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Abstract: In this paper, we define a new problem domain, called visual growth tracking, to track
different parts of an object that grow non-uniformly over space and time for application in image-
based plant phenotyping. The paper introduces a novel method to reliably detect and track individual
leaves of a maize plant based on a graph theoretic approach for automated leaf stage monitoring.
The method has four phases: optimal view selection, plant architecture determination, leaf tracking,
and generation of a leaf status report. The method accepts an image sequence of a plant as the
input and automatically generates a leaf status report containing the phenotypes, which are crucial
in the understanding of a plant’s growth, i.e., the emergence timing of each leaf, total number
of leaves present at any time, the day on which a particular leaf ceased to grow, and the length
and relative growth rate of individual leaves. Based on experimental study, three types of leaf
intersections are identified, i.e., tip-contact, tangential-contact, and crossover, which pose challenges
to accurate leaf tracking in the late vegetative stage. Thus, we introduce a novel curve tracing
approach based on an angular consistency check to address the challenges due to intersecting leaves
for improved performance. The proposed method shows high accuracy in detecting leaves and
tracking them through the vegetative stages of maize plants based on experimental evaluation on a
publicly available benchmark dataset.

Keywords: plant architecture determination; graph theoretic approach; leaf detection; leaf tracking;
leaf status report

1. Introduction

Visual tracking is an emerging research field that deals with the problem of localizing
a pre-specified object in a video sequence. It is a challenging problem with many practical
applications, e.g., player detection and tracking in sports videos [1], tracking of pedestrians
in video sequences for visual surveillance and scene awareness [2], and moving vehicle
detection and tracking for traffic surveillance [3,4]. More recently, tracking has been applied
in a completely different domain, i.e., image-based plant phenotyping analysis, for leaf
growth monitoring of Arabidopsis [5]. Different plants exhibit different architectures, the
complexity of which gradually increases with time. This results in automated growth
monitoring of a plant being challenging, as a whole and its parts (e.g., leaves, flowers,
roots), based on image sequence analysis. Hence, this research area requires focused and
long-term attention from the computer vision community. The role of plants is critical in
the context of food security and the wellbeing of humans and animals. The application of
visual tracking in automated growth stage determination of economically important crops,
e.g., maize and sorghum, for plant phenotyping is yet to be explored despite their role as
the source of staple foods in most areas of the world.
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Image-based plant phenotyping facilitates the extraction of advanced biophysical
traits by analyzing a large number of plants non-destructively in a short period of time
with limited manual intervention. Understanding genetic diversity and the impacts of
abiotic and biotic stresses on plant performance and yield is of critical importance to
address current and emerging issues related to food security and climate variability. For
example, in maize, the vegetative growth stage, which is important for yield predictions,
is determined by the number of leaves emerging before flowering. Maize is one of three
grain crops along with rice and wheat that directly or indirectly provides half of the total
world’s calorie consumption each year. Hence, the study of its growth stages influenced
by various stress conditions, e.g., drought, salinity, and heat, is of critical importance [6,7].
However, after the natural senescence of the lower leaves, the growth stage determination
requires manual splitting of the lower part of the stalk to inspect the internode elongation.
To the best of our knowledge, this is the first study that uses image-based automated leaf
growth stage monitoring as an alternative to the time-consuming manual process. Thus,
the paper introduces a novel method for automated monitoring of leaf growth stages of
maize plants, i.e., to accurately detect the emergence timing of individual leaves and track
them over the vegetative stage. The method is applicable to other economically important
grain crops that share a similar architecture and growth pattern as maize, e.g., sorghum,
for all existing high-throughput plant phenotyping systems in a controlled greenhouse
environment (e.g., LemnaTec Sanalyzer 3D, PlantScreenTM modular system, and Phenomix
automated greenhouse system), where plants are placed on carriers upon a conveyor belt
that automatically moves the plants from the greenhouse to the imaging cabinet one at a
time for proximal sensing.

Unlike visual tracking of rigid bodies, e.g., vehicles and pedestrians, we define a new
problem, visual growth tracking (i.e., tracking of different parts of an object that grow at
different rates over time), using plant image sequences with a different set of computer
vision challenges. Plants are not static, but living organisms with constantly increasing
complexity in terms of shape, structure, and appearance. While rapid displacement of
the entire body takes place for vehicles and pedestrians in motion, plants remain fixed
in the soil, but their different parts grow at different rates over time. Plants alter leaf
positioning (i.e., phyllotaxy) in response to light signals perceived through the phytochrome
in order to optimize light interception. In addition to variation in phyllotaxy, the growth
of individual leaves over time leading to self-occlusions and leaf crossovers also poses
additional challenges to automated leaf growth monitoring.

The proposed method is divided into four phases: (a) optimal view selection, (b)
plant architecture determination, (c) leaf tracking, and (d) computation of the leaf status
report. The high-throughput plant phenotyping proximal sensing systems are constrained
by the presence of a single camera in the imaging cabinets. Thus, each cabinet has a
pneumatic lifter fitted with an electric motor rotator that rotates the plant at a desired angle
in the range [0◦ 360◦] to capture images from multiple view angles. We first identify the
view of the plant that provides the most detailed structure of the plant from all available
views. We represent each single plant image in the sequence as a graph to detect the plant
components, i.e., leaves and stem, using a graph theoretic approach. The leaves in the
plant images in the sequence are relabeled by their emergence order to track them over
time. Here, we exploit an important growth characteristic feature of a maize plant, i.e.,
the leaves in maize emerge using a bottom-up approach in alternate-opposite orientation.
The algorithm addresses the challenge of leaf losses and the emergence of new leaves for
efficient growth stage monitoring. The growth pattern in the early stage of the life cycle
provides the most crucial phenotypic information related to yield, and hence is of interest
to plant scientists. The challenge of leaf intersections is uncommon in the early growth
stages, but a usual occurrence in late vegetative stages. Hence, we introduce a novel curve
tracing technique based on an angular consistency check to address the challenge of leaf
crossovers to achieve robustness.
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The emergence timing, total number of leaves present at any given time, total number
of leaves emerged, the day on which a particular leaf stopped growing or was lost, and
the length and relative growth rate of individual leaves are the significant phenotypes
(i.e., observable morphological and biophysical traits of the plants regulated by genotype
and the environment) that best assess the health of the plants. Automated growth stage
monitoring by leaf tracking will enable us to develop a novel system that will accept the
plant image sequence as the input and will automatically produce a leaf status report
containing the above-mentioned phenotypic information for monitoring leaf growth, and
thus the overall growth of the plant. The proposed method is evaluated on the benchmark
dataset called the University of Nebraska-Lincoln Component Plant Phenotyping Dataset
(UNL-CPPD) [8].

The rest of the paper is organized as follows. Section 2 discusses related research
in this emerging field and Section 3 presents the proposed method. Section 4 provides a
discussion of the benchmark UNL-CPPD used to evaluate our method. Section 5 presents
the experimental results, and Section 7 concludes the paper.

2. Related Work

Multiple object tracking is a challenging task, yet of fundamental importance for many
real-life practical applications [1]. The method in [1] uses a progressive observation model
followed by a dual-mode two way Bayesian inference-based tracking strategy to track
multiple highly interactive players with abrupt view and pose variations in different kinds
of sports videos, e.g., football, basketball, as well as hockey. The method in [2] uses an
interacting multiple model framework to simultaneously track multiple pedestrians in
monocular video sequences. Computer vision-based vehicle detection and tracking play
an important role in the intelligent transport system [4]. The method in [4] enhances the
universal background subtraction algorithm for video sequences known as ViBe algorithm
for accurate detection of multiple vehicles in the scene. It uses two classifiers, i.e., support
vector machine and the convolutional neural network, to track vehicles in the presence
of occlusions.

The emergence of a new leaf, the growth of the individual leaves over time, and
growth cessation followed by senescence leading to increased complexity with variations
in the shape and appearance of the plant pose a different set of challenges compared to
visual tracking of vehicles or humans. Although few attempts have been made to count and
track individual leaves of plants, these are only conducted on top view images of rosette
plants in their early growth stages, e.g., Arabidopsis (Arabidopsis thaliana) and tobacco
(Nicotiana tabacum), which are commonly used as the model plants for image-based plant
phenotyping research [9–11]. The method in [9] combines the local leaf features extracted
in the log-polar domain to form a global descriptor, which is then fed to a support vector
regression framework to estimate the number of leaves of rosette plants. A probabilistic
parametric active contours model was applied in [9] for leaf segmentation and tracking
to automatically measure the average temperature of leaves by analyzing infra-red image
sequences. However, this method does not address the challenge of overlapping leaves. The
method in [5] proposes a joint framework for multi-leaf segmentation and the alignment
and tracking of the rosette leaves by analyzing fluorescent image sequences to account for
the leaf-level photosynthetic capability of the plants. The method uses Chamfer matching
followed by forward and backward warping for multi-leaf alignment and overcomes the
challenge of overlapping leaves. In addition to the leaf counting and tracking, rosette plants
have been used for the study of leaf segmentation using three-dimensional histogram cubes
and superpixels [10], plant growth and chlorophyll fluorescence analysis exposed to abiotic
stress conditions [11], automated plant segmentation using the active contour model [12],
and the rate of leaf growth monitoring following leaf tracking using infrared stereo image
sequences [13].

Compared to rosette plants, computer vision-based research for automated plant
phenotyping analysis of the three most important cereal crops, e.g., rice, wheat, and maize,
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is only in the budding stage due to their more complex architecture. The method in [14]
uses a graph theoretic approach for the determination of stem angle to account for the
stem’s susceptibility to lodging by analyzing visible light image sequences of maize plants.
A time series clustering followed by genotypic purity analysis on a public dataset called
Panicoid Phenomap-1 established that the temporal variation of the stem angles is likely
to be regulated by genetic variation under similar environmental conditions. The key
novelty of our previous publication in [8] was the introduction of a general taxonomy of 2D
plant phenotypes that can be computed by imaging techniques. The method also provides
algorithms to compute a set of new component phenotypes, e.g., junction-tip distance, leaf
curvature, and integral-leaf skeleton area, with a discussion of their significance in the
context of plant science. However, in this method, the leaves are tracked manually over
the image sequence to demonstrate the temporal variation of these phenotypes regulated
by genotypes.

Motivated by the unavailability of any previous study on the automated growth stage
determination of cereal crops, we introduce in this paper a novel algorithm to accurately
detect the emergence timing of individual leaves and track them over the vegetative stage
life cycle of the plant, based on plant architecture determination using a graph theoretic
approach. The algorithm accepts a temporal image sequence of a maize plant as the
input and automatically generates a leaf status report, which contains information of the
entire life history of each leaf. Most importantly, this defines a pioneering study in the
field of visual tracking, which tracks parts (i.e., leaves) of a growing living object in an
image sequence.

3. Materials and Methods

Figure 1 shows an overall image processing pipeline for the proposed method. Figure 1a
shows the original image, and Figure 1b shows the corresponding binary image. The binary
image is then skeletonized (see Figure 1c) to determine the graph representation of the
plant, as shown in Figure 1d. Figure 1e shows each detected leaf is marked with a distinct
color. Finally, Figure 1f shows each leaf numbered in order of emergence. The proposed
method accepts a sequence of plant images captured at regular intervals over the vegetative
stage life cycle of a plant as the input and generates a leaf status report along with a visual
representation that encode the dynamic properties of all leaves that emerged during this
period. The embedded phenotypic information is useful to plant scientists to provide
greater understanding of the underlying physiological processes. This novel objective is
achieved in four phases:

• View selection: Each plant is captured from multiple viewpoints to get a more accurate
representation. We select the view at which the leaves are most distinct.

• Plant architecture determination: For each image in the sequence, we determine the
architecture of the plant using a graph theoretic approach.

• Leaf tracking: The plant architectures are reconciled to determine the correspondences
between the leaves over time to track them over the vegetative stage life cycle and
demonstrate the temporal variation of the leaf-based phenotypes.

• Leaf status report: A leaf status report is produced as an output of the algorithm
containing phenotypic information related to the entire life history of each leaf that
best contributes to assessing plant vigor.

3.1. View Selection

Many plants alter leaf positioning (i.e., phyllotaxy) in response to light signals to
optimize light interception [15]. To determine a plant’s architecture, the accurate location
of the junctions (or collars, i.e., the points of contact of the leaves to the stem) and the tips
(free endpoints of the leaves) is critical. Therefore, each plant is imaged from multiple
viewpoints. The best view of the junctions is obtained in a view of the plant at which
the line of sight of the camera is perpendicular to the axis of the leaves, as evident from
Figure 2. In this view, the plant has the largest projection in the image. To determine this
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view, we first compute the area of the convex-hull of the plant for the available number of
m views for the day the plant is imaged. The view at which the area of the convex-hull of
the plant is the maximum, is selected for subsequent analysis. Given that a plant is imaged
at m viewing angles each day, the optimal view (OViewi) for day i is given by:

OViewi = viewi,j : CH(viewi,j) < CH(viewi,k),
∀j 6= k, 1 ≤ j, k ≤ m.

(1)

for i = 1, ..., n, where n denotes the total number of imaging days, viewi,j is the j-th view of
the plant on day i, and the function CH returns the area of the convex-hull of the plant in
the image.

Figure 1. Image-based plant phenotyping computation pipeline: (a) original image; (b) binary image;
(c) plant skeleton; (d) graphical representation of the plant with tips and collars identified; (e) plant
skeleton with leaves marked with different colors; and (f) leaf labeling in order of emergence.

Figure 2. Illustration of view selection: (a) binary image of a maize plant enclosed by the convex-hull
at a side view of 0◦; and (b) binary image of the same maize plant enclosed by the convex-hull at a
side view of 90◦.

3.2. Plant Architecture Determination

The steps for plant architecture determination are described below.



Remote Sens. 2021, 13, 961 6 of 22

3.2.1. Segmentation

In a high-throughput phenotyping system, the plants are grown in a controlled envi-
ronment like a greenhouse and imaged in a closed chamber. Thus, the imaging environment
remains consistent in both camera and plant locations. Therefore, a frame-differencing
approach using background subtraction gives a good approximation of the segmented
plant [14]. This is followed by color-based thresholding to extract the foreground, i.e., the
plant. A simple erosion removes noisy pixels, and a dilation step is used to fill in any small
holes inside the plant image. At the end, the largest connected component in the image is
deemed to be the plant.

3.2.2. Skeletonization

Skeletonization, i.e., the process of reducing a shape into one pixel wide connected
lines, is widely used in object representation and recognition, character recognition, image
retrieval, biomedical image processing, and computer graphics. Since many plants, includ-
ing grasses such as corn and sugarcane, have elongated primary structures (stem, leaves,
etc.), the skeleton provides the basis for the plant’s architecture.

Skeletonization algorithms are mainly based on morphological operations, discrete
domain analysis using the Voronoi diagram, and fast marching distance transform. The
morphological thinning-based methods iteratively peel off the boundary layer by layer,
identifying the points whose removal does not affect the topology. Although straightfor-
ward, it requires extensive use of heuristics to ensure the skeletal connectivity, and hence
does not perform well in the case of complex dynamic structures like plants. The geometric
methods compute the Voronoi diagram to produce an accurate connected skeleton from the
connected component. However, their performance largely depends on the robustness of
the boundary discretization and is computationally expensive. We propose the use of fast
marching distance transform to skeletonize the binary image [16] of the plants due to its
robustness to noisy boundaries, low computational complexity, and accuracy in preserving
skeleton connectivity structures.

The skeletonization process often results in the formation of unwanted spurious
branches or spurs, which, in our application, can be erroneously identified as leaves [17].
The proposed method uses a thresholding-based skeleton pruning technique to remove
spurs, i.e., if the length of the edge is less than the threshold value, it is considered as a
spur, and hence discarded. The threshold can be determined through experimentation or
using a supervised learning approach. Based on the experimental analysis of our dataset,
we set the threshold value as 10 pixels, as this value removes spurs from all images of the
dataset. Irrespective of the method chosen, in rare cases, this process will eliminate true
leaves, when they are very small, right after emergence. However, leaves are dynamic
structures; they will grow and be identified accurately in the image at the next time point.

Graph representations of skeletons have been investigated in the literature in many
object recognition problems [18]. The method in [18] uses a skeletal graph to model a
shape in order to use graph matching algorithms to determine similarity between objects.
In this paper, we propose a graph representation for a plant. The plant structure lends
itself naturally to such a representation since it consists of branches emerging from the
main trunk and sub-branches emerging from branches and so on. Thus, the points where
branches connect (and their ends) can be represented as nodes on a graph, and the branches
(and leaves) and the internode segments in the stem can be represented as edges. The
skeleton of the plant already is a good starting point to develop the graph representation.
Furthermore, the use of graphs makes it efficient to decode the underlying structures
(e.g., leaves and branches), and hence easier to track the dynamic properties of plants at a
high level.

Before we formally introduce the algorithm for plant architecture determination, we
define a few basic terms and show them graphically in Figure 1d.

• Base: The base of the plant is the point from which the stem of the plant emerges from
the soil and is the lowest point of the skeleton.
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• Collar/junction: The point at which a leaf is connected to the stem. The junctions, i.e.,
collars, are nodes of degree 3 or more in the graph.

• Tip: The free end of the leaf that is not connected to the stem.
• Leaf: The segments of the plant that connect the leaf tips and collars on the stem.
• Inter-junction: The segments of the plant connecting two collars are called inter-junctions.

A number of important properties of a plant can be directly identified from the graph
representation. For example, the leaf tips and the base are nodes with a degree of 1, and
the collars are nodes of degree 3. There are two types of edges in the graph: (a) leaves and
(b) inter-junctions. Similarly, the stem of the plant can be formed by iteratively traversing
the graph from the base along a connected path of collars.

Formally, we represent the plant by a graph G =< V, E >, where V and E denote
the set of vertices and the set of edges, respectively. The set of vertices is defined as
V = {B} ∪ T ∪ J, where B is the base of the plant, T is the set of the tips of the leaves, and J
is the set of collars. The set of edges is defined as E = L ∪ I, where L and I represent the
set of leaves and inter-junctions, respectively.

Algorithm 1 outlines the steps used for the determination of a plant’s architecture. We
begin with a sequence of images of a plant P. Without loss of generality, we assume that the
plant is imaged on a regular daily interval starting with Day 1. Thus, P = {p1, p2, . . . , pn},
where pi is the image of the plant on day i and n is the number of days the plant was imaged.
After view selection, each image is segmented to generate a sequence of segmented images
Ps = {ps

i , ps
2, . . . , ps

n}.
Each segmented image is then skeletonized. The skeleton is transformed into a graph

representation after the removal of spurious branches. The vertices and edges of the graph
are directly determined from the skeleton. As described before, the vertices of the graph
with a degree of 1 represent either the tip of a leaf or the base of the plant. Since the base
of a plant holds a unique landmark in a plant, we first identify it. The base is determined
by examining the degree one nodes (the base must have one of the lowest y-coordinates)
and the edge that connects to the plant (it must be a straight line segment that is close to
vertical). These special conditions are needed since a leaf may droop in such a way that its
tip may fall below the base.

Once the base is determined, the next step is to determine the stem of the plant since
all leaves emerge from it. We again leverage the structure of the stem, i.e., it is straight
and consists of inter-node segments. Thus, starting from the base and following the edges,
neither of whose nodes has degree one (collar), generates the stem of the plant. This is
summarized in Algorithm 2. After the stem is identified, we determine the orientation of
each leaf. In the maize plant, the leaves emerge in alternate-opposite orientation. Without
loss of generality, we assign the leaves emerging to the left as 0 and those emerging to the
right as 1.

The final step in the plant architecture determination is the identification of the leaves
and labeling them in emergence order. We use two properties of the plant growth in this
process: (a) the order of the emergence of leaves in the plant is bottom to top; (b) a new leaf
emerges on the opposite side of the last leaf in the plant; and (c) older leaves are typically
longer than newer leaves. Thus, the oldest leaf is closest to the base of the plant and the
newest the farthest. Hence, our algorithm follows the stem from the base and, at each collar
(c), determines the leaves present by identifying the edges with one vertex as the collar and
a leaf tip as the other vertex (degree 1 vertex). A counter (label) is used to keep track of the
label for the next leaf in the emergence order. If there is only leaf present at the collar, then
it is labeled with the value of the counter, and the counter is incremented. It is possible,
however, that in some cases, typically the last collar, multiple leaves may be connected to
a single collar (see Figure 3). In such a case, we use the constraint that the next leaf to be
the longest leaf in the set has the orientation opposite the previous leaf. This process is
repeated until all the leaves in the set are labeled. Figure 4 shows the process of the graph
representation of a plant from the original image.
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Algorithm 1 Plant architecture determination: produces a graphical representation of all
the images of a plant sequence to detect the leaves and stem.

Input: The image sequence of a plant, i.e., P = {p1, p2, . . . , pn}
Output: G = {G1, G2, ..., Gn}, where Gi is the graphical representation of the i-th image ∀ i = 1,..., n.
for i = 1 : n do {

ps
i = segmentation(pi) // segment the image for day i

wi = skeleton(ps
i ) // compute the skeleton wi of the segmented image ps

i .
zi = removeSpur(wi, α) // remove spurious edges with a threshold of α pixels.
Gi = determineGraph(zi) // represent the plant skeleton as a graph

< Vi, Ei >= Gi;// vertices and edges of the graph
D1i = {vi,j ∈ Vi : degree(vi,j) = 1} // degree 1 vertices
basei = determineBase(Gi, D1i); // find the base
tipsi = D1i − {basei}; // tips of the leaves
collarsi = Vi − D1i;// collars or junctions
stemi = f indStem(Gi, basei);
computeLea f Orientation(Gi); // Assign orientation to each leaf

count = 1; // starting label for leaves
for ei,j ∈ stemi do { // follow junctions starting from base

[ci,j, vi,j]=ei,j; // extract the vertices from edge
if (ci,j = basei) continue;
tipsi,j = {vi,j ∈ Vi : ([ci,j, vi,j] ∈ Ei) ∧ (degree(vi,j) = 1)}
if (|tipsi,j| = 1) { // there is only one leaf at the junction

[ci,j, vi,j].label = count;
count ++;

} else { // there are multiple leaves at the junction
orient = getOrientation(Gi, count −1) //previous leaf orientation
orient = ¬ orient; // next leaf orientation
leaves = tipsi,j// initialize with the leaves at the node
while (leaves 6= φ) do {

nextLea f = tipMax : ∀tip∈tipsi,j∧tip 6=tipMax
length([ci,j, tip]) < length([ci,j, tipMax])
∧ [ci,j, tip].orientation = orient;

orient = ¬orient; // orientation of the next leaf
leaves = leaves− {nextLea f } // remove the leaf
count ++;

end while
end for

end for

Algorithm 2 f indStem: determine the stem in a graph.

Input: A graph G and its base B.
Output: A list of edges in G that constitute the stem (S).

v = B;
done = FALSE;
S = [];
while (¬ done) {

v′ = getNextCollar(G, v); // find the non-visited adjacent vertex of degree 6= 1
if (v′ = NULL) // there is no adjacent vertex with degree 6=1

done = TRUE;
else{

S.append(< v, v′ >) // add the inter-stem segment to the stem
v = v′;

}
}
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Figure 3. Illustration of leaf labeling in the case of a junction containing more than two leaves.

Figure 4. Illustration of the graph representation of a plant: (a) original image; (b) binary image; (c)
skeleton; and (d) graph representation.

3.3. Leaf Tracking

Each leaf in a plant has a unique time of emergence, pattern of growth, and senescence.
We, therefore, assign each leaf a label that determines its emergence order. Thus, the leaf
that emerged first will be labeled 1 throughout the life of the plant, even if the leaf may
die. Thus, the leaf tracking problem is equivalent to the determination of the correct label
for each leaf in the plant in a sequence of plant images. The correspondence between the
leaves in any two images (or any sequence of images) can be directly determined from
the labels.

Our leaf tracking algorithm is based on the following set of properties that hold for a
large class of plants including grasses like maize.

• A new leaf emerges above the last leaf in opposite alternate orientation, i.e., if the pre-
vious leaf emerged from the left side, the next leaf will emerge from the right side and
will originate from a collar situated above the collar of the immediate previous leaf.

• In the event of a loss of a leaf, the height of its collar decreases, and the length of the
corresponding inter-junction increases compared to the previous image.

In addition, we make the following assumptions, which hold in most high-throughput
phenotyping systems, where each plant is imaged on a daily scale.

• No more than one leaf may die in two consecutive images in a sequence.
• No more than one new leaf may emerge in two consecutive images in a sequence.
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Based on these properties, only four scenarios are possible when examining an image
in a sequence with respect to the previous image (illustrated in Figure 5).

1. Leaf emergence: A new leaf emerged, but no leaf was lost (Figure 5a).
2. No change: No new leaf emerged, and no leaf was lost (Figure 5b). In this case, we

transfer the labels from the previous graph to the next graph.
3. Leaf loss: A leaf was lost, but no new leaf emerged (Figure 5c).
4. Loss and emergence: A new leaf emerged, and a leaf was lost (Figure 5d).

Figure 5. Four scenarios for leaf emergence ordering for tracking: (a) Case 1, leaf emergence; (b) Case
2, no change; (c) Case 3, leaf loss; and (d) Case 4, loss and emergence.

Algorithm 3 summarizes the leaf tracking process for the plant image sequence using
graphs generated by Algorithm 1. The leaf tracking algorithm begins with a sequence of
labeled graphs {G1, G2, . . . , Gn}, where Gi is the graph for day i for a plant and n is the
number of days the plant is imaged. The leaves for each plant in the graph are labeled
starting with 1, as each plant was labeled independently. The problem of tracking reduces
to finding the correspondence between the leaves of two consecutive plants, i.e., graphs Gi
and Gi+1. We assume that Gi has been properly labeled, and we must label Gi+1. As stated
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before, since the plants are imaged frequently, the change in Gi,j, if any, can come in the
form of either a new leaf or a dead leaf or both.

New leaf: Since new leaves always emerge from the last collar, the newest leaf in a
plant will have the highest label in its corresponding graph. Given graphs Gi and Gi,j, if
the leaves with the highest labels in the two do not match in the image, then a new leaf has
emerged in Gi,j. Matching can be done by simply matching their orientations. Thus, Gi+1
has a new leaf with respect to Gi, iff:

lastLeaf(Gi).orientation 6= lastLeaf(Gi+1).orientation, (2)

where lastLeaf returns the leaf (edge in a graph) whose label is the highest. In this case,
each label of the leaves in Gi+1 is incremented by the label of the first leaf in Gi.

Dead leaf: Similarly, the oldest visible leaf in a plant will have the lowest label, in its
corresponding graph. Thus, if the leaves with the smallest labels do not align in graphs Gi
and Gi,+1, then a leaf in Gi has been lost in Gi+1. In such a case, the first leaf Gi will not
align with the first leaf (Leaf 1) Gi+1. Again, the alignment can be done by simply matching
their orientations. Thus, Gi+1 has lost a leaf with respect to Gi, iff:

firstLeaf(Gi).orientation 6= firstLeaf(Gi+1).orientation (3)

where firstLeaf returns the leaf (edge in a graph) whose label is the smallest. In this case,
the labels for the rest of the leaves in Gi+1 are transferred from Gi.

Table 1 summarizes the four possible scenarios when tracking the leaves from Gi to
Gi+1.

Table 1. Possible scenarios and corresponding actions for leaf tracking for two consecutive images.

Lost Leaf New Leaf Action

No No

Transfer labels from Gi to Gi+1

No Yes

Transfer labels from Gi to Gi+1,
and increment other labels ∆

Yes No

Transfer labels from Gi to Gi+1 ∀ Gi ∈ Gi+1

Yes Yes

Transfer labels from Gi to Gi+1 ∀ Gi ∈ Gi+1,
and increment other labels ∆
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The leaf tracking process is summarized in Algorithm 3. We assume that G1 is correctly
labeled. We then update the labels for Gi+1 from Gi starting with i = 2. At each step, we
first examine if a leaf has been lost or if a new leaf has emerged. If no leaf has been lost,
we simply update the labels of the leaves in Gi+1, by incrementing them by the label of
the first leaf of Gi (∆). If, however, a leaf is lost, the increment term (∆) is the label of the
second leaf in Gi.

Algorithm 3 Leaf tracking algorithm.

Input: G = {G1, G2, . . ., Gi, . . ., Gn}, where Gi is the graphical representation of the i-th
image ∀ i = 1,..., n, obtained from Algorithm 1.
Output: G′ = {G′1, G′2, . . ., G′i , . . ., G′n}, where G′i is the graphical representation of the i-th
image ∀ i = 1,..., n, with the leaves correctly tracked and labeled.

G′1 = G1
for i = 2 : n do {

lostLeaf = checkLostLeaf(Gi, Gi+1); // See Equation (3)
if (¬ lostLeaf)

∆ = firstLabel(G′i−1);
else

∆ = firstLabel(G′i−1) + 1;
G′i+1 = updateGraph(Gi+1, ∆);

end for

3.4. Leaf Status Report

Once all the leaves are tracked from their emergence over the life cycle of the plant, a
leaf status report can be generated to provide significant phenotypic information based on
the property of each leaf. For this paper, we report the length of the leaves, which may be
replaced or augmented with other phenotypes (e.g., curvature) seamlessly. The steps to
compute the length of a leaf are as follows.

Leaf Length

Leaf length can be computed by counting the number of pixels for an edge in the
graph in the corresponding skeleton segment. A more accurate approach may use a curve
fitting approach as follows. Let the n-th order polynomial curve p for each leaf be given by:

y = p(x) = p1xn + p2xn−1 + p3xn−2 + ... + pnx + pn+1, (4)

where p1, p2, ..., pn+1 are the coefficients of the best fit polynomial for the leaf skeleton
optimizing the least squares error. The leaf length is measured by:∫ xt

xc

√
1 + (dy/dx)2, (5)

where xc and xt denote the x-coordinates of the collar and tip for the leaf, respectively.
The leaf status report displays the phenotypic information of each leaf as a function

of time throughout its life. It explicitly provides the following phenotypic information,
which is significant in the context of plant sciences: (a) the total number of leaves emerged
during the life cycle, (b) the day on which a particular leaf emerged, (c) the number of
leaves present at any point of time, (d) the length of each leaf at any point of time, (e) the
day on which a particular leaf died, and (f) the rate of growth of each leaf.
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3.5. Evaluation Metrics

The success of the leaf tracking algorithm depends on how accurately the leaves are
detected. Thus, the performance of the proposed method is evaluated using two criteria, i.e.,
leaf-detection accuracy (LDA) and leaf-tracking accuracy (LTA). These are defined below.

• Leaf-detection accuracy (LDA): The leaf-detection accuracy and leaf-tracking accuracy
are respectively given by:

LDA =
1
n

n

∑
i=1

Nd
i − N f

i

Ng
i

, (6)

where Nd
i , N f

i , and Ng
i are the number of detected leaves, the number of false leaves,

and the actual number of leaves (as noted in the ground truth) for the i-th day for a
given plant. This is computed for each plant separately.

• Leaf-tracking accuracy (LTA): This measures the accuracy of our leaf tracking algo-
rithm and is given by:

LTA =
1
n

n

∑
i=1

Nt
i − Nw

i

Ng
i

, (7)

where Nt
i , Nw

i , and Ng
i are the number of correctly tracked leaves, the number of

wrongly tracked leaves, and the actual number of leaves (as noted in the ground truth)
for the i-th day for a given plant, respectively. This is also computed for each plant
separately.

4. UNL-CPPD

The performance of the algorithm is evaluated based on experimental analyses on
the UNL-CPPD. The UNL-CPPD is introduced to stimulate research in the development
and comparison of algorithms for leaf detection and tracking, leaf segmentation, and leaf
alignment of cereal crops, e.g., maize and sorghum [8].

4.1. Imaging Setup

The UNL-CPPD was created in a greenhouse equipped with a Lemnatec Scanalyzer
3D high-throughput plant phenotyping facility at the center for plant science innovation
at the University of Nebraska-Lincoln (UNL), USA. The facility is managed by the Argus
environmental control system that controls heating, air conditioning, light timing, roof
vent opening, etc., and records greenhouse temperature, humidity, light intensity, and
atmospheric pressure. Each pot is fitted in a metallic/composite carrier, which was placed
on the automated conveyor belt that moves the plant (of height up to 2.5 m) from the green-
house to the imaging cabinets in succession for capturing images in different modalities,
i.e., visible light (side view and top view), fluorescent (side view and top view), infrared
(side view and top view), hyperspectral (side view), and near-infrared (top view). Each
imaging chamber has a rotating lifter, which rotates the plant in front of the camera for up
to 360 side view images. The conveyor belt has the capacity to accommodate a maximum
number of 672 plants. It has three watering stations that water the plants on a daily basis to
the target weight or a specific volume. The target weight can be increased as plants grow
to compensate for increased mass.
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4.2. Dataset Organization

The UNL-CPPD has two versions: UNL-CPPD-I (small) and UNL-CPPD-II (large).
UNL-CPPD-I consists of images of 13 maize plants for 2 side views, i.e., 0◦ and 90◦, captured
by the visible light camera once daily for 27 days, starting from two days after germination,
which merely excludes self-occlusions due to crossovers. UNL-CPPD-II is comprised of
images of the same 13 plants for the same two views, but for a longer duration, i.e., 32 days,
which includes images of plants with leaf crossovers and self-occlusions [8]. Each image
of the UNL-CPPD dataset is accompanied by the ground truth in the form of: (a) an XML
document that embeds the information about the plant id, the coordinates of the base of the
plant, the information about the leaves including the leaf number (in order of emergence),
the coordinates of the base, collars, and tips, and if the leaf is alive, missing, or dead; and (b)
an annotated image with each leaf numbered in order of emergence [8]. The leaf emergence
order was visually tracked during a plant’s growth process and recorded. This knowledge
was used to create the annotated image sequence of the plant to serve the purpose of the
ground truth for leaf tracking. We customized the web-based image annotation tool called
LabelMe [19] to meet our requirements for ground truth generation. The labels, i.e., the
co-ordinates of the base, collar, and tips, were created by manually clicking on those points.
While clicking, the values of their coordinates are automatically stored in the XML file
format, which makes the annotations portable and easy to extend.

Figure 6 shows an original image from UNL-CPPD-I and its ground truth, i.e., the
annotated image and the XML document. The root element of the XML document is
Plant, which has three child elements, i.e., id, base, and leaf [8]. The interpretations of these
elements are provided below.

• Id: It serves two purposes based on its placement. If it is inside the Plant element, it
serves the purpose of the image identifier, i.e., the day and the view of the image for
which the information is represented in the XML document. When placed inside the
Leaf element, it refers to the leaf number in order of emergence.

• Base: It has two attributes, i.e., x and y, which represent the pixel coordinates for the
location of the base in the image.

• Leaf : It has four children, i.e., id, status, tip, and collar. id refers to the leaf emergence
order, and status represents the status of the leaf (alive, dead, or missing). status “alive”
means the leaf is visible in the image connected to a collar. status “dead” means
that the leaf appears to be dead in the image mainly due to the separation from the
stem. status “missing” means the leaf is no longer visible in the image either due
to shedding or occlusion at a particular view. The tip element has children x and y,
which represent the coordinates of the pixel location of the leaf tip; similarly, the collar
element represents the coordinates of the pixel location of the junction.
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Figure 6. An example of the ground truth of the University of Nebraska-Lincoln Component Plant
Phenotyping Dataset (UNL-CPPD): (top-left) original image; (bottom-left) annotated image; and
(right) XML document.

5. Results

We evaluated the performance of the proposed method using UNL-CPPD-I and
provide improvement directions to handling the leaf tracking challenges due to the presence
of intersecting leaves using UNL-CPPD-II. The results of the evaluation in terms of LDA and
LTA are discussed. We also demonstrate the benefit of the leaf status report in this section.

Table 2 shows the results of the experimental analyses of the proposed method on UNL-
CPPD-I. In the case of seven out of 13 plant sequences, all leaves were tracked correctly,
showing 100% LTA. However, the poor performance of Plant_001− 9 and Plant_016− 20
in terms of LTA was attributed to the fact that a failure in the detection of a leaf in the
early stage rendered the tracking of leaves wrong throughout the life cycle. The proposed
method achieves promising LTA for the remaining four sequences. The table shows that
the average LDA is 92%, whereas the average LTA is 88%. Figure 7 shows the results of
tracking using a plant sequence (Plant_191− 28) from UNL-CPPD-I.
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Table 2. Performance summary of the UNL-CPPD-I dataset. Keys—‘Ng’: number of leaves in
the ground truth; ‘Nd’: number of detected leaves; ‘N f ’: number of false leaves; ‘Nw’: number of
incorrectly tracked leaves; ‘LDA’: leaf-detection accuracy; ‘LTA’: leaf-tracking accuracy. Key—‘*’:
Special cases with significantly reduced LTA due to false leaf detection at the early days.

Plant-ID Ng Nd N f Nw LDA LTA

Plant_001− 9 116 93 1 78 0.79 0.16 *

Plant_006− 25 138 136 0 2 0.98 0.98

Plant_008− 19 142 140 0 8 0.98 0.94

Plant_016− 20 103 86 0 47 0.83 0.45 *

Plant_023− 1 113 101 0 0 0.89 1.00

Plant_045− 1 122 120 3 2 0.96 0.98

Plant_047− 25 148 142 2 0 0.94 1.00

Plant_063− 32 149 138 0 0 0.93 1.00

Plant_070− 11 125 111 0 0 0.89 1.00

Plant_071− 8 141 131 0 0 0.93 1.00

Plant_076− 24 135 126 2 0 0.92 1.00

Plant_104− 24 144 140 0 0 0.97 1.00

Plant_191− 28 137 111 0 2 0.96 0.98

Average 132 123 <1 10.69 0.92 0.88

Figure 7. Illustration of leaf tracking (with each leaf numbered in order of emergence) using a growing plant image sequence
consisting of images captured on alternate days starting from Day 5 (top-left) until Day 27 (bottom-right).



Remote Sens. 2021, 13, 961 17 of 22

5.1. Leaf Status Report

Figure 8 shows the leaf status report generated for a plant sequence (i.e., Plant_104−
24) in the dataset. Each leaf in the plant is represented by a graph. The axes of the graphs
are time (in days) and phenotype (leaf length). The report shows the dates of emergence of
the leaves, e.g., Leaf-1 emerged on Day 4, whereas Leaf-5 emerged on Day 10. Furthermore,
we can get information on the length of each leaf on any given day, e.g., the length of Leaf-4
on Day 10 is 180 pixels. The report shows that senescence (death) for Leaf-1 occurred
on 22 and Leaf-2 on Day 26. It is evident from the report that the growth of the leaves
that emerged later in the plant’s life was significantly higher compared to the leaves that
emerged during the early phase of the plant. One possible explanation for this pattern is
the reduction in the amount of sunlight received by the lower leaves as they grow under the
upper leaves. Note that for some days, the length of a leaf decreases from the previous day,
e.g., Leaf-4 on Day 10. Some factors that influence this include plant rotation, occlusion,
and the fact that that the measurements are made from the 2D projection of the 3D leaves.

Figure 8. Temporal variation of the length of each leaf starting from emergence.

5.2. Limitation Handling

The growth pattern in the early plant stages provides critical phenotypic information
related to yield, and hence is of most interest to plant scientists and agronomists. The
early growth stages are characterized by the absence of self-occlusions and leaf crossovers,
and the proposed method achieves high proficiency in tracking the leaves in that scenario.
However, the architectural complexity of plants increases with time due to the development
of new organs, resulting in more frequent occlusions and crossovers. With a limited
number of views, the determination of the plant architecture based on skeleton-graph
transformation becomes increasingly challenging in the late vegetative stages.

When two leaves in a plant intersect, their representations in the skeleton-graph share
one or more nodes. Furthermore, the skeleton-graph is no longer a tree since it contains
one or more loops due to the intersections. Based on the nature of the contact between
the leaves, the intersections are classified into three types: (a) tip-contact, (b) tangential-
contact, and (c) crossover. Figure 9 shows examples of these cases where the proposed
algorithm fails to track the leaves accurately. The proposed method can be extended
to address the above three failure cases by leveraging the growth characteristics of the
leaves, i.e., the leaves represented as the edges in the skeleton-graph must demonstrate
angular consistency.
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Figure 9. Illustration of types of leaf intersections: tip-contact, tangential-contact, and crossover.

The proposed algorithm tracks each leaf starting from its junction, using a bottom-up
approach, by following the edge until it reaches a tip (degree one node). When there
is no leaf intersection, only degree two nodes are encountered along the way. In the
presence of leaf intersections, the algorithm encounters higher degree nodes and must
select the edge that represents the continuation of the current leaf. A look-ahead approach
is used to determine the next node in the path, i.e., we select the node that provides the
highest continuity, measured by angular consistency, with the leaf segment traced so far.
Figures 10–12 illustrate this process for three common scenarios of leaf intersections, i.e.,
tangential-contact, tip-contact, and crossover, respectively. In every case, the algorithm
starts with Node 1, follows edge a, and reaches Node 2, a degree three node. The algorithm
must now choose between two nodes: Node 3 and Node 4 as the continuation of the current
leaf. Depending on the degrees of these two nodes, the following two scenarios can arise:

1. Case A: The degrees of both the nodes are less than three. This case corresponds to the
scenarios shown in Figure 10. In this case, the node with the most angular consistency
with edge a is chosen. In Figure 11, Node 3 is selected, and edge b is marked with the
current leaf number. When Node 2 is reached via edge c, the algorithm stops tracking
since there are no unseen edges to follow, and it labels it as the tip for that leaf.

2. Case B: One node has degree three, and the other has degree two or less: This case
may correspond to the scenarios in either Figure 11 or Figure 12. In this case, a
two node look-ahead (from the new degree three node) is performed to identify all
combinations of edges that form a path from Node 1 to the resulting nodes from
the second look-ahead. The path with the highest angular consistency is chosen to
continue the current leaf.
Depending on the type of intersection, edge x is either shared (in the case of a
crossover) or ignored (in the case of a tangential contact) for detecting leaves accu-
rately. In Figure 10, the possible leaf segments are {ab, axd, axc}, and the path ab is
selected for the highest angular consistency. When the algorithm reaches Node 5 from
Node 3 following edge b, a similar analysis will continue the leaf to Node 6 using
edge d, and edge x will remain unused and eventually ignored by the algorithm. For
the scenario in Figure 12, however, with the same set of possible leaf segments, i.e.,
{ab, axd, axc}, the path axd is chosen for the highest angular consistency. When the
algorithm reaches Node 2 from Node 4, the same analysis will select bxc as the best
path for leaf continuation, in essence sharing edge x. Thus, the leaves are detected
accurately in the presence of different types of intersections.
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Figure 10. Illustration of tangential-contact: (left) skeleton; (right) skeleton-graph representation.

Figure 11. Illustration of tip-contact: (left) skeleton; (right) skeleton-graph representation.

Figure 12. Illustration of crossover: (left) skeleton; (right) skeleton-graph representation.

6. Discussion

Leaves are one of the primary organs of plants that transform solar energy into
chemical energy in the form of carbohydrates through photosynthesis, releasing oxygen
as a byproduct. The total number, emergence timing, and size of leaves are therefore
related to plant photosynthetic light efficiency and net primary productivity. Leaf stage
monitoring of cereal crops plays a crucial role in the understanding of plant’s vigor and
yield prediction modeling. The paper introduces a new concept of visual growth tracking
to solve a previously unexplored topic of automated leaf stage monitoring of maize plants.

The proposed method is applicable for plants with distinct stems that are above
ground, not highly branched, and characterized by distinct nodes and internodes. The
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skeletonization process plays a crucial role in the accurate determination of the plant
architecture. The proposed method uses a threshold-based skeleton pruning technique
to remove spurs based on experimental analysis tailored to a specific dataset. This spur
removal process often eliminates true leaves along with the spurs when the leaves are very
tiny after emergence. This reduces the LDA. However, for these cases, the older leaves
that are detected can all be tracked successfully, resulting in a higher LTA. This explains
the cases of the lower LDA for plants with 100% LTA in Table 2. Note that these newly
emerged tiny leaves will grow in the later days to surpass the spur threshold and can be
detected successfully. False leaf detection or failure in the detection of one or more older
leaves due to crossovers and occlusions for the early days might result in inaccurate leaf
tracking throughout the life cycle, and thus significantly reduce the LTA.

Presently, the method provides curve tracing solutions of three identified types of leaf
intersections, i.e., tip-contact, tangential-contact, and crossover. This study is based on 13
maize plants only; hence, future work will consider the formation of a larger dataset for a
detailed investigation to identify if there is any other type of leaf intersection that impacts
the efficacy of the proposed method. Our future dataset will also include image sequences
of other species sharing a similar architecture as maize, i.e., sorghum, for experimental
evaluation. A plant’s overall growth is significantly impacted by environmental stress
factors. The proposed method has the potential to investigate the effect of drought or
thermal stress on leaf growth stages regulated by genotypes.

A fundamental challenge in computer vision is that images do not carry all the
information about the scene that they represent. As the plants proceed through the late
vegetative stages, their architectural complexity increases with a higher level of branching
and self-occlusions. Therefore, accurate leaf detection and tracking from the 2D images
of the plants, which are 3D in nature, become increasingly challenging. Hence, we will
consider the reconstruction of a 3D model of a plant from multi-view image sequences in
the future work to achieve robustness.

The proposed method was implemented using MATLAB R2016a on an Intel(R)Core(TM)
i7 processor with 16 GB RAM working at 2.60-GHz using the 64 bit Windows 7 operating
system. The average execution time of a single plant sequence consisting of 27 × 2 = 54
images was 15.38 min. The time included view selection, determination of individual plant
architecture, leaf tracking, and leaf status report generation.

7. Conclusions

The paper introduces a novel method for automated tracking of individual leaves
that change in size, shape, and structure over time, using multi-view image sequences of a
plant for application in phenotyping. This is a pioneering study that replaces the manual
and destructive process of growth stage determination of an economically important crop
like maize. The method has four phases: (a) optimal view selection; (b) plant architecture
determination based on a graph theoretic approach; (c) leaf tracking to assign labels to
each leaf based on the order of emergence; and (d) the generation of the leaf status report.
The method starts with an image sequence of a plant captured by a visible light camera
as the input and produces a leaf status report containing phenotypic information useful
to assess the plant vigor, i.e., the timing of the emergence and senescence of each leaf, the
length of each leaf on a particular day, and the relative growth rates of individual leaves.
The paper introduces a curve tracing technique based on an angular consistency check in
an attempt to augment the proposed algorithm to address the challenge of intersecting
leaves for robust leaf tracking. The method requires the availability of the image view
of the plant at which the nodes (tips and junctions) are distinctively visible. The future
work will consider the reconstruction of the 3D model of the plant from multi-view image
sequences to address the challenges of intersecting leaves more efficiently.
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