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Abstract: The Federated Satellite System mission (FSSCat) was the winner of the 2017 Copernicus
Masters Competition and the first Copernicus third-party mission based on CubeSats. One of FSSCat’s
objectives is to provide coarse Soil Moisture (SM) estimations by means of passive microwave
measurements collected by Flexible Microwave Payload-2 (FMPL-2). This payload is a novel CubeSat
based instrument combining an L1/E1 Global Navigation Satellite Systems-Reflectometer (GNSS-R)
and an L-band Microwave Radiometer (MWR) using software-defined radio. This work presents the
first results over land of the first two months of operations after the commissioning phase, from 1
October to 4 December 2020. Four neural network algorithms are implemented and analyzed in terms
of different sets of input features to yield maps of SM content over the Northern Hemisphere (latitudes
above 45º N). The first algorithm uses the surface skin temperature from the European Centre of
Medium-Range Weather Forecast (ECMWF) in conjunction with the 16 day averaged Normalized
Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to estimate SM and to use it as a comparison dataset for evaluating the additional models. A
second approach is implemented to retrieve SM, which complements the first model using FMPL-2 L-
band MWR antenna temperature measurements, showing a better performance than in the first case.
The error standard deviation of this model referred to the Soil Moisture and Ocean Salinity (SMOS)
SM product gridded at 36 km is 0.074 m3/m3. The third algorithm proposes a new approach to
retrieve SM using FMPL-2 GNSS-R data. The mean and standard deviation of the GNSS-R reflectivity
are obtained by averaging consecutive observations based on a sliding window and are further
included as additional input features to the network. The model output shows an accurate SM
estimation compared to a 9 km SMOS SM product, with an error of 0.087 m3/m3. Finally, a fourth
model combines MWR and GNSS-R data and outperforms the previous approaches, with an error
of just 0.063 m3/m3. These results demonstrate the capabilities of FMPL-2 to provide SM estimates
over land with a good agreement with respect to SMOS SM.

Keywords: GNSS-R; L-band; microwave radiometry; CubeSat; soil moisture

1. Introduction

Soil Moisture (SM) is one of the Essential Climate Variables (ECVs) [1] needed to better
understand the water cycle. The soil is a natural water reservoir, and it is used by plants as a
nutrient carrier. The amount of SM has great relevance in dividing incoming radiation over
land into latent and sensible heat fluxes through evaporation and transpiration and in par-
titioning precipitation into runoff, subsurface flow, and infiltration. The risk of flooding [2]
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and erosion [3], the deployment of sustainable irrigation policies, the prevention of forest
fires, the assessment of vegetation senescence, and the comprehensive understanding of
land-atmosphere feedback loops in a changing climate require constant SM monitoring [4].

There are several methods to measure SM, each of them having different spatio-
temporal resolutions. First, in situ probes are able to provide continuous and accurate
measurements at a single point, but they have limited spatial coverage, so they are not
feasible to intensively monitor large areas. Second, proximal soil sensing technologies, such
as electromagnetic induction and ground-penetrating radar, are increasingly being used to
sense SM in many field experiments. This technology provides good accuracy and better
coverage as compared to probes, but with lower temporal resolution [5–7]. Finally, remote
sensing techniques, including airborne and spaceborne platforms, have been broadly used
over extended regions, allowing sensing SM at a global scale.

Focusing on satellite remote sensing, currently, there are different sensors to retrieve
the surface SM (i.e., the water content within the first centimeters of the soil) [8]. Their pene-
tration depth mainly depends on the frequency of operation, decreasing with the frequency
and the SM conditions, being higher for dry soils than for wet soils. Optical based sensors,
as those acquiring reflectances or thermal infrared data [9–11], have been used to retrieve
SM due to their high spatial resolution, but they are limited by the vegetation cover and
the cloud conditions and cannot acquire during night time. Passive microwave based
sensors are neither affected by clouds, nor Sun illumination. In this regard, two L-band
radiometers, as the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS)
instrument onboard the Soil Moisture and Ocean Salinity (SMOS) mission from the Eu-
ropean Space Agency (ESA) [12], and the one onboard the Soil Moisture Active Passive
(SMAP) mission from the National Aeronautics and Space Administration (NASA) [13], are
currently providing surface SM measurements with global coverage with an average revisit
time of ∼3 days and a spatial resolution of ∼40 km. Moreover, active microwave based
sensors (radars), such as scatterometers (e.g., Neiami et al. [14]) or Synthetic Aperture
Radars (SAR) (e.g., Hegarat et al. [15], Pathe et al. [16], Srivastava et al. [17], Paloscia
et al. [18], or Gorrab et al. [19]) have also been used to retrieve near-surface SM indices from
space. Recently, a multi-static radar approach based on Global Navigation Satellite System-
Reflectometry (GNSS-R) has also been proven to allow SM retrievals from space [20–22].
Observations provided by the TechDemoSat-1 (TDS-1) mission have proven to be sensitive
to SM [23,24], indicating that GNSS-R is capable of estimating SM. However, the large
dispersion in the reflectivity produced by the surface roughness [20,25] makes a single-pass
retrieval from GNSS-R data a titanic task [26].

Thanks to the large amount of data collected by the Cyclone GNSS (CyGNSS) con-
stellation [27,28] and by the evolution of data-driven and machine learning algorithms,
promising results have been achieved in the last few years, as they are able to recognize
“hidden” patterns in large amounts of data. Several algorithms have been applied to re-
trieve SM using Artificial Neural Networks (ANNs) [21,29,30]. These algorithms can easily
solve complex non-linear problems, which traditional approaches often fail to address
adequately. Prior to the model training, GNSS-R observations can be combined differently
in terms of preceding averaging, gridding, and time-series processing. In previous research
studies, multiple GNSS-R observables were combined in different ways, such as perform-
ing multiple averages into a 36 km grid [29,31], computing spatio-temporal averages to
finer grids (achieving a resolution of 22 km), or by means of time-series analysis [32].

Aside from CyGNSS, several missions carrying a GNSS-R instrument have been
launched, such as the BuFeng-1 A/B [33] mission, the two GNSS-R CubeSats from Spire [34],
or the Federated Satellite System mission (FSSCat).

The FSSCat mission was the 2017 ESA S^3Challenge and the 2017 Copernicus Master
overall winner [35]. Even due to the delays produced by the explosion of Vega VV15and the
2020 COVID-19 pandemic, the mission has been designed, implemented, tested, and op-
erated in record time. The FSSCat mission is the first ESA third-party mission based on
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CubeSats contributing to the Copernicus system [36]. The mission is composed of two
6-unitCubeSats, the 3Cat-5/A and the 3Cat-5/B.

Flexible Microwave Payload-2 (FMPL-2) is the main payload of the 3Cat-5/A satel-
lite. It is a dual passive microwave remote sensing instrument, consisting of a GNSS-
R receiver at L1/E1 and an L-band Microwave Radiometer (MWR) working as a to-
tal power radiometer with frequent internal calibration, with an antenna footprint of
∼350 × 500 km2. The instrument design and characteristics were described in detail
in Munoz-Martin et al. [37], and the in-orbit validation was presented in Munoz-Martin
et al. [38]. FMPL-2 is simultaneously retrieving GNSS-R and L-band MWR measurements at
a rate of 2 Hz. The instrument uses a dual-band antenna to receive the GNSS-R L1 reflected
signals and the L-band antenna temperature. Regarding the GNSS-R part, as compared to
the CyGNSS or TDS-1 instruments, FMPL-2 uses a very short integration time of 40 ms to
maximize the spatial resolution and minimize the blurring (40 ms correspond roughly to
the size of the first Fresnel zone divided by the sub-satellite point speed, and it also is a
multiple of 1 ms and 4 ms, the lengths of the GPSL1 C/A and Galileo E1 OScodes). Besides,
it also allows for frequent internal noise calibration of the MWR using an internal matched
load and an active cold load.

This work presents the first SM retrievals using FSSCat/FMPL-2 data. The perfor-
mance of four ANN implementations using different combinations of FMPL-2 data is
addressed. Since FMPL-2 is a dual sensor, the goal of this research is to investigate how the
combination of GNSS-R and MWR data improves the SM estimation accuracy compared
to the selected ground truth SM, which is used for model training and validation. This
paper is organized as follows: Section 2 describes the different input features, including
the data collected by FMPL-2, other ancillary products, and the “ground truth” selected
to implement the data-driven algorithms. Section 3 presents the four ANN topologies
designed to retrieve SM from NDVI/skin temperature data; from the combination of these
two together with the FMPL-2 L-band MWR data; using the FMPL-2 GNSS-R data; finally
from the combination of the FMPL-2 MWR and GNSS-R data sets. Section 4 discusses
the way forward to provide an improved-quality SM product using GNSS-R data. Finally,
the main conclusions that arose from this study are summarized in Section 5.

2. Data Description

FMPL-2 was commissioned in less than three weeks after launch. As part of its primary
scientific objective (sea-ice monitoring), the FMPL-2 instrument was collecting data over
the poles on a weekly basis, as described in Munoz-Martin et al. [38]. This notwithstanding,
the mission also pursues to provide SM estimates over land as a secondary scientific
objective. For this reason, the FMPL-2 performs acquisitions over the North Pole (down
to 45º N). The data used in this study correspond to the period from 1 October 2020 to
4 December 2020.

2.1. Ancillary Data

A global SM dataset was needed as a reference for training the ANNs. In this regard,
two products of SMOS were selected. The nominal accuracy of SMOS SM is 0.04 m3/m3.
The error standard deviation (std) obtained when validating the ESA SMOS Level 2 SM
against in situ SM observations ranged between 0.04 and 0.07 m3/m3 [39]. In this study,
the Barcelona Expert Center on Remote Sensing (BEC) [40] provided two dedicated SMOS
SM data on a daily basis at two different spatial resolutions: 36 km and 9 km [41]. The accu-
racy of the products was assessed in previous studies over areas with different environmen-
tal characteristics. It is important to remark that the product used in this work shows a dry
bias with respect to in situ SM data found in many sites and an unbiased root mean squared
error around ∼0.04–0.08 m3/m3 [42–44]. Note that the requirement of 0.04 m3/m3 for the
SMOS SM accuracy is defined over non-forested areas with low to medium topography
and without snow or frozen soil. In general, validations of SMOS SM were carried out
in non-forested regions. Only a few of them were conducted over forests. For instance,
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the ESA SMOS L2 SM was assessed over boreal forests in Saskatchewan, Canada, ob-
taining an un-biased root-mean-square error (ubRMSE)of 0.15–0.18 m3/m3 [45], and over
temperate forests in the Continental U.S., showing an ubRMSE of 0.03–0.11 m3/m3 [46].
However, most recent SMOS SM processor versions (V650, released in 2017) already in-
clude validation stations in boreal forest areas that have been used to enhance the SM
estimations [47].

In this paper, the SMOS SM at 36 km is used to train and validate a data-driven
algorithm implemented using FMPL-2 radiometry measurements, and the one at 9 km is
used for the FMPL-2 GNSS-R measurements. The 9 km product is used to validate the
combined MWR/GNSS-R SM product. The ground truth product is shown in Figure 1,
the dynamic change could be seen in the Video S1. Note that the projection of all maps
presented in this manuscript is the global Equal-Area Scalable Earth (EASE) Grid 2.0 [48].

Figure 1. Soil Moisture and Ocean Salinity (SMOS)-derived Soil Moisture (SM) from [40] projected on a 36 km Equal-Area
Scalable Earth (EASE) grid on (a) 15 October 2020 and (b) 5 November 2020, respectively, and and on a 9 km grid on (c) 15
October 2020 and (d) 5 November 2020, respectively.

As the FMPL-2 pixel is ∼10 times larger than the SMOS one, other data sources were
used to down-scale the original FMPL-2 pixel to 36 km. The ancillary data used to down-
scale those measurements were a re-gridded version of the 16 day average Normalized
Difference Vegetation Index (NDVI) from MODIS [49] and the daily skin temperature from
ECMWF [50], also gridded at 36 km. In addition, a land cover mask derived from MODIS
was also used, gridded at 36 km. The two products are shown in Figure 2.
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Figure 2. (a) Sixteen day averaged NDVI from MODIS [49] on 22 October 2020 and (b) skin temperature from ECMWF [50]
on 15 October 2020.

2.2. FMPL-2 Data

The calibration procedures of both the MWR and GNSS-R sensors were explained in
Munoz-Martin et al. [37], and the FMPL-2 performance was analyzed in Munoz-Martin
et al. [38]. The FMPL-2 data are sampled at 2 Hz, together with the spacecraft telemetry.
Once downloaded, the measurements were geo-located using the spacecraft position and
pointing. This process was based on a Nearest Neighbor Interpolation (NNI), which was
described in detail in Munoz-Martin et al. [38], but using a global EASE Grid 2.0 projection
at 36 km, instead of a polar EASE2 grid. The algorithm geo-locates each MWR antenna
temperature (TA) measurement into a single 36 km. Then, all TA measurements with a
time-span of five days are averaged into a single map, followed by a triangulation based
natural neighbor interpolation. Finally, an antenna pattern compensation was performed
based on 2D moving window filtering, using a circular window representing the same
area of the antenna footprint. In this way, an entire map out of five days of measurements
was generated. Thanks to this technique, there were no gaps in the antenna temperature
data, which lately has helped collocate GNSS-R and MWR measurements to provide
the combined MWR/GNSS-R SM estimation. Figure 3 illustrates the results of the NNI
algorithm. This method allows detecting the coastline borders with a finer resolution than
the one given by the antenna footprint (350 × 500 km2), as can be seen over Greenland
(see Figure 3). For example, the ocean area at the top of Canada, where it seems there is
no land-water transition, is completely covered by sea-ice; thus, there is “jump” in the
measured antenna temperature values, as the entire region is covered by sea-ice, which has
a larger apparent brightness temperature than the ocean [51].

Finally, Figure 4 shows the reflectivity of the collected (a) GNSS reflections over land,
(b) the associated incidence angles, and (c) the estimated SM values interpolated from
the SMOS SM product. The reflectivity is calculated as shown in [37], and as explained
in [38], all the GNSS-R tracks were pre-processed to filter out reflections with poor SNR
or with inconsistent absolute Doppler frequencies. Moreover, only reflection points that
had a time-collocated SMOS SM measurement were used in this study. After filtering,
the resulting amount of specular reflections was 12,585. The collocation of the SMOS SM
product was performed by interpolating the SMOS SM values to the reflection points’
location using a nearest neighbor 2D linear interpolation, producing scattered SM values
over the specular points.
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Figure 3. Flexible Microwave Payload-2 (FMPL-2) Microwave Radiometer (MWR) measurements
geo-located using the Nearest Neighbor Interpolation (NNI) algorithm comprising five days of
measurements with and centered on (a) 7 October 2020, (b) 21 October 2020, (c) 3 November 2020,
and (d) 10 November 2020.

Figure 4. (a,d) GNSS-R reflectivity calibrated as shown in [37], (b,e) the SMOS SM (9 km) estimation interpolated over the
GNSS-R specular reflection position, and (c,f) the incidence angle of the reflection. (a–c) from 1–31 October 2020 and (d,e)
from 1 November to 4 December 2020.
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3. Soil Moisture Retrieval Using ANN

As ANNs show a great potential to solve non-linear problems, these algorithms have
also been applied to soil moisture retrieval. The ECMWF is assimilating real-time Level
2 SM derived from SMOS using ANN [52], and several other SM retrieval algorithms
using CyGNSS GNSS-R data are also using ANNs [29,53]. However, ANNs have several
challenges: to select the correct ground truth (known as the algorithm “target”) to train
the algorithm, to correctly pre-filter and collocate the input data set and to avoid network
over-fitting [54].

All previous ANN algorithms using GNSS-R to retrieve SM used either SMAP or
in situ probes as the ground truth. However, there is a large collocation error when the
CyGNSS observable, with a native resolution ∼0.5 × 6.5 km2 [28], is collocated with
an SMAP cell of 36 km. In all previous cases, multiple averages were used to finally
provide a good agreement between the resulting network and the target values (see Table 1
and Figure 13 from [29]). Moreover, algorithms using in situ probes as the ground truth
(e.g., [30,55]) compare the CyGNSS reflectivity with single point measurements. Thus, it is
necessary to apply either an averaging of different in situ probes or a statistical estimation
of the SM of the equivalent GNSS-R pixel under study. In this case, using erroneous targets
may introduce a bias in the algorithm and network over-fitting (i.e., the ANN does not
perform well out of the training set).

The aim of this work is to investigate different ANN algorithms to retrieve SM using
FMPL-2 MWR and GNSS-R data. For that reason, different ANNs are proposed to validate
the performance of the MWR and the GNSS-R data separately. Each of the ANNs used in
this study was dimensioned to avoid network over-fitting [54]. The amount of neurons in
each of the layers was always less than two times the number of inputs. Each neuron used
the sigmoid function as the transfer function, and the training process was stopped at an
early stage to prevent noise over-fitting, as suggested in [54]. Finally, the trained networks
were always pruned after training [56].

Table 1 details the different data-driven algorithms studied in this section, indicating
the input data for each algorithm and the “ground truth” used for training each ANN.

Table 1. Summary of the ANN based models implemented to estimate SM.

Model Input Data Ground Truth

Optical
• NDVI from MODIS,

• Skin temperature from ECMWF. SMOS SM product at 36 km

Optical + MWR

• NDVI from MODIS,

• Skin temperature from ECMWF,

• FMPL-2 L-band MWR TA.
SMOS SM product at 36 km

GNSS-R • FMPL-2 reflectivity data. SMOS SM product at 9 km

GNSS-R + MWR
• FMPL-2 reflectivity data,

• FMPL-2 L-band MWR TA. SMOS SM product at 9 km

3.1. Using Optical Data

L-band MWR data were used to recover SM, but several algorithms have also been pro-
posed using optical data only, as NDVI and Land Surface Temperature (LST) measurements
(e.g., [10]). In [11] (pp. 47–72), other methods based on optical data were summarized.
Although it is possible to retrieve SM from optical data, errors are larger than if L-band
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MWR is built into the model. The two following main objectives are pursued in this section.
First is to show the capabilities of an ANN based algorithm to provide SM estimates just
using optical data, and second is to serve as a validation base of the down-scaling algorithm
from FMPL-2 MWR data provided in Section 3.2.

The first approach is based on the aforementioned skin temperatures and NDVI
datasets. The ANN used here was a three hidden layer network with six neurons per layer.
The data were divided into 15% for training, 5% for validation, and 80% for testing, and the
network “ground truth” was the SMOS-derived SM product gridded at 36 km. The input
data were the following:

• NDVI from MODIS [49],
• Skin temperature from ECMWF [50], and
• Land cover mask from MODIS [49].

Results are shown in Figure 5. As can be seen, the Pearson correlation coefficient
R was 0.56, and the Standard Deviation of the Error (STD(Err)) was 0.084 m3/m3. Note
that the scatter-density plot shows many pixels with an SM value of ∼0.2 m3/m3 in order
to minimize the error. The shortcoming of this methods becomes clear as the network is
missing the valuable information coming from the L-band MWR.

Figure 5. (a) Scatter-density plot between the ANN output using NDVI and skin temperature as
input data and the SMOS SM product as the network reference value; and (b) the error histogram
between the ANN output and the SMOS reference.

3.2. Using L-Band Microwave Radiometry Data

In this second approach, the FMPL-2 MWR data were added to the skin temperature
and to the NDVI data sets to improve the SM estimation. The five day averaged FMPL-2
MWR data presented in Figure 3 were combined with the daily skin temperature and the
16 day averaged NDVI data. This produced a daily product that can be compared to the
daily SMOS SM product gridded at 36 km.

The same network topology using three hidden layers was used here, but with 10 neu-
rons per layer. In this case, the number of neurons was increased as more inputs were
used in the model. Then, the data were divided again into 15% for training, 5% for vali-
dation, and 80% for testing. In this case, additional low resolution data inputs were used
(see Figure 6) in addition to the FMPL-2 MWR data. The inputs of the network were:

• FMPL-2 antenna temperature,
• FMPL-2 standard deviation of the antenna temperature in the along-track measure-

ment,
• NDVI from MODIS [49],
• Low resolution NDVI from MODIS [49],
• Skin temperature from ECMWF [50],
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• Low resolution skin temperature from ECMWF [50],
• Land cover mask from MODIS [49], and
• Low resolution land cover mask from MODIS [49].

The objective of this second approach was to down-scale the coarse footprint mea-
surement of the FMPL-2 radiometer to a “higher resolution” pixel by using the NDVI and
the skin temperature gridded at 36 km. Pixel down-scaling with L-band MWR data is a
known technique [41,57], where optical datasets are usually complemented with coarse-
scale radiometry observations to achieve higher resolved images. However, to the authors’
knowledge, this is the first implementation of a down-scaling algorithm using ANNs.
The idea behind the network architecture is similar to the one conceived of in [41], but here,
the ANN algorithm takes the NDVI, the skin temperature, the land cover mask, and the an-
tenna temperature at a coarse resolution, and then, with the help of higher resolution NDVI,
skin temperature, and land cover maps, it down-scales the original antenna temperature to
provide a down-scaled SM product. An example of the skin temperature after “blurring”
is provided in Figure 6a for illustration purposes. Moreover, the standard deviation of the
antenna temperature measured in the along-track direction was also used as a proxy to
correct the edge transitions (i.e., land-water transitions, as highlighted in Figure 6b).

Figure 6. (a) Low resolution skin temperature (ºC), and (b) sample FMPL-2 standard deviation (ºK)
in the along-track direction after applying the NNI algorithm. Note that land-water transitions in the
northern part of Siberia are highlighted in red.

Figure 7 shows the scatter-density plot and the error histogram of the ANN used to
provide the down-scaled FMPL-2 soil moisture at 36 km. As compared to the previous
case, adding the FMPL-2 MWR data resulted in more accurate SM estimations. The R
increased from R = 0.56 to R = 0.69, and the STD(Err) decreased from 0.084 to 0.074 m3/m3,
showing a negligible bias in both cases. This result validates that the five day averaged
FMPL-2 antenna temperature data enhances the SM retrieval algorithm. Therefore, even
at a coarse resolution, the FMPL-2 MWR data can be used to estimate SM. It is important
to remark that studies comparing different remote sensing SM products (i.e., from the
Advanced Microwave Scanning Radiometer, SMAP, or SMOS) to ground truth sensor
networks [58] showed similar errors to the ones presented in this section (i.e., root mean
squared differences of ∼0.076 m3/m3 and unbiased root mean squared difference of
∼0.056 m3/m3).
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Figure 7. (a) Scatter-density plot between the ANN output using FMPL-2 data and the SMOS
reference value; and (b) the error histogram between the ANN output and the SMOS reference.

Figure 8 shows the estimated SM maps using the FMPL-2 MWR data and the errors
with respect to the SMOS SM estimations. In this case, high resolution ancillary data contain
the relevant information to obtain SM maps at full coverage. The first remarkable aspect is
that the map corresponding to the latest period (Figure 8d) includes lower latitudes due
to a change in the spacecraft execution scheduling, which started acquiring data above
45º Latitude North, as explained in Section 2. The error maps present many areas with
errors lower than 0.1 m3/m3 (i.e., color scale around yellow, green, and light-blue). Note
that, as the FMPL-2 antenna temperature measurements used in this algorithm were built
from the average of five days in order to provide a full-coverage map, SM estimations on
areas with strong rain events occurring after FMPL-2 measurements will exhibit larger
errors. To solve this problem in future missions, additional data sets could be used in the
algorithm: for example, a constellation of multiple satellites including FMPL-2 sensors
would provide a finer temporal resolution. Thus, if 5-8 satellites are used in different orbital
planes, the required amount of time averages would decrease from five days to just one
day, making it possible to provide a daily full coverage SM map above 45º N.

Figure 7. Cont.
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Figure 8. (a–d) FMPL-2/MWR down-scaled SM estimations corresponding to (a) 1–5 October 2020, (b) 10–15 October 2020,
(c) 25–30 October 2020, and (d) 9–14 November 2020. (e–h) Errors with respect to the SMOS SM product, for the same date
periods specified in (a–d). Note that, SMOS GT data are not available in regions that are blank (e.g., northern part of Russia).

3.3. Using GNSS-R Data

Since the launch of CyGNSS, several data-driven algorithms have shown their poten-
tial to estimate SM from their measurements [59]. However, the GNSS-R data retrieved by
the SGR-ReSi receiver [60] used in the TDS-1 and CyGNSS missions are configured with
long integration times (i.e., 0.5 or 1 s incoherent integration time), as the main objective of
these missions is to study the ocean.

In FMPL-2, the integration time of the GNSS-R processor is set to 40 ms in order to
enhance the spatial resolution and to avoid waveform blurring. As seen in [61], the ground-
track displacement in 40 ms from a spacecraft orbiting at ∼550 km is equivalent to the size
of the first Fresnel zone (i.e., 7.5 km/s · 40 ms = 300 m) of the GNSS signal reflection.

In this section, an ANN approach based on [62] is proposed to retrieve SM from
GNSS-R measurements. The method uses the moving average (movmean) and the moving
standard deviation (movstd) of the reflectivity (computed in linear units and then converted
to dB) to infer the SM values. As discussed in Munoz-Martin et al. [62], the movmean
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and the movstd parameters are used by the ANN as a proxy to correct for the surface
roughness effects.

In this case, a very simple network is proposed, using just two hidden layers, with six
neurons per layer. The ANN target is the SMOS 9 km SM product. However, as introduced
in Section 2.2, instead of gridding the GNSS-R data into the 9 km SMOS grid, the SMOS
SM product is interpolated over the specular point location using a 2D linear interpolation
algorithm. As the data set (see Figure 4) contains fewer points as compared to the MWR
case, enough data should be used to train the algorithm to prevent over-fitting. Thus,
the data were randomly divided into 60% for training, 10% for validation, and 30% for
testing. The input data of this network were the following:

• Incidence angle θinc,
• Moving average of the reflectivity (movmean(Γ)) over N samples,
• Moving standard deviation of the reflectivity (movstd(Γ)) over N samples, as a proxy

to correct the surface roughness and speckle noise effects, and
• Moving average of the SNR (movmean(SNR)) over N samples.

where N is the number of samples used in the movmean and movstd operations. Note that,
four different N values are proposed: 3, 5, 10, and 20. By instrument design, the length
of a GNSS track produced by FMPL-2 is up to 90 samples successively (i.e., 45 s of data
sampled at 2 Hz).

Figure 9 presents the density-scatter plot and the error histogram of the ANN output
developed to estimate SM using GNSS-R data from FMPL-2 with respect to the collocated
SMOS SM from BEC [40]. By looking at the shape of the density-scatter plot and the
error histograms, in general, the ANN algorithm does not provide accurate results for
low SM values (<0.15 m3/m3), showing a large dispersion in this range. Similar results
were discussed in [63], as due to the very low reflectivity of dry soils, GNSS-R loses
sensitivity. Thus, the ANN algorithm over-estimates low SM values and under-estimates
larger SM values.

The Pearson correlation coefficient (R) and the STD(Err) were computed for each
integration time used to evaluate the algorithm performance for different averaging (N).
As can be seen, as the averaging time increases, the correlation coefficient increases, and the
STD(Err) decreases. For the shortest integration time (N = 3), the correlation coefficient
was R = 0.52, and the STD(Err) was 0.094 m3/m3. For longer integration times, the R
increased, and the STD(Err) decreased. For N = 5, the correlation coefficient grew up
to R = 0.56, and the STD(Err) decreased down to 0.091 m3/m3. As more samples were
used in the “moving” operation, the R increased even more, up to R = 0.61 and R = 0.62,
for N = 10 and N = 20, respectively. The STD(Err) was also reduced to 0.087 m3/m3 for
both cases. It is important to remark that the bias was negligible (<0.001 m3/m3) in all
presented cases.
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Figure 9. (left) Scatter-density plot and (right) error histogram of the GNSS-R based ANN output with respect to the
collocated SMOS SM product from Barcelona Expert Center on Remote Sensing (BEC) [40], showing the four different
values of N used to compute the movmean and movstd inputs for the network.
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This result is in agreement with the error graph presented in Figure 13 from [29],
where the larger error was linked to areas where fewer samples were used to average the
GNSS-R reflectivities. As discussed in [62], the effect of these “moving” operations is to
smooth the surface roughness and to reduce speckle noise effects. When the averaging is
large enough (i.e., N = 20), the correlation coefficient is maximized, and the error with
respect to the SMOS SM product is minimized.

The increased average (i.e., larger N) produces a degradation of the spatial resolution,
as more samples are required to derive a single measurement. In this case, taking into
account the sampling rate (2 Hz) and the ground-track velocity (vtrack∼6.5 km/s), a N = 3
means that the spacecraft has moved ∼9.75 km during moving window computation; thus,
the equivalent spatial resolution following this technique would be ∼9.75 km for N = 3,
16.25 km for N = 10, 32.5 km for N = 10, and 65 km for N = 20. This phenomenon is a
clear example of the remote sensing trade-off, which implies that maximizing the spatial
and the radiometric resolution at the same time is not possible, and one is usually sacrificed
for the benefit of the other. These results are in agreement with other studies using CyGNSS
data [29,53]. It is shown that a large number of averages is required to retrieve accurate
SM values from GNSS-R, showing similar errors to other algorithms developed using
CyGNSS data.

Finally, Figure 10 presents the geo-located specular points with the estimated SM
values and their computed errors with respect to the SMOS SM estimates, for two time
periods, from 1–31 October 2020 and from 1 November to 4 December 2020.

Figure 10. (a,c) GNSS-R-derived SM estimations corresponding to N = 20. (b–d) Error with respect to the collocated SMOS
SM product. The map presents the measurements collected by FMPL-2 from (a,b) 1–31 October 2020 and from 1 November
to 4 December 2020. Only reflections collocated with SMOS SM data are presented.

The error maps are defined as the network output minus the ground truth. Thus,
a negative error means that the ANN algorithm estimates a lower SM than the actual
ground truth (under-estimation), and a positive error means that the algorithm estimates a
larger SM value than the actual ground truth (over-estimation). By looking at the first data
period, it can be seen that larger errors were found in the area at the top of Canada (65º N,
100º W). In this case, most errors were under-estimations of SM for areas with moderate-
low moisture content, as also identified in the scatter plots in Figure 9. Furthermore,
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the SM retrieved over Russia showed, in general, a good accuracy, with errors around
±0.1 m3/m3 and a few SM points containing a slight over-estimation on low-moderate
SM values (∼0.1 0.2 m3/m3).

For the second period, focusing on the area at the top of Canada, the algorithm now
presented SM over-estimations. In this case, the area contains several points over very dry
areas (see Figure 4), and some others that are very wet, at the southern side of Hudson Bay.
As expected from the scatter-density plots, dry areas were over-estimated, and wet areas
were under-estimated.

Retrieving soil moisture using single-pass GNSS-R is a complex task [26]. In many
cases, the surface roughness, and its dependence on SM, make SM recovery difficult.
In our case, the training process of the ANN algorithm became biased because of the large
dispersion of the GNSS-R reflectivity values due to this effect. For this reason, additional
data must be used to develop a more accurate model, even using movstd(Γ) as a proxy to
correct the surface roughness effects.

3.4. Using Combined GNSS-R and Radiometry Data

In order to correct the fitting errors produced by lower SM values, which then causes
this “bias” for larger SM values, the L-band MWR data from FMPL-2 were used. Brightness
temperature data are the complementary magnitude of the reflectivity [64]. Thus, even
at a very low resolution, FMPL-2 data may contain meaningful and valid information to
enhance the SM recovery when combined with GNSS-R.

The algorithm proposed in this section combines both measurements to provide a more
accurate SM estimation. As is seen in Equation (12) from [65], the reflectivity of a given area
is linked to its brightness temperature. In our example, the coarse resolution MWR data
were used as ancillary data to improve the SM retrieval algorithm using the high resolution
GNSS-R data. The network proposed here was the same as in the GNSS-R example: two
hidden layers with six neurons per layer, using the same train/validation/test division.
The target output was the same as in the previous case, and the input set now included the
MWR radiometry data as follows:

• FMPL-2 antenna temperature,
• FMPL-2 standard deviation of the antenna temperature in the along-track measure-

ment,
• Incidence angle θinc,
• Moving average of the reflectivity (movmean(Γ)) over N samples,
• Moving standard deviation of the reflectivity (movstd(Γ)) over N samples, and
• Moving average of the SNR (movmean(SNR)) over N samples.

In this case, the same approach to collocate the target output was used to collocate
the FMPL-2 measurements. Therefore, a 2D linear interpolation was used to generate the
scattered data from the 36 km FMPL-2 gridded data. In this case, the standard deviation
of the antenna temperature was also used as a proxy to correct the edge transitions (i.e.,
land-water transitions).

Figure 11 shows the scatter-density plot and error histogram of the new ANN al-
gorithm to derive SM from the combined MWR and GNSS-R data, as compared to the
SMOS SM. In this last case, the resulting network showed a significant improvement with
respect to the GNSS-R-only case. For lower SM values, the algorithm was more accurate,
presenting, in general, a lower dispersion.
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Figure 11. (left) Scatter-density plot and (right) the error histogram of the combined MWR and GNSS-R ANN output with
respect to the collocated SMOS SM product from BEC [40], for the four different values of N used to compute movmean and
movstd, used as inputs for the ANN.
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This is also reflected in the Pearson correlation coefficient and in STD(Err). The R
was boosted from 0.52 to 0.79 for N = 3, from 0.56 to 0.80 for N = 5, from 0.61 to 0.81 for
N = 10, and from 0.62 to 0.82 for N = 20. In the four cases, the bias was also negligible,
and the STD(Err) also decreased from 0.094 m3/m3 to 0.067 m3/m3, from 0.091 m3/m3 to
0.066 m3/m3, from 0.087 m3/m3 to 0.064 m3/m3, and from 0.087 m3/m3 to 0.063 m3/m3,
for the four N cases: 3, 5, 10, and 20, respectively. The use of the FMPL-2 MWR data
contributed to decreasing the overall error with respect to SMOS SM at 9 km, even for
small values of N. The error difference between the shorter integration time and the largest
integration time was 0.04 m3/m3.

Finally, Figure 12 presents the geo-located specular points as in the previous section,
but with this new ANN algorithm that uses the MWR and GNSS-R data. As compared
to the previous case, most of the errors previously analyzed in Figure 10 were now lower
than 0.1 m3/m3. As compared to the previous case (using only GNSS-R data), the errors
produced in the northern part of Canada were now drastically reduced. Drier areas were
better detected thanks to the use of the MWR data, which is the complementary magnitude
of the reflectivity. Thus, when the GNSS-R reflectivity is low, the antenna temperature
retrieved by FMPL-2 MWR is high, and vice versa. This synergy allows solving the
uncertainty for the surface roughness attenuation, which produces low reflectivity values
for high SM values. Thanks to the MWR data, low reflectivity values that are collocated
with a low antenna temperature corresponds to wet soils, but the reflection is affected by
the surface roughness. Analogously, low reflectivity values collocated with a large antenna
temperature correspond to drier soils.

Figure 12. (a,c) Combined MWR and GNSS-R SM estimations corresponding to N = 20. (b–d) Error with respect to the
collocated SMOS SM product. The map presents the measurements collected by FMPL-2 from (a,b) 1–31 October 2020
and from 1 November to 4 December 2020. Only reflections collocated with SMOS SM data are presented.

4. Discussion

Machine learning works as a data-driven approach, and data from different sources
must be introduced as input data to deliver quality results. Different space-borne ap-
proaches have been presented in the last few years using ANN to estimate SM from
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GNSS-R measurements, as seen in Table 1 from [29]. As summarized in Table 2, four ANN
based models were implemented to infer SM from a different combination of input features.

Table 2. Main performance parameters of the ANN based models implemented to infer SM from
optical, MWR, and GNSS-R data.

Model R Std(Err) (m3/m3) Bias (m3/m3)

Optical 0.56 0.084 <10−4

Optical + MWR 0.69 0.074 ∼10−3

GNSS-R (N = 20) 0.62 0.087 ∼10−4

GNSS-R (N = 20) + MWR 0.82 0.063 ∼10−3

The use of movstd on a set of consecutive samples proposed in [62] was used to correct
the speckle noise and surface roughness effects, and it was validated for SM retrieval using
spaceborne GNSS-R data. In Figure 13, the error of the airborne algorithm presented in [62]
is compared to the error achieved using FMPL-2 GNSS-R data. As can be seen, both error
curves follow the same trend, where a large number of measurements or Fresnel zones are
required to provide a lower error. Note that this effect was also studied in Figure 13 of [29],
where a large number of samples within a grid were required to achieve a lower error.
Moreover, there is an almost constant “gap” between both curves of ∼0.03 m3/m3, which
in this case might be due to the difference in directivity between the airborne GNSS-R
instrument (i.e., ∼21 dB [66]) and FMPL-2 (i.e., ∼12 dB [37]). However, the best results were
achieved when combining the GNSS-R and the L-band MWR data retrieved by FMPL-2.
The intrinsic synergy of GNSS-R with L-band MWR allows for more accurate SM retrievals,
with a finer spatial resolution over the specular reflection points.

Figure 13. Std(Err) evolution as a function of the number of consecutive Fresnel zones used to derive
the SM estimation. Comparison between the airborne case (Microwave Interferometric Reflectometer
instrument [62]) and the spaceborne case (FMPL-2). Note that the X-axis is normalized by the
number of Fresnel zones used to derive the SM estimation (i.e., the N parameter used in Section 3.3).
A regression curve is fit to the Std(Err) of both error curves to ease the comparison.

In both the airborne case in [62] and in the methodology described in this paper
(Section 3.4), the use of combined data decreases the SM estimation error with respect to the
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SMOS SM target. However, this is not the case for other algorithms (i.e., Table 1 from [29]),
where the efforts are focused on decreasing the amount of ancillary data used to retrieve SM
from GNSS-R data, at the expense of using large spatial and temporal averages. However,
this is not how a data-driven (and machine learning) algorithms works. Proper inputs
shall be strategically selected to retrieve SM at larger spatial and radiometric resolutions.
Thus, combining data from different sensors is key to retrieve a higher quality product.

CubeSats have a great potential for Earth observation. As is shown in this work,
even a CubeSat based instrument can be used to retrieve SM measurements with good
accuracy, although not as good as with traditional larger satellites, such as SMOS or SMAP.
FMPL-2 has shown its potential to infer an enhanced resolution SM by means of combined
MWR and GNSS-R measurements, in addition to the down-scaling algorithm using optical
multi-spectral data used to derive vegetation indices and LST. In addition, a CubeSat based
constellation with eight satellites embarking FMPL-2 as the payload would allow entirely
covering all latitudes above +45º N every single day, with enough footprint oversampling
to retrieve daily SM products (FMPL-2 MWR on board 3Cat-5/A requires up to 3–5 days,
depending on the downlink scheduling, to cover all latitudes above 45º N and 5–8 days to
cover all latitudes above 35º N).

The more sensors in orbit, the more data will be available to implement data-driven
algorithms like those presented in this work. This is the idea behind the CubeSat philosophy.
Therefore, this hypothetical constellation of CubeSats embarking FMPL-2 among other
optical sensors would allow high-quality Earth observation products, with improved revisit
times, radiometric accuracy, and spatial resolution, as compared to the product currently
available. The way to beat the trade-off between spatial and radiometric resolutions is to
add extra information and to benefit from data-driven and data fusion algorithms, such
as ANN.

5. Conclusions

This work presents the first SM retrievals using FMPL-2 data, showing the potential
of CubeSats to produce quality science products for land monitoring applications. Four
different algorithms based on ANNs are presented. The first algorithm serves as vali-
dation of the initial ECMWF skin temperature and MODIS NDVI data to retrieve SM.
The second algorithm presents an ANN based pixel down-scaling technique, which takes
the FMPL-2 MWR data along with MODIS NDVI data and ECMWF skin temperature to
produce down-scaled SM measurements at 36 km resolution from an initial MWR pixel
of 350 × 500 km2. The effect of adding FMPL-2 data to the ANN is validated, showing a
performance improvement when the FMPL-2 antenna temperature is used.

The third algorithm presents an ANN using GNSS-R data from FMPL-2 to estimate
SM content, without using any ancillary data. The proposed ANN takes movmean and the
movstd of N consecutive samples together with the incidence angle and compares them to
a down-scaled SMOS SM product at 9 km resolution. As expected from other SM studies
using GNSS-R, the larger the N samples used to produce a measurement, the smaller
the error is. In this case, by just utilizing GNSS-R data, the algorithm shows a standard
deviation of the error of 0.079 m3/m3 at N = 20 samples.

Finally, a fourth algorithm that combines FMPL-2 MWR and GNSS-R data is pre-
sented. It is shown that the combination of L-band antenna temperature measurements
with GNSS-R reflectivity data significantly enhances the retrieval algorithm performance.
In this case, the error is decreased by ∼27.5%, with a standard deviation of the error of
0.067–0.063 m3/m3, for N = 3 to N = 20, respectively. In conclusion, the combination of
collocated MWR and GNSS-R data from FMPL-2 produces a higher accuracy in the soil
moisture estimation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/994/s1, Video S1: Soil Moisture and Ocean Salinity (SMOS)-derived Soil Moisture (SM)
from [40] projected on a 36 km Equal-Area Scalable Earth (EASE) grid.
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