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Abstract: This study presented established methods, along with new algorithmic developments, to 
automate point cloud processing in support of the Field Information Modeling (FIM)™ framework. 
More specifically, given a multi-dimensional (n-D) designed information model, and the point 
cloud’s spatial uncertainty, the problem of automatic assignment of point clouds to their corre-
sponding model elements was considered. The methods addressed two classes of field conditions, 
namely (i) negligible construction errors and (ii) the existence of construction errors. Emphasis was 
given to defining the assumptions, potentials, and limitations of each method in practical settings. 
Considering the shortcomings of current frameworks, three generic algorithms were designed to 
address the point-cloud-to-model assignment. The algorithms include new developments for (i) 
point cloud vs. model comparison (negligible construction errors), (ii) robust point neighborhood 
definition, and (iii) Monte-Carlo-based point-cloud-to-model surface hypothesis testing (existence 
of construction errors). The effectiveness of the new methods was demonstrated in real-world point 
clouds, acquired from construction projects, with promising results. For the overall problem of 
point-cloud-to-model assignment, the proposed point cloud vs. model and point-cloud-to-model 
hypothesis testing methods achieved F-measures of 99.3% and 98.4%, respectively, on real-world 
datasets. 

Keywords: Field Information Modeling (FIM); point cloud to BIM; point cloud vs. BIM; scan vs. 
BIM; n-D information modeling; digital engineering and construction 
 

1. Field Information Modeling (FIM)™ 
Construction of project information modeling frameworks, such as building infor-

mation modeling (BIM), heritage building information modeling (H-BIM), and bridge in-
formation modeling (BrIM), involves modeling and integrating intelligent and semantic 
information within multi-dimensional (n-D) computer-aided design (CAD) models [1–3]. 
During the design stages, the three-dimensional (3D) digital model of a construction pro-
ject can be created, whereby each element is classified based on attributes such as func-
tional type (e.g., structural wall), elemental relationships (e.g., structural wall and floor 
slab connectivity and interaction), and geometric properties (e.g., shape and size) [4,5]. 
Further modeling can be carried out so as to integrate project planning and control infor-
mation, such as work sequences and duration (e.g., 4D BIM [6]), as well as cost (e.g., 5D 
BIM [7]), enabling the project management team to directly evaluate the impact of design 
changes on the project’s schedule and cost.  

During construction, the designed n-D model serves as a detailed project baseline to 
aid field construction work. The n-D digital model must be somehow relayed to the field 
using an intermediary technology, such as robotic total station [8], augmented reality [9], 
information kiosks [10], or robotic machinery (e.g., 3D printing [11]). Once constructed, 
relevant field data must then be collected, converted into semantic digital information, 

Citation: Maalek, R. Field  

Information Modeling (FIM)™: Best 

Practices Using Point Clouds.  

Remote Sens. 2021, 13, 967. 

https://doi.org/10.3390/rs13050967 

Academic Editor: Sander Oude  

Elberink 

Received: 11 February 2021 

Accepted: 1 March 2021 

Published: 4 March 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 967 2 of 23 
 

 

and consequentially compared to the designed model to ensure compliance. Any incom-
patibility between the plan and the field must be immediately recognized to enable project 
proponents to take corrective measures on time.  

Project management and control principles, including the Deming cycle [12] and lean 
project delivery [13], warrant fast, frequent, and reliable field data collection and analysis 
to foster continual improvement. In the context of schedule and cost control, for instance, 
daily measurement of percentage planned complete, recommended as part of the Last 
Planner® system [14], combined with frequent earned value analysis [15], requires up-to-
date knowledge of the progress of activities. As the amount and frequency of field data 
increases, the existence of a robust process for continuous collection, analysis, modeling, 
and management of the data becomes even more instrumental. The automation of the 
latter process is particularly important since field data collection and analysis are fre-
quently required, repetitive tasks and generally not considered tool time [10]. This leads 
to the conception of an essential process to support project information modeling during 
construction, referred to as Field Information Modeling (FIM)™: the process of transform-
ing field data into intelligent, tangible, and semantic digital information as a means of 
enabling the seamless flow of information between the field and the digital world. 

1.1. FIM and Point Clouds 
Amongst the various types of field information that can be acquired, 3D point clouds 

provide a unique opportunity to represent surrounding real-world surfaces as discrete 
point coordinates (and in some cases, with surface color or intensity information). This 
enables simultaneous control of the dimensional quality (e.g., size or plumbness) as well 
as progress (e.g., percentage of complete) of field objects corresponding to work pack-
ages/activities [16]. Irrespective of the method used to acquire the point clouds, automated 
assignment of points to their corresponding elements in the designed n-D information 
model is an integral part of automating the FIM process.  The point clouds can then be 
converted into semantic information in the level of detail of the model for applications 
such as progress monitoring [16,17], dimensional quality checking [16], 3D BIM updating 
[18], and digital twin generation [19]. 

A typical framework to automate the assignment of points to the corresponding ele-
ments in the designed model consists of the following steps (shown visually in Figure 1): 

1. Elemental classification of the design information model (Figure 1c), which is the 
process of labeling and detecting every element within the designed model based on 
criteria such as functional type and surface geometry. The surface geometry infor-
mation related to the element type already exists within BIM and the industry foun-
dation class (IFC) models [4,5] and, if available, can be used directly. In other cases, 
particularly when only 3D CAD models exist, the STereoLithography (STL) file for-
mat can be deployed, which approximates CAD object surfaces with triangular 
planes [20]. To further group triangular planes of the same surface together, a mesh 
segmentation process can be deployed, such as that proposed in [21–23]. The output 
of this stage is presented visually in Figure 1c, where each element is separated and 
shown with a unique color. 

2. Superimposition of the point cloud and the classified model (Figure 1d), which in-
volves the registration of the coordinate systems of the point cloud and the model. 
To perform point-cloud-to-model registration, at least three non-colinear point cor-
respondences between the model and the point cloud are necessary [24]. In the pres-
ence of a construction error, which is a reasonable assumption, given the statistics 
related to rework due to poor construction [25], it is recommended that we use iden-
tifiable and signalized targets on pre-surveyed site control points to perform the reg-
istration [16,26]. In cases where construction errors are less prominent, iterative clos-
est point (ICP) registration of the point cloud and the closest surfaces on the model 
can be performed through methods such as the scan vs. BIM proposed in [20]. 
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3. Point-cloud-to-model comparison and assignment, which is used to aid with the as-
signment of the point cloud to the model elements. In the case of negligible construc-
tion errors, the distance of the point to the closest element can be used to determine 
correspondence, which is the metric used in the scan vs. BIM of [20]. A distance 
threshold must then be deployed to reject far points. Figure 1e shows an example of 
a heatmap used to visualize the distance of the points to the closest classified ele-
ments. Figure 1f presents the resulting point-cloud-to-element assignment with an 
arbitrarily defined distance threshold of 50mm. In other cases, where possible local 
construction errors exist (e.g., a set of elements are incorrectly constructed or assem-
bled), the correct assignment may require the use of additional information, such as 
point neighborhood behavior [26], curvature [27], color [28], or intensity [29]. 

 
Figure 1. Typical framework for automatic assignment of points to the designed multi-dimen-
sional (n-D) information model elements: (a) point cloud, (b) n-D information model, (c) elemental 
classification of the designed model, (d) superimposition of the point cloud and the model, (e) 
point-cloud-to-model comparison (in this case, the color represents the distance of the points to 
the closest element’s surface), and (f) result of assignment of the point cloud to the corresponding 
elements. 

The output of stage 3 above can then be employed for progress monitoring [16,17], 
dimensional quality checking [16], 3D BIM updating [18], and digital twinning [19]. 

1.2. Study Objectives, Scope, and Structure 
The goal of this study is to present the best practices, along with new algorithmic 

developments, to automate the FIM process using point clouds, given a designed n-D in-
formation model. The presented state-of-the art methods describe the well-regarded scan 
vs. BIM [20], Reconstruct Inc. [17,30], Verity [31], entropy-based local point neighborhood 
definition [32,33], and random sample and consensus (RANSAC) shape detection [34]. 
Predicated on the gaps in the present methods, the new algorithms include leading devel-
opments for (i) point cloud vs. model comparison, (ii) robust point neighborhood defini-
tion, and (iii) Monte-Carlo-based point-cloud-to-model surface hypothesis testing. The 
scope of this study is to focus particularly on methods to solve stage 3 (and to a lesser 
extent stage 2) of the framework presented in Section 1.1 (Figure 1e,f) using only the geo-
metric primitives (i.e., Cartesian coordinates) of the point clouds. The emphasis is on di-
rect frameworks, which are generalizable, are robust to changes in scenery and point 
cloud type, and do not contain subjectively defined thresholds. To this end, the remainder 
of the manuscript is structured as follows: 

Point cloud 3D/4D BIM/CAD/IFC 3D/4D BIM/CAD/IFC ele-
mental classification 

Point cloud and model 
superimposition 

Point cloud to 
model comparison 

Point cloud elemental 
assignment 

(a) (b) (c) 

(d) (e) (f) 
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• Section 2 describes the spatial uncertainty of point clouds and the necessity to incor-
porate this spatial uncertainty within a successful point cloud processing framework. 

• Section 3 introduces point cloud processing when construction errors can be consid-
ered negligible. A new process for a point cloud vs. BIM is proposed, along with a 
demonstration of its effectiveness on real-world point clouds. 

• Section 4 reveals the basic considerations for analysis of point clouds when the im-
pact of construction errors cannot be neglected. New methods for point cloud neigh-
borhood definition, surface-hypothesis-based classification, and surface segmenta-
tion, along with demonstrated real-world examples, are thoroughly discussed. 

• Section 5 summarizes the findings and provides avenues for further explorations. 

2. Point Cloud Spatial Uncertainty 
Point clouds can be acquired through different means, such as terrestrial laser scan-

ners (TLS; Figure 2a), simultaneous localization and mapping (SLAM)-based mobile sys-
tems (Figure 2b), and structure-from-motion (SfM)-based photogrammetric 3D recon-
struction (Figure 2c). Each point cloud collection technique has unique characteristics that 
impact the level of spatial uncertainty of each point measurement. A generic framework 
to automate point cloud processing for construction projects must, hence, incorporate the 
impact of point measurement uncertainties corresponding to the optical instrument [35]. 
Figure 2 sheds light on the importance of integrating the expected point measurement 
uncertainties within automated point-cloud-processing frameworks. Figure 2 (right) 
shows histograms of point height, which have been shown to be an effective tool in ex-
tracting flat slab floors and ceilings from point clouds [36,37]. The points in the vicinity of 
the mode of the histograms represent the points of the floor (base slab). For reference, the 
root-mean-square error (RMSE) of the points on the floor for each histogram is also shown. 
As illustrated, the RMSE changes from 3mm for TLS (Figure 2a, right) to 20mm for dense 
3D reconstruction from smartphone cameras (Figure 2c, right). This shows that if, for in-
stance, a fixed distance threshold of, say, 5mm is adopted to assign points around the 
mode of the histogram as floors, 99% of the TLS and only 32% of the smartphone 3D re-
construction points will be identified as belonging to the floor. Therefore, a successful dis-
tance threshold (Figure 1f) must incorporate the expected point measurement uncertain-
ties related to a particular point cloud instrument [16,26,38,39]. 

Given a calibrated point cloud collection instrument (assumption of modeled sys-
tematic errors), the point measurement uncertainties in the Cartesian coordinate system 
(i.e., spatial uncertainty [38]) can be modeled through the propagation of instrumental 
measurement errors, typically approximated to the first order [40]. For instance, in TLS, 
the spatial uncertainty of points must incorporate the raw instrumental measurement er-
rors (e.g., range and angular errors; see Equation (11) of [36]) along with possible scan 
station registration errors in the case of multiple scans (see Equation (5) of [16]). For each 
point, the variance propagation process provides a 3 × 3 covariance matrix, Σ , as a meas-
urement of spatial uncertainty. Closed formulations of the 3D positional uncertainty, Σ , 
as a function of instrumental measurement errors can be found in Maalek et al. [16] for 
TLS (Figure 1a), Zhengchun et al. [38] for the laser radar measurement system (LRMS), 
Mourikis and Roumeliotis [41] for SLAM-based instruments (Figure 1b), and Beder and 
Steffen [42] for SfM-based techniques (Figure 1c). For each point, 𝑋 , the corresponding 
spatial uncertainty, Σ , can be used to construct an error ellipsoid as follows: 𝑋 − 𝑋 Σ 𝑋 − 𝑋 ≤ 𝜒 , , (1) 

where 𝜒 , , the amplification coefficient, is considered a chi-squared probability with 
confidence 𝑝 (in this study, 𝑝 = 97.5% is used) and 𝛼 degrees of freedom (𝛼 = 3 for 3D 
data). Throughout the remainder of the manuscript, every point will be represented by its 
error ellipsoid using Equation (1). 
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Figure 2. Sample point cloud (left) and histogram of point height (right) for (a) Leica HDS6100 
terrestrial laser scanner (TLS) [43], (b) Leica BLK2GO mobile scanner [44], and (c) 3D reconstruc-
tion using iPhone X images. 

2.1. Assumptions of Input Parameters 
Before describing the methods of processing point clouds in Sections 3 and 4, it is 

worth outlining the basic assumptions and available input parameters, as follows: 
• The n-D designed information model is available, accurate and up-to-date with the 

latest change orders. 
• It is expected that stages 1 and 2 of the typical point cloud processing, corresponding 

to Figure 1a–d, are reliably completed. This means that a point cloud from the field 
is acquired, the instrument by which the point cloud was collected is known, the el-
emental classification of the n-D designed information model is carried out, and an 
initial target-based registration of the point cloud and the model is performed. 

• The point cloud instrument is assumed to be calibrated, containing no (or negligible) 
systematic error trends. 

• The spatial uncertainty of each point is modeled, and the error ellipsoid as per Equa-
tion (1) is constructed for each point. 

 

Leica HDS6100 floor point cloud 
(a) 

Histogram of point height 

RMSE = ~3mm 

(b) Histogram of point height 

RMSE = ~5mm 

Leica BLK2GO floor point cloud 

(c) 
Histogram of point height iPhone X floor point cloud 

RMSE = ~20mm 
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3. Point Cloud Analysis: Case of Negligible Construction Errors 
This section describes the methods that can be incorporated when construction errors 

are considered negligible (for instance, in cases of reliable pre-fabrication [45] and/or 3D 
printing [11] processes). This suggests that the designed n-D model and the point cloud 
acquired from the constructed scene must comply with little to no construction errors. 
Therefore, given an initial reliable point-cloud-to-model registration, the problem of point 
cloud processing reduces to assigning the point to its closest element and rejecting points 
that are farther than a pre-defined threshold. This type of procedure was adopted for 3D-
reconstructed photogrammetric point clouds in Golparvar-Fard [17] and for TLS point 
clouds within the scan vs. BIM of Bosche [20]. The two methods, however, differ in some 
points. For the photogrammetric case, since the positions and orientations of the images 
are estimated during the dense 3D reconstruction stage [46], Golparvar-Fard [17] pro-
posed to perform a perspective projection of the 3D model with the same view angle at 
each camera position and orientation. The 3D model is now converted into a 2D image 
and superimposed onto the original image to enable pixel to model assignment within 
each image. The image pixel is assigned to the closest 2D model pixel. The conversion of 
the 3D model to a 2D image possesses some merits. First, since the positional uncertainties 
of the cameras have been already calculated during the SfM process, they can be incorpo-
rated within the assignment of each pixel to the corresponding model element in the im-
age. Furthermore, the assignment is performed in 2D rather than 3D, which can be faster 
and, if required, can allow the use of the many available and established image-processing 
frameworks. The process will, however, lose efficiency when occlusions are present on-
site due to the loss of information with dimensionality reduction of 3D to 2D. Therefore, 
additional steps, such as supervised learning, may be required to improve the pixel to 
model assignment in the existence of occlusions [47]. Furthermore, the process is only 
suited for images and cannot be generalized for point clouds acquired by other means, 
such as TLS. 

The scan vs. BIM method [20] first generates a template-designed point cloud by par-
allel projection of the acquired point clouds onto the closest surfaces in the designed 
model. The method then performs an iterative closest point (ICP) registration between the 
point clouds and the designed template point clouds until convergence. At each iteration, 
only points within a distance threshold (a function of a constant distant, 𝜀 ., and the 
registration errors in the previous iteration) are used for registration and assignment. The 
method is attractive since it reduces the point-cloud-to-model assignment into a template-
matching problem [48,49] and aims to also minimize possible target-based registration 
errors. The method, however, does not incorporate the impact of instrumental measure-
ment errors pertaining to the point's spatial uncertainties (see Section 2). Furthermore, 𝜀 . was arbitrarily defined as 50mm in the study, which may not be generic for all 
datasets (the impact of 𝜀 . on the ICP registration will be demonstrated later). Finally, 
ICP registration is based on point-to-point correspondence, which is known to be less ac-
curate than point-to-plane registration [50,51]. Therefore, direct point-cloud-to-plane reg-
istration can not only improve the registration accuracy (and the convergence rate) but 
also remove the necessity for generating the designed template point cloud altogether. 
3.1. A New Generic Process for Point Cloud vs. Model 

With due consideration of the limitations of the aforementioned methods, a new ge-
neric method, Algorithm 1: Point Cloud vs. Model, given the assumptions and inputs of 
Section 2.1, is proposed as follows: 
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Algorithm 1: Point Cloud vs. Model 

1.  Iterative improvement of the point-cloud-to-model registration: 
1.1.  Assign points to corresponding planar surfaces in the model as below: 

1.1.1.  For each point, find the closest planar surfaces whose distances to the 
point are smaller than the semi-major length of the error ellipsoid (see 
reference [16] Algorithm 5-step 2). 

1.1.2.  Assign the point to the closest planar surface that intersects the error el-
lipsoid (ellipsoid-surface intersection is treated in Appendix A). 

1.2.  For each planar surface, find the inlier points of the set of points, which were 
assigned to the plane in step 1.1, using the method proposed in Appendix B. 

1.3.  Perform the closed-form point to plane registration, proposed by Khoshelham 
[51] to transform the inlier points onto the corresponding model planes. 

1.4.  Transform all points using the registration parameters of step 1.3. 
1.5.  Perform steps 1.1-1.4 until the points used for registration between two con-

secutive iterations remain constant. 
2.  Assignment of non-planar points to non-planar model surfaces: 

2.1.  Identify the points which were not assigned to a planar surface (the remaining 
points after step 1). 

2.2.  Find the closest non-planar surface that intersects the error ellipsoid of the 
point (Appendix A). 

2.3.  For each surface in the model, perform the robust method of Appendix B to 
find the inlier points. 

2.4 Assign the inlier points to the corresponding surface and exit the algorithm. 
 
In Algorithm 1, given a reliable registration, a point is assigned to a surface if the 

following two conditions are met: 
• Its error ellipsoid intersects the surface. This is schematically shown in Figure 3a,b 

for planar and cylindrical surfaces, respectively. The intersection of ellipsoids and 
common surfaces such as planes, cylinders, spheres, and ellipsoids will be covered 
in Appendix A. 

• The point follows the pattern of the assigned surface (an inlier point). The algorithm 
for detecting inlier points, given a particular model, will be discussed in Appendix 
B. 

 
Figure 3. Schematic intersection of a sample ellipsoid with a 3D model: (a) planar surface and (b) 
cylindrical surface. 

(a) (b) 
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Step 1 of Algorithm 1 involves an iterative process to improve the registration in the 
absence of a reliable initial target-based registration (similar to the ICP of [20]). The regis-
tration process, however, only uses planar surfaces. Point-to-plane registration is used 
particularly since it is known to be accurate [50], and a reliable closed-form linear solution 
to the point-to-plane registration problem already exists [51], unlike, say, cylinder-based 
registration, which is non-linear at best [52]. 

3.2. Demonstration 1: Comparison of Scan vs. BIM and Point Cloud vs. Model 
3.2.1. Experimental Setup 

Point cloud data from one rectangular concrete column with rebars on top, acquired 
from a building construction project, were used (Figure 4a; data presented in [16,36]). To 
simulate a model with no construction errors, the following processes were carried out: 
1. The point cloud of the sample column was subjected to a rigid body transformation 

(translation and rotation; Figure 4b). 
2. The as-built model of the rectangular column surfaces as well as the cylindrical rebars 

for the transformed point cloud were generated manually using FARO As-built Mod-
eler software [53] (Figure 4c,d). 

3. The original point cloud was then superimposed onto the as-built model of the trans-
formed point cloud for comparison (Figure 4e). 

4. The proposed point cloud vs. model was compared to the scan vs. BIM method. The 
scan vs. BIM method was performed using four distance configurations with 𝜀 . 
changing from 50mm to 125mm in 25mm increments. 

 
Figure 4. Experimental setup for demonstration 1: (a) original point cloud, (b) translated and ro-
tated point cloud, (c) as-built model of the transformed point cloud of Figure 4b superimposed 
onto the point cloud, (d) as-built model of the transformed point cloud, and (e) as-built model of 
the transformed point cloud superimposed onto the original point cloud. 

3.2.2. Results: Registration Error Comparison 
Figure 5 shows the results of the registration error in each iteration using our method 

and the four configurations of scan vs. BIM. Two main observations were made from the 
results shown in Figure 5. First, scan vs. BIM appears to be considerably impacted by the 
change in 𝜀 .. In our data, 𝜀 . of 100mm and 125mm were the most optimum and 
produced almost identical registration results, whereas 𝜀 . of 50mm produced poor 
registration results. The second observation was that the proposed method, which is in-
dependent of arbitrarily defined thresholds, significantly outperformed scan vs. BIM, 
even at the most optimum distance of 𝜀 . = 100𝑚𝑚. In fact, the proposed method after 
the first iteration produced better results than the converged scan vs. BIM after 30 itera-
tions. The proposed method converged after only four iterations and produced a final 
registration error of 0.9mm, about four times better than the best scan vs. BIM, which pro-
duced a registration error of 3.2mm after 30 iterations. 

(a) (b) (c) (d) (e) 
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Figure 5. Registration error vs. the iteration number using proposed method of Algorithm 1, com-
pared to the result of scan vs. building information modeling (BIM) [20], with 𝜀 . = 50mm, 
75mm, 100mm and 125mm. 

3.2.3. Results: Quality of Point-to-Surface Assignment 
Given the impact of 𝜀 . on registration errors, it is also important to evaluate the 

quality of the point-to-model assignment for each method. Here, the precision, recall, ac-
curacy, and F-measure, introduced in [54], are used to define the quality of the point-
cloud-to-model assignment. Table 1 provides a summary of the assignment quality for 
each method. The scan vs. BIM at 𝜀 . of 50mm achieved comparatively poor results in 
both precision (type I errors) and recall (type II errors). The scan vs. BIM, however, ap-
peared to become more robust to type I errors (i.e., the correct detection of points belong-
ing to the surface) as the 𝜀 . increased from 50mm to 125mm. In fact, scan vs. BIM 
slightly outperformed our proposed method in type I errors. Our method, however, con-
siderably outperformed scan vs. BIM in type II errors (i.e., the correct rejection of points 
not belonging to the surface). The latter is a consequence of the robust inlier detection 
(Appendix B), which was used within the point-to-surface assignment process to reject 
outlying points. 

Table 1. Summary of the quality of point-cloud-to-model assignment using different methods. 

Method Precision Recall Accuracy F-Measure 
Scan vs. BIM -5mm 87.9% 76.9% 69.7% 82.1% 
Scan vs BIM -75mm 98.8% 87.5% 86.6% 92.8% 

Scan vs. BIM -100 mm 100.0% 87.5% 87.5% 93.3% 
Scan vs. BIM -125 mm 100.0% 86.8% 86.8% 92.9% 

Proposed point cloud vs. BIM 98.8% 99.9% 98.7% 99.3% 
Bold numbers represent the best value in each column. 

 
The robustness of our proposed method to type II errors compared to scan vs. BIM 

with 𝜀 . = 100mm is visually presented in Figure 6. It can be observed that many 
points of both planar and cylindrical surfaces, which are within the distance threshold of 𝜀 . = 100mm, are incorrectly assigned to the surface. In our method, other than the fact 
that the distance threshold (error ellipsoid) is systematically defined based on the spatial 
uncertainty of each point, a robust surface fitting is performed to further reduce the im-
pact of outliers and consequentially improve type II errors. 
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Figure 6. Comparison of type II errors during the point-to-model assignment: (a) scan vs. BIM 
with 𝜀 . = 100mm and (b) proposed point cloud vs. model. 

3.3. Constraint for Negligible Construction Error 
The aforementioned methods, e.g., scan vs. BIM, which use a distance metric to as-

sign points to their corresponding elements, can only produce reliable results when the 
constraint of negligible construction error is met. This is attributed to the fact that the 
presence of construction errors cannot be quantified a priori, i.e., before the point cloud is 
analyzed. The existence of construction errors will hinder these methods in the following 
two ways: 
1. Distance metric: Since the distance threshold is the basis for the assignment or rejec-

tion of a point to an element, without a priori knowledge of the construction errors, 
the threshold will be a guess at best. The impact of the subjective definition of 𝜀 . 
(introduced in the previous section), even for the case without construction errors, 
was thoroughly discussed in Section 3.2. 

2. Iterative registration: Since iterative ICP registration is performed on all elements, 
those elements with additional construction errors might also be used within the 
least-squares registration. Similar to any least-squares adjustment in the presence of 
outliers [55], the outlying elements due to construction errors will negatively impact 
the overall registration quality. An example of this phenomenon for scan vs. BIM is 
provided in Figure 7. In this example, even though the overall registration RMSE 
improved from 21mm in Figure 7a to 18mm in Figure 7b, the registration process, for 
example, sacrificed the accuracy of the element, shown with the black arrow, to ac-
commodate the element, shown in red. However, Figure 7a represents the correct 
point-to-model distance, and hence, the element, shown in red, must not be allowed 
to influence the registration. It is possible to solve this problem by adopting a local 
registration and matching strategy, which will be treated in Section 4. 

 
Figure 7. Distance of the point to the 3D element model using (a) only the initial reliable target-
based registration and (b) the iterative closest point (ICP) fine registration [20]. 

(a) 

(b) 

(a) (b) 
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4. Point Cloud Analysis: Existence of Construction Errors 
A construction error is defined, here, as the possibility of a set of model elements to 

be installed and built in the field incorrectly, particularly in terms of their positions, ori-
entations, and/or dimensions. The problem of damaged elements, where the geometry of 
the element is altered (e.g., a bent rectangular column), was not considered in this study. 
In the existence (or speculation) of construction errors, given an initially reliable registra-
tion of the point cloud and the model, each element can be treated separately and point 
cloud processing can be carried out locally (unlike the global methods described in Section 
3). To this end, for each element, a local set of points is first isolated [26] using a relaxed 
local tolerance to account for possible construction errors (say 200mm). The assignment 
of the isolated points to the model elements can then be treated in one of the following 
two ways or a combination of the two: 
1. Fitting the model directly to the point cloud, which aims at finding the group of 

points that match the geometry of the element. This can be accomplished by means 
of heuristic methods such as template matching [48,49], and robust least-squares ad-
justment [26,55,56]. 

2. Local point-cloud-to-model hypothesis testing, which aims at finding the points that 
locally follow the pattern of the element’s geometry. 
The difference is that the second class of methods incorporates the local geometry of 

each of the isolated points to enable point-to-model assignment with higher confidence. 
This additional local information may become particularly useful when assigning non-
analytical shapes in the presence of outliers. To provide some perspective, an example of 
a rectangular hollow structural section (HSS), analyzed using Verity [31], the first ap-
proach, is shown in Figure 8. As illustrated, due to the presence of outliers, the heuristic 
search of Verity found a non-optimal and incorrect transformation for the HSS element 
(Figure 8b). This is particularly attributed to the fact that only a limited combination of 
points (in this case, 1000 combinations) is used and the combination satisfying some deci-
sion criteria (e.g., the highest consensus [57]) is selected. Additional combinations might 
improve the results but increase the computation time without guarantee of optimality 
[58]. Local neighborhood information, such as curvature, may provide additional means 
to support the point-cloud-to-model assignment [27]. The remainder of this section is ded-
icated to presenting new methods to address class 2 local point-cloud-to-model hypothe-
sis testing. 

 
Figure 8. Results of heuristic model fitting of a hollow structural section (HSS) to contaminated 
point clouds using Verity: (a) original registered model and point cloud and (b) result of the incor-
rect model fitting. 

4.1. Local Point-Cloud-to-Model Hypothesis Testing 
Given the geometric representation of the element in the design model, the problem 

is to find the sets of points that locally follow the element’s geometric pattern. The prob-
lem is solved using Algorithm 2: Point-Cloud-to-Model Hypothesis Testing as follows: 

(b) (a) 
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Algorithm 2: Point-Cloud-to-Model Hypothesis Testing 

1.  Find the local neighborhood of each point (Figures 9b and 10b). 
2.  For each neighborhood, estimate the best fit parameters of the element’s surface 

geometry (e.g., best-fit plane Figures 9c and 10c, cylinder Figure 10e, and so on) 
and record the RMSE of the fit, 𝑅𝑀𝑆 . If an element consists of more than one 
surface geometry (e.g., HSS with cylindrical and planar surfaces), perform the re-
maining steps on the model with the lowest RMSE in accordance with the Bayesian 
information criterion [59]. 

3.  Determine the distribution of the RMSE (Figures 9d and 10d,f) if the points were to 
follow the hypothesized model as follows: 
3.1. Project the points onto the best-fit model (perspective projection is 

recommended for optical instruments such as perspective cameras and TLS). 
3.2.  Subject the projected points to additive measurement errors (Figures 9c and 

10c,e) by simulating a random point within the error ellipsoid of the original 
point to account for the spatial uncertainty of Equation (1). 

3.3. Calculate the RMSE of the best-fit to the points subjected to spatial 
uncertainties. 

3.4.  Perform steps 3.1 through 3.3 𝑁  times to develop the distribution of the 
RMSE. 

4.  From step 3, record the maximum RMSE (𝑅𝑀𝑆 ), mean of the RMSE (𝑅𝑀𝑆 ), 
and standard deviation of the RMSE (𝜎 .) of the simulated RMSE distribution. 

5.  The point belongs to the surface type if and only if the following condition is met: 𝑅𝑀𝑆 ≤ max 𝑅𝑀𝑆 |𝑅𝑀𝑆 3𝜎 .  , (2)

 

 
Figure 9. Sample of the planar hypothesis testing using Algorithm 2, applied to a planar neighbor-
hood: (a) point cloud; (b) neighborhood of a point of desire; (c) best-fit plane (green), actual neigh-
borhood points (blue), and simulated neighborhood points (magenta), rotated such that the 
plane’s normal vector is parallel to the y axis; and (d) distribution of the root mean squared error 

(a) (b) 

(c) (d) 
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(RMSE) for the simulated planar points, where the RMSE of the actual neighborhood satisfies 
Equation (2), indicating that the point follows a planar pattern. 

 
Figure 10. Sample of the planar and cylindrical hypothesis testing using Algorithm 2, applied to a 
neighborhood from a cylindrical surface: (a) point cloud; (b) point cloud neighborhood of a point 
of desire; (c) best-fit plane (green), actual neighborhood points (blue), and simulated neighbor-
hood points (magenta), rotated such that the plane’s normal vector is parallel to the y axis; (d) dis-
tribution of the RMSE for the simulated planar points, where the RMSE of the actual neighbor-
hood does not satisfy Equation (2), indicating that the point does not follow a planar pattern; (e) 
best-fit cylinder (green), actual neighborhood points (blue), and simulated neighborhood points 
(magenta), rotated such that the cylinder’s axis is parallel to the z axis; and (f) distribution of the 
RMSE for the simulated cylindrical points, where the RMSE of the actual neighborhood satisfies 
Equation (2), indicating that the point follows a cylindrical pattern. 

Algorithm 2 uses the surface geometry of the element, along with the spatial uncer-
tainty of the points, to simulate a probability distribution of the RMSE if the points were 
to follow the hypothesized geometry. The point will be designated to the geometry if and 
only if its RMSE complies with that of the simulated distribution. The use of Monte Carlo 
simulation, here, enables the generation of the distribution of the RMSE, which in general 
form is challenging to formulate analytically (e.g., finding the distribution of the smallest 
eigenvalue [60]). Furthermore, the information regarding the distribution of the best-fit 
parameters, such as covariance and the mean of the distribution of the surface normal, can 
also be estimated during the process, which is shown to be an asset in systematically de-
termining the correct threshold for surface segmentation [36]. 

Figure 9 shows the process, described in Algorithm 2, for a neighborhood of points 
following a planar pattern. It can be observed from Figure 9d that the RMSE of the original 
point cloud neighborhood of Figure 9b is much smaller than even the mean of the proba-
bility distribution function of the RMSE of the simulated points, indicating that the point 
considered in Figure 9 satisfies Equation (2) and follows a planar pattern. This is, in fact, 

(a) (b) 

(c) (d) 

(e) (f) 
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not the case for the cylindrical neighborhood, shown in Figure 10. For the cylindrical 
neighborhood, if the points are projected onto the best-fit plane, the RMSE of the best-fit 
plane to the cylindrical points considerably exceeds the maximum of the probability dis-
tribution of the RMSE of the simulated planar points (Figure 10d). Alternatively, if a cyl-
inder is fitted to the cylindrical points, the RMSE of the best-fit cylinder is within the prob-
ability distribution of the RMSE of the simulated cylindrical surface and satisfies the re-
quirement set in Equation (2) (Figure 10f). Therefore, the point considered in Figure 9 will 
be classified as a plane and the point considered in Figure 10 will be classified as a cylin-
der.  

Algorithm 2 is non-parametric and only requires the spatial uncertainties of the 
points from Equation (1) as well as the type of geometric surface from the element’s design 
information model. Once the points are designated (classified) to the desired surface 
model (e.g., plane, cylinder, etc.) using Algorithm 2, Algorithm 1 (or template matching 
[48]) can be used on only the designated points for the final point-to-model assignment. 
The final considerations for Algorithm 2 are to define a reliable neighborhood around 
each point, and to determine the required number of Monte Carlo iterations, 𝑁 , to form 
a reliable distribution of RMSE, which are discussed next. 

4.2. Robust Neighborhood Definition 
The neighborhood of points can be defined as fixed [36] or variable [32,33]. For the 

fixed neighborhood case, either a fixed radius around the point or a fixed number of 
neighboring points is considered. In practical settings, since the local point cloud resolu-
tion and density vary throughout the dataset, a fixed neighborhood cannot capture the 
impact of the change in point density effectively. Variable neighborhood sizes are gener-
ally more effective in capturing the local point density variations and consequentially bet-
ter representing the behavior of the neighborhood of the points [32,33]. The most reliable 
methods for adaptively selecting the neighborhood of each point [32,33] use basic princi-
ples from decision and information theory [61] to find the set of points achieving the min-
imum information entropy. Theoretically, the set of points with the smallest entropy will 
contain the maximum information. To this end, a range of neighborhoods is considered 
and that achieving the lowest information entropy is selected [32,33]. The two methods 
presented in [32,33] differ in their definitions of features used to formulate the entropy 
function with Weinmann’s formulation [32], achieving slightly better results. 

The problem of a variable neighborhood can be formulated in robust statistical sense 
as finding the set of points whose determinant of the covariance matrix is minimum (MCD 
[55,62]), which is the set of points with the least outliers. It turns out that minimizing the 
determinant of the covariance matrix also minimizes the differential entropy for Gaussian 
distributions (Equation (1) in [63]), which is also consistent with the principles of decision 
and information theory [61]. Hence, the optimum neighborhood can be cons as that 
achieving the MCD. However, to compare the MCD as the neighborhood size increases, 
the data must be normalized; otherwise, larger neighborhoods will produce greater co-
variance determinants. Here, the data are normalized such that the total variance, the sum 
of the eigenvalues of the covariance matrix, equals unity. The process is formulated using 
Algorithm 3: Robust Neighborhood Definition, given the starting radius (or the number 
of points) (𝑟 ), the final radius (𝑟 ), and the sampling step (𝛿 ) for each point as fol-
lows: 
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Algorithm 3: Robust Neighborhood Definition 

1.  Generate the sampling radius: 𝑟 = 𝑟 𝑖.𝛿 𝑖 = 0: 1:  . 

2.  For each sampling radius, 𝑟 , find the closest points to the point of desire within 
the spherical radius, 𝑟 . 

3.  Calculate the eigenvalues of the covariance matrix of the set of points from step 2, Λ = 𝜆 , 𝜆 , 𝜆 . 
4.  Calculate the normalized MCD, 𝐸 , as follows: 𝐸 = ∏  , (3)

5.  Select the 𝑟  that receives the smallest 𝐸 . 

4.3. Demonstration 2: Evaluation of the Point-to-Model Quality 
This section involves the assessment of the effectiveness of the proposed methods on 

a point cloud of the sample HSS member of Figures 9a and 10a, acquired using the Leica 
HDS6100 TLS [43]. The sample point cloud consists of two planar surfaces and a cylindri-
cal fillet. Four experiments are described next, namely robust neighborhood evaluation, 
impact of Monte Carlo iteration, impact of neighborhood size, and comparison with ran-
dom sample and consensus (RANSAC) [34,57]. 

4.3.1. Robust Neighborhood Evaluation 
The robust neighborhood definition of Algorithm 3 is compared to the reliable vari-

able neighborhood definition of Weinmann [32] for the data presented in Figures 9a and 
10a. The neighborhood radius was set to change from 20mm to 70mm in 1mm increments. 
The results of the defined neighborhood radius using Weinmann’s [32] and our methods 
are visually shown in Figure 11b,c, respectively. As illustrated, both methods produce 
similar patterns of neighborhood sizes for the planar (larger neighborhoods) and cylindri-
cal (smaller neighborhood) regions. Our method, however, appears to be more consistent 
with defining the neighborhood of points for the planar and cylindrical regions. For in-
stance, Weinmann’s method finds a smaller neighborhood for the points of the same pla-
nar surface on the edges of the surface (marked in black oval), whereas ours provides a 
consistent neighborhood around the points of the same surface. Further observations can 
be made from the green ovals, which are again from the same planar surface. Overall, the 
accuracy of the angle between the estimated normal and the ground truth normal vector 
was around 0.2° and 0.6°, using the proposed and Weinmann’s methods, respectively. 

 
Figure 11. Results of the neighborhood definition: (a) sample point cloud, (b) Weinmann’s [26] 
method, and (c) using Algorithm 3. 

 

(b) (a) (c) 
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4.3.2. Impact of Monte Carlo Iteration 
This experiment was designed to quantify the impact of the number of iterations, 𝑁 , 

used to generate the probability distribution of the RMSE in Algorithm 2. To this end, 
Algorithm 2 in combination with Algorithm 3 was applied to the sample data, with 𝑁  
increasing from 25 to 1000. The quality of the planar and cylindrical classification (preci-
sion, recall, accuracy, and F-measure) was quantified and recorded for each iteration. Fig-
ure 12 shows the quality of the classification as the number of iterations increases. It can 
be observed that the precision, recall, accuracy, and F-measure remain relatively constant 
as the number of iterations increases from 50 to 1000. The precision and, consequentially, 
the accuracy and F-measure were, however, relatively lower with 25 iterations compared 
to 50 iterations. Therefore, 50 iterations appear to be an appropriate choice for the number 
of iterations. 𝑁 = 50 was also tested on the dataset shown in Figure 4a, with similar re-
sults. 

 
Figure 12. Quality of point-to-model designation using Algorithm 2 vs. the number of iterations.  

4.3.3. Impact of Neighborhood Size 
In Section 4.3.1, it was established that the proposed neighborhood definition can 

provide accurate results, particularly to estimate the surface normal, in comparison to an 
established variable neighborhood definition method. Here, the impact of fixed neighbor-
hood sizes on the quality of the point-to-model designation using Algorithm 2 is evalu-
ated. To this end, the neighborhood size was changed from 25mm to 75mm in 5mm incre-
ments and the precision, recall, accuracy, and F-measure were recorded. Figure 13 shows 
the quality of planar and cylindrical classifications of Algorithm 2 (𝑁 = 50) using differ-
ent fixed neighborhood sizes. The dashed lines show the classification quality using the 
robust neighborhood of Algorithm 3. As illustrated, the size of the neighborhood consid-
erably impacts the quality of the classification. The precision appears to reduce as the 
neighborhood size increases. The recall, on the other hand, increases as the neighborhood 
size increases. Due to this counteraction between precision and recall, the F-measure and 
accuracy peak at the neighborhood size of around 30mm. The robust neighborhood using 
Algorithm 3 provided a lower precision (indication of type I errors) but a relatively higher 
recall (indication of type II errors) compared to the neighborhood size of 30mm. In fact, 
the F-measure and the recall using the robust neighborhood outperformed all neighbor-
hood sizes of a fixed radius. The considerable impact of the neighborhood size on the 
classification quality also demonstrates that if the data were to be isotopically scaled, the 
most optimum fixed neighborhood size (in this case 30mm) must also be scaled. There-
fore, a fixed neighborhood cannot possibly provide the same point-to-model designation 
quality with models of different sizes and with varying point cloud densities. 
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Figure 13. Quality of point-to-model designation using Algorithm 2 vs. the neighborhood size. 

4.3.4. Comparison with RANSAC 
The proposed method for point designation to planar and cylindrical surfaces was 

compared to the established RANSAC methodology of [34], which was specifically de-
signed for shape detection, and implemented in the popular software CloudCompare [64]. 
The results of the two methods are presented in Figure 14. Figure 14 (left) shows the re-
sults of the surface designation, where points detected as planar are shown in blue and 
points following cylindrical patterns are shown in red. As illustrated in Figure 14a (left), 
although the considered RANSAC method was successful in detecting most planar points, 
it failed to correctly classify most of the cylindrical points. In fact, the method incorrectly 
classified most cylindrical points as planar. Our method, shown in Figure 14b (left), on 
the other hand, correctly classified both planar and cylindrical points. Figure 14 (right) 
shows the results of the planar and cylindrical segmentation using the considered RAN-
SAC method (Figure 14a, right) and the proposed method combined with the robust com-
plete linkage segmentation of Maalek [36] (Figure 14b, right). 

 
Figure 14. Results of the point-to-model designation (left) and final assignment (right) using (a) 
the random sample and consensus (RANSAC) method of [34] and (b) the proposed method (Algo-
rithms 2 and 3). 

The precision, recall, accuracy, and F-measure for both methods are provided in Ta-
ble 2. Our proposed methods (Algorithms 2 and 3) and RANSAC of [34] achieved F-

Point to model designation Point to model assignment 

(a) 

(b) 
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measures of 98.4% and 89.0%, respectively, which demonstrates the higher performance 
of the proposed methods. Our method particularly outperformed RANSAC in type II er-
rors related to the correct assignment of points to cylindrical surfaces (as demonstrated 
from the recall rate). 

Table 2. Summary of the quality of point-to-model assignment using our method and RANSAC. 

Method Precision Recall Accuracy F-Measure 
RANSAC CloudCompare 94.7% 83.9% 81.3% 89.0% 

Proposed point-to-model assignment 97.7% 99.0% 97.4% 98.4% 
Bold numbers represent the best value in each column. 

4.4. Demonstration 3: Comparison with local scan vs. BIM 
To complete the picture of local assignment of point clouds to a desired element in 

the presence of possible construction errors, an HSS member and the locally surrounded 
points of Figure 15a are considered. Even though the overall point cloud and model are 
registered, the HSS member of Figure 15a is locally not correctly registered to its corre-
sponding points due to construction errors. The registration and assignment of the HSS 
model element to point cloud was carried out once using a local implementation of scan 
vs. BIM (Figure 15b) and again using Algorithms 1-3 (Figure 15c), for comparison. Using 
our method, first Algorithms 2 and 3 are applied to detect planes and cylinders. Algorithm 
1 is then utilized to register and match the model to the correct point cloud. As illustrated 
in Figure 15b, local implementation of scan vs. BIM contains many Type II errors. The 
proposed combination of Algorithms 1-3, on the other hand, achieved considerably higher 
robustness to Type II errors compared to scan vs. BIM. In terms of point cloud to model 
registration, scan vs. BIM and our method achieved RMSE of 7.9mm and 2.7mm, respec-
tively. The proposed methodology, hence, outperforms the local implementation of scan 
vs. BIM for both point cloud assignment and registration in data with local construction 
errors. 

 

Figure 15. Comparison of Algorithms 1-3 with local implementation of scan vs. BIM: (a) sample 
HSS member (with rounded rectangular edges) and surrounding point cloud with visible local 
construction error; (b) local scan vs. BIM; and (c) proposed Algorithms 1-3. 

5. Discussion on the Summary of Findings 
Two categories of methods were presented, critically assessed, and analytically com-

pared to solve point cloud assignment with the following properties: 
1. Negligible construction errors, which considered the methods of scan vs. BIM [20] 

and Reconstruct Inc. [17,30] from previous literature, and the newly developed Al-
gorithm 1 for point cloud vs. model comparison; and 

2. Existence (or speculation) of construction errors, which discussed the approaches 
taken by Verity [31], entropy-based local point neighborhood definition [32,33], and 
RANSAC shape detection [34] from existing studies, and the newly proposed Algo-
rithms 2 and 3 for point-cloud-to-model hypothesis testing. 

(b) (a) (c) 
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In the case of negligible construction errors, a generic point cloud vs. model frame-
work was proposed, Algorithm 1, which first performs an iterative global point-to-plane 
registration between the point cloud and the model. The process then assigns the points 
to the closest model elements that intersect with the point’s error ellipsoid (representative 
of spatial uncertainty). It was shown that the popular scan vs. BIM is considerably influ-
enced by the choice of the distance threshold, with the point assignment F-measure chang-
ing from 82.1% to 93.3% with different thresholds. The proposed point cloud vs. model 
method, which is not a function of a subjectively defined threshold, achieved an F-meas-
ure of 99.3%, outperforming scan vs. BIM in all considered thresholds. 

In the existence of construction errors, it was argued that the local behavior of each 
point can provide additional information to aid with the point-cloud-to-model assign-
ment. To this end, a new generic method was proposed to designate points to classes of 
surface geometries of each element in the designed model. The method first simulates 
point clouds of the surface geometry using the spatial uncertainty of each point and then 
decides whether the neighborhood of the point follows the pattern of the considered class 
of geometry. The method is non-parametric and generic; however, it requires a process 
for neighborhood definition. Therefore, a new method for neighborhood definition was 
proposed that is consistent with both robust statistics and information theory. The normal 
vectors, estimated using the proposed robust neighborhood definition, were found to 
achieve an angular error of only 0.2° on average, compared to the ground truth normal 
vectors. The proposed point-to-model hypothesis testing, for both cylinders and planes, 
achieved an F-measure of 98.4% on a real-world point cloud from an HSS member. It was 
also shown that the proposed method outperformed established RANSAC methods, par-
ticularly in the correct assignment of points to cylindrical surfaces. Finally, the efficient 
combination of Algorithms 1-3 on data with visible local construction error was compared 
to a local implementation of scan vs. BIM. It was observed that the proposed method 
outperformed local scan vs. BIM in both point cloud to model assignment and registration. 

6. Concluding Remarks and Avenues for Future Exploration 
The automated analysis of point clouds, acquired from construction projects, enables 

frequent measurement and reporting of the project’s performance, which is imperative to 
promote continual improvement. To this end, the study focused on the methods to assign 
point clouds to their corresponding elements, given a reliably designed n-D model, the 
spatial uncertainty of the point clouds and reliable registration between the model and 
the point cloud. The methods were further sub-categorized to address field conditions 
with negligible construction errors and the existence (or speculation) of construction er-
rors.  

Given some of the assumptions presented in this study, the following remain possi-
ble avenues for further investigation: 
1. Automated spatial uncertainty estimation: Currently, the proposed frameworks are 

predicated on the formulation of the error ellipsoid of each point a priori. While this 
can be accomplished for most instruments, it would still be attractive to formulate 
this spatial uncertainty automatically and directly from the point cloud. 

2. Closed formulation of distribution of the RMSE: Algorithm 2 involved simulating 
multiple sets of points to generate the distribution of the RMSE. Formulating this 
RMSE in closed form will remove the requirement for simulating the multiple sets of 
points, which, depending on the formulation, might improve computational effi-
ciency. 

3. Point cloud assignment in the presence of damages: This study focused on errors 
during construction, including orientational, positional, and dimensional errors of a 
particular element. Automatic assignment of points to damaged elements, such as 
cracks and deformations, will be an interesting avenue for further exploration. 
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4. Point cloud registration comparison: A comparison of the point cloud registration 
method proposed in Algorithm 1 with supervised learning methods such as that pro-
posed in [65] could be of interest to some researchers. 
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Appendix A Intersection of Error Ellipsoids with Common Surfaces 
Strategies for finding the intersection of ellipsoids with planes, cylinders, spheres, 

and ellipsoids are considered in the following: 
1. Ellipsoid–plane intersection: This problem was treated in [16], Algorithm 5. First, the 

error ellipsoid is converted into a sphere with radius unity through the affine trans-
formation, presented in Algorithm 5, step 3 of [16]. The planar surface is subjected to 
the same affine transformation. If the distance of the center of the unit sphere to the 
transformed plane is less than or equal to unity, the plane and ellipsoid have an in-
tersection. 

2. Ellipsoid–cylinder intersection: This problem was treated in [16], Algorithm 6. First, 
the cylinder and the ellipsoid are rotated such that the cylinder’s axis is parallel to 
the z axis. The problem is now reduced to checking the following two intersections 
in 2D: (i) ellipse and circle intersection in the x-y plane and (ii) ellipse and rectangle 
intersection in the x-z (or y-z) plane. The first, ellipse and circle intersection, can be 
solved by calculating the distance of the center of the circle to the ellipse using the 
method of Chernov [66]. If the distance is smaller than the radius of the circle (origi-
nal cylinder), the two curves intersect. The second, ellipse and rectangle intersection, 
can be solved using the method of Eberly [67]. 

3. Ellipsoid–ellipsoid intersection: Wang [68] proposed an elegant algebraic condition 
for the intersection of two ellipsoids (extendable to spheres as well). It was shown 
that two ellipsoids are separated if and only if their characteristic polynomial con-
tains exactly two distinct positive roots. This condition can be used to determine 
whether the two ellipsoids intersect. 

Appendix B Robust Outlier Detection 
Given a best-fit model to a set of points, the following robust outlier detection algo-

rithm, first described in Algorithms 1 and 2 of [26] for circles, is extended in the following 
for any parametric surface in the following: 
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Algorithm 4: Robust Outlier Detection Given Parametric Surface Model 

1.  Perform the following concentration step: 
1.1. Calculate the squared residual of each point, 𝑟 , to the best-fit model. 
1.2. Estimate the mode of 𝑟 , 𝑀𝑜𝑑, for the intercept adjustment. 
1.3. Estimate the normalized median absolute deviation (𝑀𝐴𝐷𝑁, [69]) of 𝑟 . 
1.4. Find all the points satisfying the following condition: ≤ 𝜒 . , , (A1) 

1.5. Consider the inliers as the new set of points: 
1.5.1. If the inlier points remain unchanged between two consecutive iterations, 

exit the concentration step and return the final set as the inliers. 
1.5.2. Else, estimate the best-fit model parameters on the new points and return 

to step 1.1. 
2.  Using the best-fit model from the inliers of step 1, estimate the residuals, 𝑅𝑒𝑠 . 
3.  Perform Algorithm 2 of [26] to determine all inlier points as follows: 

3.1. Calculate the sample standard deviation of the residuals, 𝜎 , using the final set 
of inlier points 

3.2. Find all the points satisfying the following equation: 

| | ≤ 𝜒 . , , (A2) 
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