# Supplementary information

# Twentieth and Twenty-first Century Water Storage Changes in the Nile River

## Basin from GRACE/GRACE-FO and Modeling

Emad Hasan<sup>1,2\*</sup>, Aondover Tarhule<sup>3</sup>, Pierre-Emmanuel Kirstetter<sup>4,5,6</sup>

<sup>1</sup>Department of Geological Sciences and Environmental Studies, State University of New York, SUNY at Binghamton, Vestal, NY, USA.

<sup>2</sup>Geology Department, Faculty of Science, Damietta University, New Damietta, Egypt.

<sup>3</sup>Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL, USA.

<sup>4</sup>School of Meteorology, University of Oklahoma, Norman, OK, USA.

<sup>5</sup>School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA.

<sup>6</sup>NOAA/National Severe Storms Laboratory, Norman, OK, USA.

To be submitted to the Remote Sensing Journal

### \*Corresponding Author

Emad Hasan, Ph.D.

Email: emad.hasan@binghamton.edu

### Contents of this file

Figures S1 to S6 Tables S1 to S5



**Figure S1.** Coevolution between monthly GPCC and CRU precipitation data (A), and GAMLSS-based TWSA and CLMS TWSA (B).



**Figure S2.** Simulated ARIMA TWS (A), the dark blue of the plot is the one-year gap, plot (B) shows the residual the model.



**Figure S3.** The year-to-year changes in TWSA (A) between 2002 to 2020, and the yearly changes (compared to the overall average) of the TWSA (B) across the NRB.



**Figure S4.** GRACE-based net storage changes between 2002 to 2020 across BNB (A), WNB (B) and Atbara sub-basins (C).



Figure S5. Monthly projected TWSA between 2021 to 2050.



**Figure S6.** NRB storage figures from TWS (A), GWS (B), SMS (C), and runoff (D) between 1948 to 2014 from CLSM-F2.5 LSM. The storage-based figures are relatively higher relative to the runoff in the basin.

## Table S1. Source information for datasets and drought indicators utilized in this

research.

| Data    | Link                                          | Resolution      | Reference |
|---------|-----------------------------------------------|-----------------|-----------|
| TWS     | https://grace.jpl.nasa.gov/data/get-data/     | 1.0° (SH06)     | [1]       |
|         |                                               | 0.25° (M06 CSR) | [2]       |
|         |                                               | 0.5° (M06 JPL)  | [3]       |
| LSM-TWS | https://disc.gsfc.nasa.gov/datasets/GLDAS_CL  | 0.25°           | [4]       |
|         | SM025_D_2.0/summary                           |                 |           |
|         |                                               |                 |           |
| Precip. | GPCC, <u>http://gpcc.dwd.de</u> .             | 0.5°            | [5]       |
|         | CRU, http://www.cru.uea.ac.uk/data            | 0.5°            | [6]       |
|         |                                               |                 |           |
| Temp.   | CRU, <u>http://www.cru.uea.ac.uk/data</u>     | 0.5°            | [6]       |
| PET     | CRU, http://www.cru.uea.ac.uk/data            | 0.5°            | [6]       |
| GPCC_DI | https://www.dwd.de/EN/ourservices/gpcc/gpcc.  | 1.0°            | [7]       |
|         | <u>html</u>                                   |                 |           |
| ScPDSI  | https://www.rdocumentation.org/packages/scP   | 0.5°            | [8]       |
|         | DSI/versions/0.1.3                            |                 |           |
| SPI     | https://digital.csic.es/handle/10261/10006    | 0.5°            | [9]       |
| SPIE    | https://digital.csic.es/handle/10261/202305   | 0.5°            | [10]      |
| ClimGen | https://crudata.uea.ac.uk/~timo/climgen/#data |                 | [11]      |

Table S2. GAMLESS (A) and ARIMA (B) models' goodness-of-fit criteria.

| (A)                           |                                         |        |               | (B)           |        |
|-------------------------------|-----------------------------------------|--------|---------------|---------------|--------|
| Paras                         | AIC                                     | LRT    | Pr(Chi)       | Observations  | 170    |
| Precipitation                 | 794.36                                  | 50.12  | 3.4e-10 ***   | DF            | 166    |
| Temperature                   | 873.46                                  | 129.22 | < 2.2e-16 *** | SSE           | 278.44 |
|                               |                                         |        |               | MSE           | 1.64   |
| R <sup>2</sup> (GAMLSS)= 0.86 |                                         |        |               | RMSE          | 1.28   |
| NSČE (GAMĹSS)= 0.86           |                                         |        | WN Variance   | 1.92          |        |
|                               | MAPE(Diff) 90.3                         |        |               | 90.31         |        |
|                               | R <sup>2</sup> (ARIMA) = 0.87 MAPE 661. |        |               | 661.75        |        |
| NSCE (AR                      | (IMA) = 0.6                             | 87     |               | -2Log (Like.) | 599.03 |
|                               |                                         |        |               | FPE           | 1.64   |
|                               |                                         |        |               | AIC           | 607.02 |
|                               |                                         |        |               | AICC          | 607.27 |
|                               |                                         |        |               | BIC           | 619.57 |
|                               |                                         |        |               | Iterations    | 31     |

#### Models' metrics

Residual Sum Squares (RSS) or Sum Squared Error (SSE),

$$RSS = SSE = \sum_{i=1}^{n} (\varepsilon_i)^2 = \sum_{i=1}^{n} (y_i - (\alpha + \beta x_i))^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(A1)

where,  $(y_i)$  is the observed, and  $(\hat{y}_i)$  is the modeled parameter using a general linear regression formulation,  $(y_i = \alpha + \beta x_i)$ .

Mean Squared Error (MSE),

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(A2)

Correlation Coefficient (R<sup>2</sup>),

$$R^{2} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
(A3)

Nash-Sutcliffe Coefficient Efficiency,

$$NSCE = 1 - \frac{\sum (\hat{y}_i - y_i)^2}{\sum (y_i - \bar{y})^2}$$
(A4)

where, the mean of the squares of errors between the observed  $(y_i)$  and the modeled  $(\hat{y}_i)$ .

Classic Akaike information criterion (Classic AIC),

$$AIC = 2k - 2\ln(L) \tag{A5}$$

where, (k) is the number of model parameters, (L) is the maximum likelihood.

Akaike information criterion corrected (AICc),

$$AIC_c = \ln \frac{RSS}{n-k} + \frac{n+k}{n-k-2}$$
(A6)

Bayesian Information Criterion (BIC),

$$BIC = n.\ln(MSE) + k.\ln(n) \tag{A7}$$

Likelihood Ratio test (LRT), White Noise Variance (WN Variance), Mean Absolute Percentage Error (MAPE), Fit Percentage estimation (FPE).

| Category | Description         | GRACE-DSI & PDSI |
|----------|---------------------|------------------|
| W4       | Exceptionally Wet   | 2.0 or greater   |
| W3       | Extremely Wet       | 1.60 to 1.99     |
| W2       | Very Wet            | 1.30 to 1.59     |
| W1       | Moderately Wet      | 0.80 to 1.29     |
| W0       | Slightly Wet        | 0.50 to 0.79     |
| WD       | Near Normal         | 0.49 to -0.49    |
| D0       | Abnormally dry      | -0.50 to -0.79   |
| D1       | Moderate drought    | -0.80 to -1.29   |
| D2       | Severe drought      | -1.30 to -1.59   |
| D3       | Extreme drought     | -1.60 to -1.99   |
| D4       | Exceptional drought | -2.0 or less     |

 Table S3. Standard thresholds used to identify the drought and flooding severity levels.

Table S4. Summary of the regime-shift analysis of the NRB mean TWS between 2002

|            |        |                | Date    |         |
|------------|--------|----------------|---------|---------|
| TWS (Mean) | Uncert | Length (Month) | Begin   | End     |
| 33.33      | ±4.68  | 22             | 04/2002 | 01/2004 |
| -58.27     | ±4.16  | 30             | 2/2004  | 01/2009 |
| 58.55      | ±3.76  | 30             | 02/2009 | 06/2012 |
| -24.76     | ±4.55  | 41             | 12/2008 | 06/2012 |
| 86.20      | ±5.03  | 85             | 07/2012 | 07/2019 |
| 280.82     | ±5.56  | 9              | 08/2019 | 04/2020 |

to 2020.

**Table S5.** Summary of the regime-shift analysis of the NRB in the TWS cyclic

| TWS     |        |                | Date    |         |
|---------|--------|----------------|---------|---------|
| (Cycle) | Uncert | Length (Month) | Begin   | End     |
| 45.28   | ±2.81  | 24             | 04/2002 | 03/2004 |
| -41.38  | ±2.74  | 31             | 4/2004  | 10/2006 |
| 36.31   | ±3.04  | 25             | 11/2006 | 11/2008 |
| -42.77  | ±2.56  | 43             | 12/2008 | 06/2012 |
| 5.83    | ±3.21  | 18             | 07/2012 | 12/2013 |
| 49.31   | ±2.89  | 33             | 01/2014 | 09/2016 |
| -35.57  | ±3.45  | 9              | 10/2016 | 06/2017 |
| 68.65   | ±3.36  | 23             | 07/2017 | 05/2019 |
| 251.46  | ±4.24  | 11             | 06/2019 | 04/2020 |

component between 2002 to 2020.

#### Reference

- 1. Landerer, F., *TELLUS\_GRAC\_L3\_JPL\_RL06\_LND\_v03. Ver. RL06 v03. PO.DAAC, CA, USA.* Dataset accessed [2020-7-10] at <u>https://doi.org/10.5067/TELND-3AJ63</u>. 2020.
- Save, H., CSR GRACE RL06 Mascon Solutions. Dataset accessed [2019-09-8], H. Save, Editor.
   2019, Texas Data Repository Dataverse.
- Wiese, D.N., et al., JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height Coastal Resolution Improvement (CRI) Filtered Release 06 Version 02. Ver. 02. PO.DAAC, CA, USA. Dataset accessed [2019-03-11] at <u>https://doi.org/10.5067/TEMSC-3JC62</u>. 2019
- Li, B., et al., GLDAS Catchment Land Surface Model L4 daily 0.25 x 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [7/10/2020], 10.5067/LYHA9088MFWQ. 2018.
- 5. Schneider, U., et al., *Global Precipitation Analysis Products of the GPCC*. 2011: Deutscher Wetterdienst, Offenbach a. M., Germany.
- Jones, P.D. and I.C. Harris, *CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS)* Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec. 2012). 2013, University of East Anglia Climatic Research Unit: NCAS British Atmospheric Data Centre, 24 September 2013.
- 7. Finger, P., et al., *GPCC Interpolation Test Dataset at 1.0*°. 2015, Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst.
- 8. Zhong, R., et al., *scPDSI: Calculation of the Conventional and Self-Calibrating Palmer Drought Severity Index.* 2018.
- 9. Beguería, S. and S. Vicente, *SPI Calculator.* 2009.
- 10. Beguería, S. and S. Vicente, *SPElbase v.2.6 [Dataset].* 2020.
- 11. Osborn, T.J., A user guide for ClimGen: a flexible tool for generating monthly climate data sets and scenarios, in ClimGen version 1-02. 2009, Climatic Research Unit (CRU): School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. p. 1-17.