census block group 4134

East Household 3184

Northeast Household 2829

Lawn Orientation

North Household 3341

Northwest Household 2643

West Household 3439

Southwest Household 2878

South Household 3293

Southeast Household 2564

We acquired assessor’s data on the age and value of each parcel from the local mu-
nicipality [37] (Table 2). These data are unique for each parcel and exist at a finer spatial
resolution than census data. We also calculated the direction of the front lawn for each
parcel with the Near tool (using local roads as the “Near Feature”) in ArcGIS Pro (Version
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2.5.1), assuming that households generally water their front yard more than their back yard.
Cardinal and intercardinal directions were determined based on the angle of the lawn from
the closest road (e.g., 30◦ represents a Northeast-facing lawn) (Table 3). We used visual
validation to ensure these measurements were accurately representative.

Upon exploring the final dataset, we found several discrepancies. A relatively small
number of parcels had negative consumption values, suggesting those households used
more water during the winter than in the summer, so we removed them from the analysis
(n = 1658). Often, students and renters leave during summer, and no one is living in these
households. We also removed households that appeared to be under construction in 2016
because those parcels do not represent typical outdoor water consumption in the City
(n = 7). Finally, we removed households that did not have any irrigatable space (n = 4), as
well as several homes that had inaccurate or unrealistic assessor’s data for their date of
construction or for their value (n = 117). Removing observations that met these criteria left
us with over 24,000 observations for analysis.

2.5. Correlation Analysis

We compared relationships between each explanatory variable and summer con-
sumption using Spearman’s correlation. By analyzing correlation coefficients, we were
able to estimate the degree of increase or decrease in water consumption associated with
each explanatory variable, as we were interested in the context of these relationships
when assessing the regression model outputs. We used the spearmanCI function from the
spearmanCI package (Version 1.0) [38] to obtain correlation coefficients.

2.6. Random Forest for Variable Selection

Random Forest (RF) [39] is a nonparametric machine learning method based on
decision trees. RF does not assume normal distribution of data or independence of samples,
inherently considers interactions among covariates, and often performs better on ecological
data than parametric models [40].

One of the benefits of the machine learning RF algorithm is that it has several options
for variable selection methods that reduce the number of explanatory variables needed in
regression modeling. Ideally, the number of variables should be minimized to improve
parsimony when developing regression models, and variable selection methods can iden-
tify the most important explanatory variables based on their contribution to variance
explained [41]. We applied the rf.modelSel function in the rfUtilities package (Version 2.1-
5) [42] for variable selection, a process that ranks all variables in order of their explanatory
power. We chose to implement a RF approach for variable selection due to the complexity
of the dataset, and we wanted to account for potential interactions between explanatory
variables.

2.7. Regression Modeling

We incorporated all variables from the RF variable selection process in an Ordinary
Least Squares (OLS) regression to determine which characteristics may explain outdoor
consumption. In R, the lm function from the stats package (Version 3.6.2) [43] was used for
the OLS model. We assessed the effect of each variable in the model using Cohen’s F effect
size statistic. Based on Sawilowsky [44], Cohen’s F values generally range from 0.01 (very
small effect) to 2.0 (very large effect), where a medium effect lies around 0.5.

We used the variance inflation factor (VIF) to test for multicollinearity in our OLS
model. A VIF threshold of 5 is often considered a high correlation and would require us to
adjust predictor variables [45]. We used the vif function from the car package (Version 3.0–
9) [46] to test the VIF in R, and we systematically removed variables until collinearity was
no longer present in the OLS model.
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3. Results
3.1. Correlation Analysis

The correlation results revealed that homes farther from the historic center had the
strongest positive relationship to water consumption overall (Figure 5). This result also
reflects development patterns within the City, as much of the development has occurred
outward from the historic center. Most of the households located at a greater distance
from the historic center are in relatively newer neighborhoods, and these households tend
to be associated with greater water consumption. Conversely, the ratio between the area
of vegetation and parcel size had a strong negative relationship to water consumption.
This result suggests that homes with less vegetation relative to their parcel size used more
water. Parcel size itself, along with home age, also displayed a strong, negative relationship
(Figure 5).
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Figure 5. Spearman’s correlation results. Positive coefficients suggested that increasing the variable resulted in greater
water consumption, while negative coefficients suggested that increasing the variable resulted in less water consumption.
For example, older homes were associated with less water consumption.

We also found that higher-income households, as well as households located in neigh-
borhoods with more families and married couples, college graduates, and homeowners,
were all significantly associated with more water use (Figure 5). Several lifestyle variables
that typically indicate homes of higher socio-economic status were also displaying more
water use, such as Upscale Avenues, Family Landscapes and Affluent Estates. Of all the
social-demographic variables, 3+ person households had the strongest negative relation-
ship to water consumption in the correlation analysis, followed by renters. Lifestyles that
were negatively associated with water use included Scholars and Patriots, Middle Ground,
and Midtown singles, which generally indicate middle to lower socio-economic status
(Figure 5).
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The correlation analysis revealed a significant relationship between tree canopy and
water consumption and suggested that homes with greater presence of tree canopy were
associated with less water use (Figure 5). Meanwhile, homes with more herbaceous cover
had a relatively strong and significant positive relationship to water consumption (Figure 5).

3.2. OLS Regression

The final model consisted of a combination of 16 bio-physical, urban structural and
social-demographic variables and explained roughly 20% of the variability in water con-
sumption (R2 = 0.211) (Table 4). The final variables had a very small to medium effect on
water consumption in the context of the Cohen’s F statistic, as indicated by values ranging
from 0.006 to 0.302.

Table 4. Variables from the OLS regression. Variables are listed in order of their contribution to
the OLS model, with higher Cohen’s F values indicating a greater effect on the model, while the
coefficient represents the magnitude of impact.

Variable Coefficient Std. Error p Value Cohen’s F

Intercept −4.506e-01 2.543e-01 0.0764 -

Vegetation/Parcel size −1.573e+00 5.310e-02 <2e-16 0.302

Parcel Size −1.329e-05 4.423e-07 <2e-16 0.229

Distance to Historic Center 7.718e-02 7.674e-03 <2e-16 0.227

Home Value 1.386e-06 5.656e-08 <2e-16 0.214

Home Age −5.240e-03 4.213e-04 <2e-16 0.098

% Trees −3.807e-03 3.201e-04 <2e-16 0.075

% 3+ Person HH −2.551e-02 3.226e-03 2.73e-15 0.062

% College Graduates 1.025e-02 1.422e-03 5.74e-13 0.043

% Family HH 4.992e-03 1.990e-03 0.0121 0.040

LST 1.271e-02 2.463e-03 2.48e-07 0.038

% Owner −4.830e-03 1.446e-03 0.0008 0.035

% Black/Afr. Am. Pop −2.678e-02 4.996e-03 7.06e-08 0.035

% Asian Pop 7.134e-03 2.377e-03 0.0027 0.018

House Density 6.026e-03 2.189e-03 0.0059 0.014

NDVI 7.944e-01 9.624e-02 <2e-16 0.009

% Hispanic/Latino Pop 3.748e-03 9.922e-04 0.0002 0.006

Based on our model results, the ratio between the area of vegetation and parcel size
(Cohen’s F = 0.302), as well as parcel size itself (Cohen’s F = 0.229), and the distance to the
historic center (Cohen’s F = 0.227) had the greatest effects on the model, all of which were
significant (Table 4). The model indicated that higher ratios between vegetation and parcel
size exhibited lower water use. Although parcel size had a relatively important effect on
the model itself, its magnitude of impact was small, decreasing water consumption by less
than 1% for every additional 1000 ft2 (93 m2) in size. The distance to the historic center had
a large magnitude of impact in the model, increasing water consumption by ~7% for every
additional mile (1.6 km) from the historic center.

Home age (Cohen’s F = 0.098) and the percent of tree cover (Cohen’s F = 0.075) also
had relatively important effects on the model; both also had a relatively large magnitude of
impact, where water consumption decreased by ~5% for every 10 years of age, and ~4%
for every additional 10% of canopy cover. With the exception of home value (Cohen’s
F = 0.214), most of the social-demographic variables, as well as house density, LST and
NDVI, had less of an effect on the model, as indicated by small Cohen’s F values.
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Home value had the greatest effect of all the social-demographic variables and was
associated with significantly more water use in the model (Cohen’s F = 0.214), although
its magnitude of the impact was small (Table 4). Households located in neighborhoods
with more college graduates were also associated with significantly more water use, but
had less of an effect than home value (Cohen’s F = 0.043). On the contrary, the percent-
age of 3+ person households had a small but relatively important effect on the model
(Cohen’s F = 0.062), and significantly reduced water consumption (Table 4). Similarly, the
percent of tree canopy had a small but relatively important effect (Cohen’s F = 0.075) and
was associated with significantly less water consumption (Table 4).

4. Discussion
4.1. Bio-Physical Composition and Urban Structure Greatly Affected Water Use

Of all the variables we tested, the regression model suggested that a combination of
bio-physical (e.g., landcover, vegetation type), urban structural (e.g., parcel size, distance
to historic center) and social-demographic (e.g., home value) variables explained most of
the variance of water consumption in the City. The final model included most of the bio-
physical and urban structural variables that were a part of the correlation analyses, notably
excluding lawn orientation. In other words, 44% of the bio-physical/urban structural
variables, and 32% of the social-demographic/lifestyle variables, we initially tested were
included in the final model. The three most impactful variables included the ratio between
vegetation and parcel size, parcel size, and distance to the historic town center.

Our results showed that smaller yards, or smaller irrigatable areas relative to total
parcel size, and smaller parcels used more water. This result was contrary to what is often
discussed in the literature [14–16], where large parcels are generally expected to have
greater water requirements. Our findings may be due to the fact that larger yards have
greater maintenance requirements in semi-arid ecosystems than in temperate ecosystems,
and therefore residents with larger yards in semi-arid cities may steer away from landscapes
that require a lot of water. Alternatively, it requires less effort to create and maintain a
green landscape on small properties, particularly on smaller yards. Furthermore, since
small properties are often positioned closer to their neighbors, these households may be
more influenced by social norms [47] or have Homeowners Associations (HOAs) enforcing
highly maintained green landscapes [48]. Over time, social norms can result in landscape
conformity, and may play an important role in whether people choose to have a green
landscape [21]. The desire to conform to neighborhood aesthetics may prompt households
to maintain green lawns in a space where, due to its smaller size, it is already more viable
to irrigate compared to a larger parcel.

Parcels located farther from the historic center were associated with higher water use,
possibly because these newer areas are still being transformed from the natural, semi-arid
grassland and agricultural land to a more irrigated, green landscape. Conversely, older
parts of the city already contain denser, more mature tree cover and established green space
compared to the outskirts of the city. These older areas were generally associated with
less water use, suggesting that maintaining this established urban green space generally
requires less water than developing the urban green space in newer neighborhoods.

4.2. Higher Socio-Economic Status Was Associated with More Water Use

Home value was the most important social-demographic variable, with higher-valued
homes using more water. This finding is consistent with previous studies, where households
of higher socio-economic status tend to use more water [11]. We reviewed correlation results
of other variables indicative of higher socio-economic status, including income, the percentage
of college graduates, Upscale Avenues, Family Landscapes and Affluent Estates lifestyles,
and found they were also associated with greater water consumption. House-Peters et al. [7]
yielded similar results for Portland, Oregon, where newer, larger homes with higher property
values and more affluent and educated residents used the most outdoor water. These results
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indicate that, like the larger cities previously studied, socio-economic status may be an
influential factor on outdoor water consumption in this City.

4.3. Trees Were Associated with Less Water Consumption

One of our goals was to compare the percentage of tree versus herbaceous cover in
residential parcels to understand the relative influence of vegetation types on outdoor
water consumption. It is well established that trees provide benefits in urban regions,
particularly in arid and semi-arid climates where shade trees can create a significantly more
comfortable urban environment [49], yet many studies have suggested trees are disservices
in these regions because they are associated with increased water costs [11,50,51]. Therefore,
many cities prone to drought must consider tradeoffs between maintaining a vegetated
landscape and preserving critical water resources.

We found that herbaceous cover is the only vegetation variable that was associated
with higher water consumption. More tree cover, however, was associated with lower
water consumption. The interaction term, combining the percent tree cover and percent
herbaceous cover, was also correlated with lower water consumption.

The central part of the City, near the historic center, contains a large amount of
green space, including tree canopy and many irrigated lawns. Urban trees in this region
are typically large and aged, and they provide critical shade that aids in controlling the
microclimate. It is possible this shade prevents a large portion of the water used for
irrigation from evapotranspiring [52,53]. Since evapotranspiration is a function of solar
radiation [25], tree canopy shade may be blocking direct radiation, thus slowing the rate
at which lawns dry out and decreasing the need for frequent irrigation to maintain them.
It is important to note that this result is dependent on the assumption that the land cover
underneath trees is mostly dedicated to lawn cover. Future studies in this City, and many
others, need to quantify the landcover underneath trees.

Furthermore, households farther from the historic urban center were associated with
more water use, and they also tend to have lower tree canopy. It is unclear if these residences
were using more water for lawn irrigation, or for planting trees, or both. Regardless of the
type of vegetation, the initial phases of landscape establishment require large amounts of
water [54].

In conclusion, our results showed that mature trees may decrease the need for metered
outdoor water use, and/or that people do not water mature trees. This does not mean
that trees do not need or use water. Studies have shown that although trees have water
requirements, once trees are established, they tend to pull water from underground reserves
(e.g., runoff, groundwater), potentially lowering irrigation requirements [55]. It is also
important to note, that even though people may not be watering their trees with metered
water, it does not mean that trees are not receiving water subsidies from nearby landscapes
that are being watered. For instance, in California, there is preliminary evidence that when
homeowners remove lawns and replace them with water-wise landscapes, that nearby
trees, and especially mature trees in the right-of-way, begin to decline [56]. Furthermore,
some species of trees need more water than others, and in particular, trees native to
semi-arid ecosystems may require more water than non-native trees due to their stomatal
adaptations [18,57,58]. Nonetheless, based on our results, we expect that once trees are
established, they may help mitigate outdoor irrigation on single-family parcels.

4.4. Policy Implications

Our results suggest that cities in semi-arid ecosystems may want to incentivize the es-
tablishment of landscapes that can reduce outdoor water-use over the long-term. Although,
many water-limited cities have established regulations to reduce water consumption dur-
ing droughts, or have provided incentives for water-wise landscaping, it is possible that
mature tree canopy will also be needed to support water conservation policies that mitigate
the impacts of climate change and the urban heat island effect. Further, our results suggest
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these policies may be most valuable when targeting newer neighborhoods where people
are in the process of designing and establishing their landscapes.

Since higher socio-economic status households were associated with greater water
consumption, it may also be important to promote the benefits of, or perhaps set require-
ments for, smart irrigation technology or xeriscaping in neighborhoods where households
have more access to such environmental amenities. Introducing building codes that require
smart irrigation technology, or a percentage of the property to be xerophytic vegetation in
place of grass, are some practical examples. Understanding the role of HOAs in water-use
patterns is also a valuable next step. If HOA’s guidelines are indeed leading to more
outdoor water use in this city, and others, it will be essential to work closely with these
groups on developing water conservation policies and neighborhood norms.

Although mandatory regulations have historically been used in the state, the local
utility uses them as a conservation tools when the City is under severe water stress but
does not recommend them as standard practice for water efficiency in the community. For
instance, a study by Olmstead and Stavins [59] showed that a combination of conservation
approaches (e.g., landscape education programs and watering regulations) resulted in
small but significant reductions in total water use, as opposed to mandatory regulations
which had mixed results. Therefore, programs that emphasize water and landscape
literacy may continue to be an important strategy for local utilities. Interactive classes or
certifications, incentives and rebates, and quantified savings may help motivate people
to approach water conservation from a voluntary standpoint. Voluntary programs target
lifestyle change [9], which is typically more long-term and sustainable. Lifestyle changes
would also ease the community’s transition to water-efficient practices for when droughts
become more prevalent. Moreover, the impacts of these incentives and voluntary water
conservation programs can be evaluated and should be a priority for future research in this
city and others.

4.5. Misalignment in Spatial Scales Hinders Our Understanding of Social and Lifestyle Effects

Other than home value, all of the social-demographic and lifestyle data were pro-
vided at a coarser resolution than the bio-physical data. The coarser-scale variables were
disaggregated from a larger block group scale; therefore, houses within the same block
group were assigned the same generalized social-demographic and lifestyle information,
rather than a unique value for that household, and may not accurately depict the unique
situation of each household. Unique, parcel-level, social and lifestyle data may show trends
associated with human behaviors and decision-making that were undetectable in this
analysis due to coarse spatial resolution. In the future, in-depth interviews or household
level surveys would allow us to discern mechanistic relationships between people’s values
and perceptions and water conservation behaviors.

4.6. Future Directions

Although our analysis included a large range of potential predictors of outdoor water
consumption, there are additional explanatory variables that could be explored in the
future. For instance, the presence of outdoor water features, like swimming pools and
hot tubs, has been shown to impact water consumption and there is reason to believe
that more households are adding these features to their properties, especially with social
distancing guidelines presented during our most recent covid-19 pandemic. Landscape
configuration (e.g., spatial arrangement of buildings or vegetation) plays an important role
on urban structure and microclimate and has been shown to impact water consumption
patterns [17,60]. Furthermore, landscape metrics such as vegetation patch size and tree
density can provide additional insight on irrigation trends, particularly under changing
climate and precipitation patterns. We also did not have data for irrigated versus non-
irrigated herbaceous cover and have not yet quantified the type of land cover beneath tree
canopy. Finally, attaining information on vegetation species, or which households have
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undergone a xerophytic transition, will help us understand the impact of xeriscaping on
water use.

5. Conclusions

It is generally understood that a wide array of urban characteristics within cities
can have important impacts on outdoor water consumption patterns; however, the main
driving characteristics and their degree of influence is debated and inconsistent in the
literature. These characteristics may include bio-physical composition (e.g., vegetation
type), urban structure (e.g., parcel size), social-demographic patterns (e.g., income), or
lifestyle behavior (e.g., conservation motivation).

Similar to other studies on outdoor metered water consumption, we found that
indicators of higher socio-economic status, in our case study housing prices, were associated
with more water use. We were also not surprised that parcels with more area dedicated to
herbaceous cover like lawns were significantly correlated to high outdoor water use.

In this semi-arid city along the Colorado Front Range, there were some important
deviations from the norms that have been established in larger temperate cities. Although
at first, the most important characteristics for explaining outdoor residential water (ratio
between parcel size and vegetation cover, parcel size itself, and the distance to the historic
urban center) might not seem all that surprising, it is the directionality of these relationships
that were somewhat unexpected. For instance, smaller parcels, and parcels with a small
yard (e.g., irrigatable space) relative to the parcel size were associated with greater water
consumption. We suspect in a semi-arid city, where water is limited and urban vegetation
requires maintenance and subsidies, that people are unlikely to choose landscapes that
require a lot of irrigation. Further, households with smaller parcels may be more likely to
conform to neighborhood social norms or feel pressure from groups like HOAs to keep
their small grassy areas as green as possible.

There has been extensive research focused on the ecosystem services provided by
trees, but water-limited cities tend to worry about the tradeoffs between tree planting
and maintenance programs, and water and native biodiversity conservation. Our results
showed that people may not be actively watering their trees, especially when tree canopy
is established and mature, like in the older neighborhoods that have up to 70 percent
tree cover. Higher tree cover could also be providing critical shade, keeping the region
cooler, and also reducing the evapotranspiration of lawns, and therefore their demand
for precious water resources. Cities can incentivize voluntary landscape solutions that
reduce irrigated herbaceous cover and also increase mature tree cover over time. These
creative solutions will become even more important to semi-arid cities into the future, as
temperatures continue to increase and precipitation decreases with global climate change,
and as persistent urbanization continues to put pressure on local water resources.
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