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Abstract: Site-specific irrigation management for perennial crops such as grape requires water
use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system
(UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with
internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a
commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments,
100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil
moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted
in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel)
and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite
overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station
(1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB)
and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1

[mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had
a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET
was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30%
and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T)
maps by segmenting the soil background from the UASM-ET, which had strong correlation with
the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95,
p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated
grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments
and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of
the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed
a notable effect of irrigation treatment rates. The total water use of grapevines estimated using
interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019
seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and
304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations.
The UASM-T-estimated water use was not the same as the actual amount of water applied in the
two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to
fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness
of high-resolution imagery toward site-specific water use management of grapevines.

Keywords: grapevines; direct root zone irrigation; evapotranspiration; high-resolution aerial im-
agery; METRIC energy balance model; site-specific irrigation management
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1. Introduction

Wine grape production at the desired quantity and quality is critical for commercial
growers, factors that are strongly influenced by irrigation management. Vineyards are
mostly located in arid and semi-arid regions that receive low rainfall and are irrigated using
under-vine surface drip systems. Drip irrigation allows the flexibility of adequate irrigation
during the vegetative growth stages to increase yields and deficit irrigation in later stages
in order to improve grape quality, sugar content, pigment formation, and acidity [1,2].
Mapping of vine-level crop water use, i.e., evapotranspiration (ET), and pertinent spatial
variation in commercial production is critical for irrigation management. In the absence
of large-scale precision ET-mapping techniques, growers rely on destructive plant- and
field-intensive methods such as leaf water potential [3], sap flow sensing [4,5], and soil mois-
ture measurements [6]. Methods based on eddy covariance systems [7,8] or interpolated
standard crop coefficients with reference ET from local weather data [9] are also useful.
However, these methods can be laborious and costly and often lack needed sampling
resolution for precision irrigation management [10].

Satellite-based remote sensing and energy balance models provide regional-scale
estimates of actual ET [11]. One such model is mapping evapotranspiration at high
resolution with internalized calibration (METRIC) [12–14]), which utilizes Landsat 5, 7,
and 8 and Terra and Aqua multispectral and thermal infrared imagery inputs to compute
ET as an energy balance residue within a blending height (200 m above ground level
(AGL)). METRIC is independent of surface specifics, performs stabilized sensible heat
flux (H) computations, and performs internal calibrations based on hot (dry bare soil)
and cooler (well-irrigated vegetation) surface temperature anchor pixels to compensate
computation and input measurement biases [12,15,16]. Globally, satellite-based METRIC
has been shown to reliably estimate ET for a range of field and tree fruit crops in different
agroclimatic zones [11,17]. Studies have reported maximum ET estimation errors of 5%
for heterogeneous olive orchards compared against sap flow, soil water balance (SWB),
and eddy covariance estimates [18–21], 16% for a drip-irrigated apple orchard [22], and 15%
for vineyards when compared against eddy covariance fluxes [15,23].

The conventional METRIC model uses high-orbital satellite imagery to provide ET
maps at low spatial (~30 m/pixel for Landsat) and temporal resolution (~16 days for
Landsat). Cloud interference is an additional major challenge that restricts timely ET
mapping during the crop-growing season [16,17]. Low spatiotemporal resolution may
also limit ET estimation in sparse crops or vineyards irrigated by drip or similar localized
methods and non-irrigated inter-row regions [24–26].

Subsurface irrigation, where water is applied at direct-root-zone (DRZ) depths of
grapevines, has been reported to improve water use efficiency, reduce evaporation, and re-
strict competing weed growth [27–30]. Water use of surface drip- and DRZ-irrigated
vineyards can be improved by mapping ET at vine or row level using small unmanned-
aerial-system (UAS)-based remote sensing [31,32]. A small UAS offers on-demand quality
imagery for spatial heterogeneity assessments with minimized cloud and atmospheric
interferences [16,17,33]. However, limited research has been conducted to map the water
use of commercial grapevine blocks and the impacts of deficit water conditions using high-
resolution UAS imagery. This was a major aim of this two-year study. Grapevines were also
irrigated at different rates, 100%, 80%, 60%, and 40% of commercial rates (CRs), and at DRZ
depths of 0, 30, 60, and 90 cm below ground level [29,30,34] for the 2018 and 2019 growth
seasons, and UAS imagery data were collected concurrently. The CR was determined
by the cooperating grower based on the non-stressed season-average crop coefficient of
grapevines (Kc,grass = 0.5) as well as reference ET (short grass based), and soil moisture data
to meet the seasons’ production goal based on his historic yields. Study objectives were
to (1) map high-resolution ET of a surface- and DRZ drip-irrigated vineyard compared to
ET estimates from conventional satellite-METRIC, soil water balance, and standard basal
crop coefficient (FAO-Kcb) approaches; (2) assess differences in water use (transpiration)
on selected days within a season for grapevines irrigated at different rates through DRZ
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treatments; and (3) estimate the seasonal water use of grapevines under DRZ treatments
using spatial transpiration maps and compare those with the amount determined by the
soil water balance and amount of applied water.

2. Materials and Methods
2.1. Study Site

The study was conducted in the commercial Kiona vineyards of Red Mountain in
Benton City, Washington (46◦16′59′ ′N, 119◦26′32′ ′W). Ten-year average data (2009–2019)
suggest that the site annually received a total precipitation of about 157 mm and had
average air temperatures of 12.4 ◦C (minimum: 5.5 ◦C, maximum: 18.9 ◦C) (WSU AgWeath-
erNet: https://weather.wsu.edu (accessed on 5 February 2021)). The site was planted in
2008 with the Cabernet Sauvignon (Vitis vinifera L.) grape cultivar in modified vertical-
shoot-positioned architecture. The soil is characterized as a Hezel loamy fine sand [35].
For this study, the vineyard was divided into two blocks. Block 1 (~3.25 ha) was used for
water use estimation using UAS and satellite imagery as well as the FAO-Kcb approach
(Obj-1). Block 2 (~0.46 ha), adjacent to Block 1, was used to assess water use variations
(Obj-2) and estimate the total water use of vines under different treatments (Obj-3). Block 1
uses surface drip for irrigation at the CR from bud break until post-harvest. Surface and
DRZ drips were used to irrigate experimental grapevines in Block 2. Grapevines in Block 2
were divided using a split-split plot design and treated at three different deficit irrigation
rates (80%, 60%, and 40% of the CR) and at four DRZ depths (0, 30, 60, and 90 cm below
ground). In addition, 100% of the CR was applied as a control to the surface drip irrigation
treatment (0 cm DRZ depth). Each treatment had 15 vines in three continuous rows with
5 vines in each row.

CR irrigation was applied at an interval of 3–7 days determined by the grower to
maintain 65% of soil moisture at field capacity. Each CR irrigation event was divided for
80%, 60%, and 40% of the time using flow rate controllers to apply irrigation treatments
of 80%, 60%, and 40% of the CR, respectively. Overall, the installed drip system applies
17.80 mm of water in 24 h at the CR. The irrigation treatments were initiated on the 98th
and 82nd day before harvest (DBH) in the 2018 and 2019 seasons, respectively. They were
terminated just before harvest. The growing season in 2018 was from April 20 (bud break)
to September 21 (harvest), while that in 2019 was from April 18 (bud break) to October 3
(harvest). The delayed treatment in the 2019 season was due to a prolonged preseason
winter, high winter snowpack moisture in soil (Figure 1), and delayed canopy growth.
Three replicates from each treatment were selected randomly for analysis (Obj-2 and Obj-3)
in this study. Three central vines in the middle row of those replicates were selected to
avoid any possible interferences between the treatments. Large variations were observed in
the soil moisture content down to root zone depths of 80 cm (Figure 1) and lower variations
thereafter (down to 200 cm) until the end of the growth seasons. The site received <78 mm
of total precipitation during either of the two growing seasons. However, precipitation
from late fall and early spring was 127 and 143 mm during 2017–2018 and 2018–2019,
respectively. Table 1 summarizes related monthly weather parameters in the years 2018
and 2019.

https://weather.wsu.edu
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Figure 1. Soil moisture for surface-drip-irrigated (100% of the commercial rate (CR)) grapevine treatment blocks pertinent 
to the (a) 2018 and (b) 2019 growth seasons. 
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Total solar radiation (MJ m−2) 122 234 403 543 716 779 847 630 512 315 158 94 
Total reference evapotranspi-

ration (alfalfa-based, ETr, 
mm) 
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Figure 1. Soil moisture for surface-drip-irrigated (100% of the commercial rate (CR)) grapevine treatment blocks pertinent
to the (a) 2018 and (b) 2019 growth seasons.

Table 1. Monthly weather summary for the study site in the years 2018 and 2019.

Year: 2018

Parameter/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean minimum air
temperature (◦C) 0.7 −0.3 1.1 5.8 11.8 11.9 15.8 15.0 9.7 5.5 0.6 −0.1

Mean air temperature (◦C) 3.8 4.4 7.7 12.2 20.1 20.9 26.3 24.0 17.9 11.3 4.6 2.9
Mean maximum air

temperature (◦C) 7.0 9.5 14.3 18.9 27.9 29.0 35.7 32.9 26.2 18.1 9.4 6.0

Mean relative humidity (%) 87.5 65.4 60.8 56.2 49.7 43.7 34.8 42.5 47.4 71.4 81.9 80.9
Mean wind speed (m s−1) 1.7 2.8 2.3 2.6 1.8 2.0 1.6 1.6 1.6 1.5 1.6 1.8

Total solar radiation (MJ m−2) 122 234 403 543 716 779 847 630 512 315 158 94
Total reference

evapotranspiration
(alfalfa-based, ETr, mm)

25.5 63.5 99.8 151.8 208.9 234.0 275.0 220.4 150.2 72.0 43.0 30.2

Total precipitation (mm) 28.7 7.6 2.3 35.1 5.3 3.3 0.0 0.0 0.0 20.8 16.0 31.0

Year: 2019

Parameter/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean minimum air
temperature (◦C) −0.5 −6.7 −2.0 7.2 10.6 12.7 14.4 15.8 12.0 2.9 −1.6 −0.9

Mean air temperature (◦C) 2.2 −3.4 3.5 13.0 18.3 21.5 23.6 24.6 18.4 9.3 3.4 1.9
Mean maximum air

temperature (◦C) 5.0 0.0 9.3 19.1 25.6 29.7 32.2 33.4 25.7 16.1 8.8 4.3

Mean relative humidity (%) 85.5 83.7 71.8 54.5 48.7 41.6 42.5 45.9 55.7 54.8 74.9 90.9
Mean wind speed (m s−1) 1.7 2.2 1.6 2.5 2.0 1.8 1.6 1.5 1.8 1.8 1.5 1.3

Total solar radiation (MJ m−2) 104 211 428 516 688 785 788 674 443 338 174 80
Total reference

evapotranspiration
(alfalfa-based, ETr, mm)

21.8 22.5 67.8 149.7 202.4 232.3 239.2 214.4 145.1 92.3 35.7 17.2

Total precipitation (mm) 32.8 35.3 7.9 18.5 25.2 7.1 3.3 8.1 6.6 16.0 12.5 15.2

2.2. Imaging Campaigns

A small UAS (position accuracy: ±0.5 m) with a multispectral and a thermal infrared
imaging sensor onboard was deployed for high-resolution imagery acquisition (Figure 2).
All imaging configurations were adopted as described by Chandel et al. [16], and real-time
kinematics (RTK)-marked ground control points were used on ground for georectification
of imagery data. A total of 14 imaging campaigns were conducted for the 2018 and 2019
seasons. Three campaigns in both seasons over Block 1 overlapped with Landsat 7/8 over-
pass. The remaining four campaigns in each season were conducted over Block 2 during
the irrigation treatment period and supported Obj-2- and Obj-3-specific analysis. Landsat
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7/8 imagery and 1-arc Shuttle Radar Topography Mission (SRTM) digital elevation models
(DEMs) were downloaded for pertinent days. Weather data logged at 15 min intervals
was also downloaded from the nearest (1 km) open-field weather station (AgWeatherNet,
Washington State University, Pullman, WA, USA).
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Figure 2. Unmanned aerial system (UAS) used for multispectral and thermal infrared imaging of grapevines.

2.3. METRIC Implementation

UAS-based imagery was preprocessed as described by Chandel et al. [16], and five
surface reflectance, one surface temperature, and one digital elevation model (DEM) ortho-
mosaics were obtained. Figure 3 shows a sample normalized difference vegetation index
(NDVI) orthomosaic with irrigation treatments in Block 2.
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The implementation of the METRIC model with UAS imagery inputs (UASM ap-
proach) was similar to our earlier publication [16], except for momentum roughness length
parametrization (Zom, Equation (1), Table 2) described by Carrasco-Benavides et al. [15],
Paco et al. [19], Ortega [21], and Perrier [36].

Zom = [(1 − exp(−a × LAI/2) × exp(−a × LAI/2)] × h (1)

a = 2 × f for f ≥ 0.5 and (2 × (1 − f)) − 1 for f < 0.5

Table 2. Summary of small UAS and conventional Landsat 7/8 imagery-based METRIC model parameters used for
grapevine ET estimation.

Parameter Landsat-METRIC (LM) UAS-METRIC (UASM)

Metadata Landsat 7/8 overpass Small UAS flight mission
Surface albedo Landsat 7/8 imager Small UAS imager

Digital elevation
model (DEM)

1-arc Shuttle Radar Topography Mission (SRTM)
grids; considers variable elevation, slope, and

aspect per pixel

Derived from small UAS imagery; considers
constant elevation by forcing slope and aspects

to zero

Leaf area index (LAI)
LAI = −(ln[(0.69 − SAVI)/0.59])/0.91

SAVI = ((1 + L) × (RNIR−RR))/(L + (RNIR + RR)),
L = 0.1

LAI = −(ln[(0.69 − SAVI)/0.59])/0.91
SAVI = ((1 + L) × (RNIR−RR))/(L + (RNIR + RR)),

L = 0.5

Incoming short-wave
radiation (ISWR)

Rs↓ = Gsc × cosθrel × τsw/d2

cos θrel calculated for non-horizontal surface
using surface slopes and aspect

Rs↓= Gsc × cosθrel × τsw/d2

cos θrel calculated for horizontal surface by
forcing surface slope and aspect to zero

Incoming long-wave
radiation (ILWR) RL↓ = εaσTs

4 RL↓ = εaσTs
4

Momentum roughness
length (Zom)

Zom = 0.018 × LAI
Zom,mtn = Zom × (1 + (((180 × S)/π) − 5)/20) Equation (1)

SAVI: soil-adjusted vegetation index; RNIR: reflectance in near-infrared band; RR: reflectance in red band; L: soil-adjustment factor; θrel:
angle of incidence; τsw: atmospheric transmissivity; d: relative earth–sun distance; Gsc: solar constant; εa: atmospheric emissivity; σ: Stefan
Boltzmann’s constant; Ts: surface temperature; S: surface slope derived from DEM; Zom,mtn: momentum roughness length adjusted for
varying elevation surface; h: crop height considered as 2 m above ground level (AGL).

In Equation (1), the leaf area index (LAI) was estimated using a background adjustment
factor (L) of 0.5 in the soil-adjusted vegetation index (SAVI) (Table 2, [37–39]). The mean
vine height (h) was assumed constant as 2 m. The variability in height was neglected (i) as
it resulted in only 3–10% of the variation in Zom, a maximum of 3% in sensible heat flux
(H), and 2–3% in the daily ET [15] and (ii) to avoid excessive measurement needs from the
grower perspective. Factor f was estimated as the proportion of the LAI above half of the
tree height. In the case of vines, f was 1 (a = 2) as nearly the entire canopy foliage exists
above 1 m AGL [29,30,40]. Zom was forced to 0.005 m for bare soil surfaces captured at
high spatial resolution (7 cm/pixel).

The hot and cold anchor pixels for the METRIC model calibration were selected
automatically. Surfaces at the highest temperature, having a low NDVI (<0.3) and Zom
(≤0.005 m), were the hot anchors (bare soil). Well-irrigated surfaces at the lowest tem-
peratures with a high NDVI (>0.85), LAI (2.5–6), and Zom (0.03–0.08 m) were the cold
pixels. The ET for a cold anchor pixel is assumed to be 1.05 times the ETr (alfalfa-based),
with an upper limit of 1.1 for at least 1% of the vegetation within the orthomosaiced
imagery that will be healthy and well irrigated throughout the growing season [12–14].
The energy-balance-derived instantaneous ET (ETinst, mm h−1) was extrapolated using
the 24 h reference ET (ETr24, [12,16]) to obtain the daily ET (mm day−1). Key modified
parameters for UASM are summarized in Table 2. UASM was implemented in R (RStudio,
Inc., Boston, MA, USA), with the water package as a reference [41].

Additionally, the soil background was segmented in the UASM-ET maps to obtain
grapevine canopy transpiration (T) maps. Using the histogram-based segmentation tech-
nique, an NDVI of <0.4 was considered as soil background. The resultant UASM-T was
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compared with the T calculated from the conventional basal crop coefficient (Kcb) approach
(FAO 56 [9]), as detailed in Section 2.4.

The Landsat 7/8 cloud-free imagery was also processed using the conventional MET-
RIC model to derive ET maps of the vineyard ([41,42], Table 2), hereafter referred to as
the Landsat-METRIC (LM) approach. Surface reflectance products were downloaded for
Landsat 8 (source: https://earthexplorer.usgs.gov/ (accessed on 7 April 2020)), while such
products for Landsat 7 datasets were calculated within the water package [41].

2.4. Soil-Water-Balance- and Grapevine Basal-Crop-Coefficient-Derived Evapotranspiration

For ET estimation using the SWB approach (Equation (2)), soil moisture data from
probes (Sentek Drill & Drop probes, Sacramento, CA, USA; precision: ±0.03%) installed
at five locations within Block 2 were used as inputs. Probes were down to 200 cm depth
with sensing elements at 20, 40, 60, 80, 100, 140, 160, and 200 cm. Measurements (mm)
were logged at 30 min interval, and ET was calculated for a 24 h period on the imaging
day. The soil moisture sensor probes were calibrated for local soil conditions using the
procedure detailed by the manufacturer.

ET = I + P + Si − Sf − Dp − R + Cr (2)

where, I and P refer to irrigation and precipitation, respectively, that were zero for the
imaging days. Dp is the deep percolation, R is the runoff, and Cr is the capillary rise from
groundwater that were assumed negligible for drip-irrigated vines. Si and Sf are the soil
moisture content at the start and end of the calculation period, respectively.

Tabulated short-grass-based Kcb values (Kcb vine,grass) for three growth stages of wine
grapes in arid and semi-arid climates were selected, adjusted as per local conditions,
and converted to alfalfa-based Kcb values (Kcb vine,alfalfa, [9], Equations (3)–(6)). These Kcb
values were then used to construct seasonal Kcb curves through linear interpolation for
the 2018 and 2019 seasons, and T on imaging days was calculated using such curves and
pertinent 24 h reference ET (ETr24). ETr24 was calculated using weather data and the
Penman–Monteith equation parameterized for an alfalfa reference crop [9].

Kcb vine(ini/mid/end),grass = Kcb vine (Tab: ini/mid/end),grass + [0.04 × (u2 − 2) − 0.004 × (RHmin − 45)] × (h/3)0.3 (3)

Kratio = 1.2 + [0.04 × (u2 − 2) − 0.004 × (RHmin − 45)] × (0.5/3)0.3 (4)

Kcb vine,alfalfa = Kcb vine,grass/Kratio (5)

T = Kcb vine,alfalfa × ETr24 (6)

where u2 is the mean daily wind speed (m s−1), RHmin is the mean daily minimum relative
humidity (%) at the pertinent growth stage, Kratio is the ratio for converting the grass-based
crop coefficient (Kcb vine,grass) to the alfalfa-based crop coefficient (Kcb vine,alfalfa), and h is
the mean vine height (2 m).

2.5. Water Use Analysis

UASM-ET estimates were first compared against SWB-calculated ET estimates. Re-
gions of interest (ROIs) were selected over the five grapevines installed with soil moisture
probes, and root-mean-square difference (RMSD) and Pearson’s linear correlation (r) be-
tween ET were assessed. UASM-ET estimates were compared with LM-ET estimates.
The ET map from the LM approach (36 pixels of 30 × 30 m size each) was clipped to the
same area (~3.25 ha) as UASM. The UASM-ET map was then resampled to the LM-ET
map (36 pixels). For each campaign, 12 ROIs (30 × 30 m size) were randomly selected
in both maps and normalized RMSD (RMSDN, Equation (7)), r, and normalized absolute
departures of the mean ET (ETd,MAN, Equation (8)) were assessed between ET estimates.

https://earthexplorer.usgs.gov/
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Coefficients of variation (CV, %) were also accessed to compare the spatial water use
assessment potentials of UASM and LM approaches.

RMSDN (%) = (∑(ETUASM,I − ETLM,i)2/N)0.5 × 100/Mean(ETLM) (7)

ETd,MAN (%) = |ETUASM − ETLM/FAO-Kcb| × 100/ETLM/FAO-Kcb (8)

where i is the pixel number (0–12) and N is the total number of pixels (12).
Mean T estimates from UASM-T maps were compared to the pertinent T calculated by

the FAO-Kcb approach using r and normalized absolute departures of the mean (Td,MAN).
For water use (or T) variation assessments due to irrigation treatments, ROIs (100 × 200 cm
size) were drawn on the segmented UASM-T map on three central vines in the middle row
of each treatment (discussed in Section 2.1). Two-way ANOVAs were then formulated to
observe the effects of irrigation rates, DRZ depths, and their interaction on the grapevine T.
The mean Kcb for grapevines under all four irrigation rates (100%, 80%, 60%, and 40% of
the CR) was estimated from UASM-T maps (TrF, i.e., reference T fraction from T and ETr24)
for the same ROIs. Linear interpolated Kcb curves were established and multiplied to the
daily ETr to estimate the total water use under each treatment. Total water uses during the
treatment period were also calculated using the SWB approach (Equation (2)) and used as
a reference to UASM water use estimates. All analyses were conducted at 5% significance
(RStudio, Inc., Boston, MA, USA).

3. Results
3.1. Evapotranspiration and Transpiration Mapping
3.1.1. UASM and LM Approaches

For the 2018 season, mean UASM-ET estimates (Figure 4a) ranged from 2.11 to
3.48 mm day−1, while those from the LM approach (Figure 4b) ranged from 1.77 to
3.34 mm day−1. For the 2019 season, such estimates from respective approaches were
in the ranges of 2.56–4.08, and 3.61–4.61 mm day−1, respectively. The mean daily ET
from the UASM approach was 0.31 mm day−1 (ETd,MAN = 4.29%) less than that from the
LM approach, and the mean RMSD for two years did not exceed 0.76 mm day−1 (<22%).
Strong and significant correlations (r = 0.70–0.81, Figure 5) were also observed between the
UASM and LM-ET estimates. As shown in Figure 4, the GSD plays a key role in UASM
capturing high spatial variations (CV = 68 ± 6.67%, (mean ± std. dev.)) compared to the
LM (11.85 ± 1.77%) approach (two-sample t-test, t-stat = 20.50, p < 0.001).Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
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3.1.2. UASM and SWB Approaches

UASM-derived daily ET estimates (2.70 ± 1.03 mm day−1) were significantly higher
(two-sample t-test, t-stat = −4.14, p < 0.001) than the ET calculated by the SWB approach
(1.80 ± 0.98 mm day−1). However, ET estimates were strongly correlated (r = 0.64–0.81,
p < 0.01, Figure 6) with each other in both seasons.
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3.1.3. UASM and Basal Crop-Coefficient (FAO-Kcb) Approaches

In comparison to the standard FAO-Kcb approach that estimated T in the range
of 1.97–5.24 mm day−1 (4 ± 1.54), UASM-T maps derived the mean T in the range of
2.58–5.86 mm day−1 (4.49 ± 1.44). The differences were statistically not significant (two-
sample t-test, t-stat = 0.63, p = 0.54). Transpiration trends from both approaches were also
strongly correlated (r = 0.95, p < 0.001, Table 3). The UASM approach slightly overestimated
T compared to the FAO-Kcb approach (ETd,MAN = ~14%) and was able to estimate spatial
water use variability (CV = 29–45%) unlike the FAO-Kcb approach.

Table 3. Daily transpiration (T) estimates from UASM and FAO-Kcb approaches on the days of flight for grapevines irrigated
at the commercial rate.

Season DOY DBH ETr Approach Transpiration (T) TrF (Kcb) Td

Mean Std. Dev.

(mm day−1) (mm day−1) (mm day−1) r (T)

2018

192 72 8.35
UASM 5.35 1.54 0.64

0.51

0.95

FAO-Kcb 4.84 - 0.58

207 57 9.03
UASM 5.06 1.50 0.56 −0.02FAO-Kcb 5.24 - 0.58

256 8 5.37
UASM 2.75 1.23 0.51

0.02FAO-Kcb 2.63 - 0.49

2019

211 71 8.24
UASM 5.86 1.77 0.71

1.08FAO-Kcb 4.78 - 0.58

227 55 7.79
UASM 5.34 1.96 0.69

0.89FAO-Kcb 4.45 - 0.57

266 10 3.94
UASM 2.58 0.91 0.65

0.61FAO-Kcb 1.97 - 0.50

DOY: day of the year; DBH: days before harvest; ETr: alfalfa-based reference ET; std. dev.: standard deviation; TrF: reference transpiration
fraction; Td: transpiration estimate departure; r: Pearson correlation coefficient.

3.2. Effect of DRZ Irrigation Treatments

The UASM-T maps showed a significant effect of irrigation rates on grapevine water
use, as quantified by T for both seasons (two-way ANOVA, F-stat = 7.38–7.78, p < 0.001).
However, the DRZ irrigation depth or its interaction with irrigation rates did not have
significant effects on water use estimates (p > 0.05). Moreover, no effects were observed
at the start of irrigation treatments (DBH: 99 (2018) and DBH: 78 (2019)). For all other
imaging campaigns, the mean T of grapevines irrigated at 100% or 80% of the CR was
highest, followed by that of grapevines irrigated at 60% and 40% of the CR (Figure 7).
The treatment effect was also insignificant on the 10th DBH of the 2019 season, possibly
due to a recent irrigation activity (11 DBH).



Remote Sens. 2021, 13, 954 11 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

3.2. Effect of DRZ Irrigation Treatments 
The UASM-T maps showed a significant effect of irrigation rates on grapevine water 

use, as quantified by T for both seasons (two-way ANOVA, F-stat = 7.38–7.78, p < 0.001). 
However, the DRZ irrigation depth or its interaction with irrigation rates did not have 
significant effects on water use estimates (p > 0.05). Moreover, no effects were observed at 
the start of irrigation treatments (DBH: 99 (2018) and DBH: 78 (2019)). For all other imag-
ing campaigns, the mean T of grapevines irrigated at 100% or 80% of the CR was highest, 
followed by that of grapevines irrigated at 60% and 40% of the CR (Figure 7). The treat-
ment effect was also insignificant on the 10th DBH of the 2019 season, possibly due to a 
recent irrigation activity (11 DBH). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

  
(g) (h) 

Figure 7. Daily UASM-T for DRZ-irrigated grapevines at different rate and depth treatments on selected days in the 2018 
(a–d) and 2019 (e–h) growing seasons. DBH: days before harvest. 

3.3. Seasonal Water Use 
Basal crop coefficients (Kcb or TrF) estimated from UASM-T maps for the treatment pe-

riods not only followed similar trends as the standard interpolated Kcb curve (FAO ap-
proach, non-water-stressed) but also showed high spatiotemporal effects of irrigation rates 
and canopy growth (Figure 8). Higher magnitudes and temporally advanced trends were 
observed for the 2019 season (Figure 8b). The grapevine TrF (or Kcb from UASM-T maps) 
differences for different irrigation rates were non-significant but were notable (Figure 8). 

(a) (b) 

Figure 8. Basal crop coefficient curves derived from UASM-T maps (non-dotted lines) for grapevines irrigated at different 
rates in the (a) 2018, and (b) 2019 growth seasons (Ts: treatment start day; S represents locally adjusted standard basal 
crop coefficient curve pertinent to non-stressed canopy; 40%, 60%, and 80% of the CR were DRZ, and 100% of the CR was 
surface drip irrigation). 

Total water use estimates of grapevines from UASM-T maps for the experimental 
treatment period were higher compared to the actual amount of water applied for both 
seasons, but within the range of 5–11% of the actual water use calculated by the SWB 
approach (Figure 9). Water use was highest for grapevines irrigated at the CR, followed 
by those irrigated at 80%, 60%, and 40% of the CR. These trends were similar to the 
amounts of water applied, but they did not decrease in similar proportions. The amounts 
of applied water and estimated water uses were comparatively lower for the 2019 season 
for the shorter treatment period (82 days) and low cumulative ETr (Table 1 and Figure 9). 

Figure 7. Daily UASM-T for DRZ-irrigated grapevines at different rate and depth treatments on
selected days in the 2018 (a–d) and 2019 (e–h) growing seasons. DBH: days before harvest.



Remote Sens. 2021, 13, 954 12 of 17

3.3. Seasonal Water Use

Basal crop coefficients (Kcb or TrF) estimated from UASM-T maps for the treatment
periods not only followed similar trends as the standard interpolated Kcb curve (FAO
approach, non-water-stressed) but also showed high spatiotemporal effects of irrigation
rates and canopy growth (Figure 8). Higher magnitudes and temporally advanced trends
were observed for the 2019 season (Figure 8b). The grapevine TrF (or Kcb from UASM-
T maps) differences for different irrigation rates were non-significant but were notable
(Figure 8).
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coefficient curve pertinent to non-stressed canopy; 40%, 60%, and 80% of the CR were DRZ, and 100% of the CR was surface
drip irrigation).

Total water use estimates of grapevines from UASM-T maps for the experimental
treatment period were higher compared to the actual amount of water applied for both
seasons, but within the range of 5–11% of the actual water use calculated by the SWB
approach (Figure 9). Water use was highest for grapevines irrigated at the CR, followed by
those irrigated at 80%, 60%, and 40% of the CR. These trends were similar to the amounts
of water applied, but they did not decrease in similar proportions. The amounts of applied
water and estimated water uses were comparatively lower for the 2019 season for the
shorter treatment period (82 days) and low cumulative ETr (Table 1 and Figure 9).
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4. Discussion

A high CV in the UASM-ET maps (~68%) reflects the potential to geospatially map
crop water use variations in an entire vineyard block unlike point measurements (e.g., soil
moisture probe, sap flow, and lysimeters) or larger-area estimates (e.g., eddy covariance,
crop coefficient approaches). UASM-ET and LM-ET were mostly similar on the days of
flight, and a higher ETd,MAN (ET departure) of 16.80% (LM-ET > UASM-ET) was observed
for a flight day in the 2019 season. Such differences could be due to variation in the
sensible heat flux computation as a result of surface temperatures captured by two imaging
platforms and internal model calibrations. Landsat imagery has a coarser resolution
(30 × 30 m), with temperatures representing canopy and soil mixes due to large inter-row
distances in the vineyards and also restricting identification of uniform anchor pixels near
the study area, unlike small UAS imagery [16,43]. A similar mean ET estimation suggests
that Zom parameterization did not affect ET computations for bias compensation features
of METRIC, as also observed by [15,23].

UASM-T maps estimated a similar mean T as from the FAO-Kcb approach, but the
latter does not provide information useful for precision irrigation management. UASM-T
maps were able to quantify the effect of DRZ irrigation during the treatment periods of
two years. Grapevines irrigated at 100% or 80% of the CR transpired more than those
irrigated at 60% and 40% of the CR. In recent studies in the same vineyard block, leaf water
potentials [19] and stomatal conductance [32] have been reported to show significant effects
of irrigation rates. In some cases, a slightly lower T was estimated for grapevines under
100% of the CR than 80% of the CR, probably because 100% of the CR was surface irrigation
at a higher rate that could have contributed to higher evaporation. The non-significant
effect of DRZ depths on transpiration estimates could be because DRZ-irrigated grapevines
tend to grow their roots near the point of water delivery or water stored in other soil layers
to fulfill their evaporative demand [29,34,44–47].

Trends of UASM-TrF for all treatments were similar as the standard Kcb curve showing
variations within 0.3 to 0.8 for the Cabernet Sauvignon cultivar grown in the eastern
Washington State [48]. However, notable differences were evident due to the DRZ irrigation
rates. Trends of Kcb from UASM-T maps were delayed than the standard curve for the
2019 season most probably due to a cooler temperature in early growth stages (Table 1),
delayed canopy growth, and higher preseason snowpack, leading to high soil moisture
(Figure 1) [49,50]. Such observations (Figure 8) suggest that FAO-Kcb can be off the mark
if standard phenology periods are used, which differ from actual field phenology that
does not affect UASM. Furthermore, UASM assesses spatial water use to potentially aid
site-specific management, unlike FAO-Kcb that calculates a single value for an entire area
and is restricted to seasonal water application management [51,52].

Cumulative water use estimated from UASM approach was within 5–11% of the SWB-
based water use calculations. Overall, water usage for grapevines under different irrigation
rates did not decrease as the actual amount of applied water. These differences may be
possibly due to the water utilization from non-irrigated zones [45–47,53–55]. The non-
irrigated zones could store water in deeper or lateral soil layers from precipitation and
snowpack of the previous growing season until initiation of irrigation treatments in the
current season. Such supplemented water usage was higher in the 2018 season due to
higher evaporative demand compared to the 2019 season. Pertinent water uptake by
grapevines would have minimized the differences between deficit irrigation (80%, 60%,
and 40% of the CR) and those under 100% of the CR. The lower the amount of water
applied, the more was the compensation from stored water until all of that was exhausted.
Higher UASM-estimated transpiration compared to SWB estimates for deficit-irrigated
grapevines could most probably be due to additional water use from lateral soil zones,
as reflected in UASM but outside the volume sensed by the moisture probes. For the
surface-drip-irrigated grapevines at 100% of the CR, the UASM-estimated transpiration
was lower compared to SWB estimates. This could be due to higher water evaporation
from soil surface in those treatments [56].
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The study site typically receives high preseason snowpack. The site comprises sandy
soil at the surface and highly stratified, silty soil layers beyond a 1 m depth [35]. Since
the water-holding capacity is very high for silty soil, the melted snow water could have
been stored in those deep silt layers that would be potentially available for use during the
growth season. This enhances the chances of deficit-irrigated grapevines to maintain their
Kcb in healthy ranges using supplementary water stored in other soil layers through deeper
or lateral roots. Such root behavior was also observed by Bauerle et al. [57] for Merlot
grapevines, where drought-resistant varieties had higher root production in deeper soil
layers during summer. A similar study by Soar and Loveys [58] on Cabernet Sauvignon
reported that the vines converted from an under-sprinkler to a drip irrigation system had
significantly larger root systems compared to those under constant sprinkler irrigation.
Deeper and lateral root development was also observed in related studies on the experi-
mental site [30,34] used in this study. These studies reported that DRZ-irrigated grapevines
had 80% roots down to a 160 cm depth, and the remaining 20% roots were much deeper in
the soil profile. For the surface irrigation treatments, almost all the roots were accumulated
in the top 60 cm of the soil. Such root growth under DRZ treatments would use stored
water from other soil layers for uncompromised photosynthesis rates and yield.

5. Conclusions

UAS imagery was successfully used with the METRIC model (UASM) to map spa-
tiotemporal water use for two growth seasons of a surface and sub-surface drip-irrigated
vineyard. For days of Landsat overpass, the UASM approach estimated higher but com-
parable ET as the SWB approach (r = 0.64–0.81, p < 0.01) and conventional LM approach
(mean RMSDN = ~22%, mean r = 0.83, ETd,MAN = ~4.30%). UASM also had similar
grapevine transpiration estimates as the standard FAO-Kcb approach (r = 0.95, Td,MAN
= ~14%, p < 0.01). This supports the suitability of small UAS-based multispectral and
thermal imaging for reliably estimating ET and T at high geospatial resolution for hetero-
geneous crops. Furthermore, a high spatial variation in crop water use could be assessed
by the UASM approach (CV = 68 ± 6.67%), which other standard or point measurement
approaches could not assess. The high-resolution (GSD: 7 cm/pixel) UASM-T maps could
adequately assess crop water use variations of grapevines as an effect of irrigation rates
(p < 0.01), where grapevines under 100% or 80% of the CR transpired consistently higher
than those irrigated at 60% and 40% of the CR. UASM-estimated basal crop coefficients
(TrF or Kcb) also reflected the effects of deficit irrigation treatments. Using those crop
coefficients, UASM estimated the total crop water use for grapevines under surface and
DRZ treatments, unlike the proportions of the actual amount of applied water. With such
observations, the UASM approach highlighted the phenomena reported in other studies
that deficit-irrigated grapevines might be fulfilling their evaporative demand from water
stored in other soil layers through deeper or laterally developed roots. Overall, study
findings indicate that UAS-based high-resolution imagery may be useful for site-specific
spatial irrigation management of grapevines and other perennial specialty crops.
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