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Abstract: This research assesses the changes in total water storage (TWS) during the twentieth
century and future projections in the Nile River Basin (NRB) via TWSA (TWS anomalies) records
from GRACE (Gravity Recovery and Climate Experiment), GRACE-FO (Follow-On), data-driven-
reanalysis TWSA and a land surface model (LSM), in association with precipitation, temperature
records, and standard drought indicators. The analytical approach incorporates the development of
100+ yearlong TWSA records using a probabilistic conditional distribution fitting approach by the
GAMLSS (generalized additive model for location, scale, and shape) model. The model performance
was tested using standard indicators including coevolution plots, the Nash–Sutcliffe coefficient,
cumulative density function, standardized residuals, and uncertainty bounds. All model evaluation
results are satisfactory to excellent. The drought and flooding severity/magnitude, duration, and
recurrence frequencies were assessed during the studied period. The results showed, (1) The NRB
between 2002 to 2020 has witnessed a substantial transition to wetter conditions. Specifically, during
the wet season, the NRB received between ~50 Gt./yr. to ~300 Gt./yr. compared to ~30 Gt./yr. to
~70 Gt./yr. of water loss during the dry season. (2) The TWSA reanalysis records between 1901 to
2002 revealed that the NRB had experienced a positive increase in TWS of ~17% during the wet
season. Moreover, the TWS storage had witnessed a recovery of ~28% during the dry season. (3) The
projected TWSA between 2021 to 2050 unveiled a positive increase in the TWS during the rainy
season. While during the dry season, the water storage showed insubstantial TWS changes. Despite
these projections, the future storage suggested a reduction between 10 to 30% in TWS. The analysis
of drought and flooding frequencies between 1901 to 2050 revealed that the NRB has ~64 dry-years
compared to ~86 wet-years. The exceedance probabilities for the normal conditions are between 44
to 52%, relative to a 4% chance of extreme events. The recurrence interval of the normal to moderate
wet or dry conditions is ~6 years. These TWSA trajectories call for further water resources planning
in the region, especially during flood seasons. This research contributes to the ongoing efforts to
improve the TWSA assessment and its associated dynamics for transboundary river basins.
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1. Introduction

The Nile river basin (NRB; ~3.18 million Km2) is a complex transboundary hydrologic
system [1–4], and one of the world’s preeminent geopolitical hotspots [5–8]. The NRB is
home to more than 320 million people belonging to 11 African nations (2018 population
estimation), approximately 24% of Africa’s total population [9,10]. To both upstream and
downstream countries, the Nile river is crucial for development planning, food, and energy
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production. Egypt, a major downstream country, depends on the Nile River for its survival
more completely than any other country depends on any single waterway [11]. Yet, the
water flowing in the Nile originates from entirely outside of Egypt’s borders. To the 10 other
countries, the Nile water is critically needed for energy generation, to assure their own food
security, mitigate the disastrous effects of periodic droughts, and assure social-economic
development [5,12,13].

Consequently, from the point of view of hydropolitics and hydroclimatology, the
NRB is also one of the most intensely studied and researched basins in the world. Specif-
ically, several studies have addressed the simmering dispute over who owns the Nile,
i.e., [5,14,15]. Aside from this, considerable research efforts have been devoted to model
the flow dynamics of the basin [16–21], water balance [22–25], groundwater [26,27], and
precipitation variability [28,29] among numerous others. Despite the plethora of existing
hydroclimatology studies, recent data acquisition methods and algorithmic solutions af-
forded by platforms such as GRACE (Gravity Recovery and Climate Experiment) and
GRACE-FO (Follow-On) satellite data have begun to produce additional insights into the
dynamics of water resources in the NRB [24,30–35]. GRACE-derived TWSA (total water
storage anomalies) data integrate storage changes in all forms of water, including surface
water storage (SWS), soil moisture storage (SMS), groundwater storage (GWS), and snow
water equivalent (SWE), as well as the impacts of anthropogenic processes on these stocks
of waters [36–39]. Significantly, therefore, the spatial and temporal patterns of TWSA
produced by GRACE are unique and distinct from those generated by other sources, such
as land surface models (LSMs) outputs and hydrologic models [40,41].

The new and unique perspectives produced by GRACE point to a need for the applica-
tion of the same consistent methodology in the pre- and beyond-GRACE periods. Herein,
we report a reconstruction of monthly TWSA data for the Nile Basin spanning the entire
20th century and projections for the 30+ years in the 21st century, specifically to the year
2050. To achieve the reconstruction, we integrated the current GRACE TWSA observations,
with probabilistic simulated TWS records (see Section 3.6) for past scenarios to provide an
overview of the TWSA variability in the NRB. Armed with the new 100 yearlong TWSA
simulated time series, we investigated several hydroclimatic dynamics in the NRB, in-
cluding floods, droughts, and spatiotemporal water storage variability across the basin,
as well as across two main water source regions and water sink areas (see Section 4.2).
Additionally, we used the same analytic framework to generate future projections of TWSA
for the period 2021 to 2050. In total, therefore, our approach allowed us to extend the TWS
data both backward (by 80 years) and forward (by 30 years) using the same consistent
data and methodology. The reconstructed/projected GRACE-like data reproduced many
established hydroclimatic events in the NRB based on other independent data types, in-
cluding floods, droughts, and periods of wet and dry regimes. The results also point to
important differences between new estimates generated using GRACE data compared to
those produced from other data types.

As noted previously, the NRB has been intensively studied both in terms of historical
and future trends of rainfall, runoff, and evapotranspiration (ET) records [19,29,42–44].
For instance, climate circulation model (GCM) outputs were used to illustrate the future
precipitation patterns in the basin [45]. The runoff vulnerability to climate change was
assessed using streamflow records [19], hydrological model outputs [29], projected pre-
cipitation, temperature [20,45,46], and the ET, and potential-ET (PET) variabilities [20].
To improve the seasonal and annual predictability of rainfall, runoff, and ET dynamics
across the basin, the available in-situ observations were blended with satellite-derived
hydrological data and LSMs outputs [18,24,42,47,48]. Further, several research studies have
employed multisource remote sensing observations including precipitation [18,49,50], ET
and moisture products [47,51,52], and gridded hydrological records [53–55] to understand
the water resources potentials in the hydrologic source and sink areas [50], investigate
the seasonal variability across the entire NRB [20,56,57], and individual hydrologic units,
i.e., Lake Victoria [25,58] and the Blue Nile Basin (BNB) [51,55,59]. Consequently, recent
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research utilized GRACE-TWS data to study the changes in key water storage compo-
nents and the hydrological mass variation in the basin [24,58]. The gridded and lumped
GRACE-TWS products were coupled with Global Land Data Assimilation System (GLDAS)
outputs, satellite precipitation, climate teleconnections, and remote sensing-based drought
indices [60–62] to illustrate the recent water storage variations in the NRB and to assess
their variabilities relative to various hydroclimatic and anthropogenic drivers [30].

None of the available/previous research, however, has provided a comprehensive
evaluation of the TWSA, especially through the past century. Additionally, no studies have
provided a foreseen evaluation of the TWSA changes to assess the enduring anthropogenic
activities on the Nile waters. Moreover, the historical hydrological extremes (drought
and flooding) severity/magnitude, duration, frequencies, and their future trajectories on
the available water resources in the NRB have not been fully investigated. Furthermore,
the most recent record of GRACE-FO TWSA has not been fully implemented to assess
the most recent variability across the basin. This research, therefore, aims specifically
to provide a vital water resource assessment for one of the major transboundary water
systems in Africa, and contributes to understanding the TWSA variability in one of the
major drought-prone regions with fewer management protocols. Such an assessment
should help to (i) improve our understanding of the hydrological water cycle in the basin
and assess the implication of hydrological extremes and resource vulnerability in the NRB.
(ii) Redefine the knowledge of water storage dynamics in the basin to advance and improve
water resource management. (iii) Identify potential changes in the basin’s water storage
to improve the nexus management policy, and to move to the basin towards the benefit
of future resource-sharing. This paper, therefore, is a contribution to the ongoing efforts
to improve the assessment of the TWSA and its associated dynamics in the NRB. The
presented results have theoretical and practical applications related to the management
of the basin’s shared and transboundary water resources. The mismanagement of water
storage in the NRB has the potential to amplify the existing instability and result in the
basin transitioning to a hydro-conflict hotspot for food, water, and energy acquisition.
Understanding the TWS changes is critical to: (i) devise the best management practices for
the basin’s available water resources, (ii) identify the potential TWS trajectories that will
sustain future hydropower management plans.

2. The Nile River Basin (NRB)

With a total flow length of 6850 Km, the Nile is the world’s longest river and the
second greatest (after the Amazon) in terms of the watershed area. Unique among African
rivers, the Nile flows from south to north as a confluence of two rivers, the White Nile and
the Blue Nile rivers. Annually, the average natural water flow in the Nile generates a total
runoff estimated at approximately 88 ± 5 BCM/yr. (billion cubic meters) at Aswan High
Dam in Egypt. In general, the Nile basin can be divided into four major sub-basins [1]:
(1) the White Nile Basin (WNB); (2) the BNB; (3) the Atbara River Basin; and (4) the main
or trunk stem Nile Basin (Figure 1). Within the WNB, the Nile takes its rise from the
Equatorial Lake system (Lake Victoria water tower in the south). Northward, the river
flows into the Sudd wetlands, spreading across nearly 57,000 km2 and markedly slowing
down. As a result, approximately 4 BCM of water is lost to evaporation here, making the
Sudd the main water sink region in the WNB. As a result of these losses, the White Nile,
which produces 37 BCM/yr. near its source, produces only 33 BCM/yr. or 29% of the total
Nile runoff downstream of the Sudd. The Blue Nile River originates at Lake Tana in the
Ethiopian highlands. It generates about 57% (50.6 BCM/yr.) of the total runoff to the Nile.
The Atbara River arises in northern Ethiopia. It is a flashy river that is dry for half the
year. The Atbara contributes ~14% (4.4. BCM/yr.) of the total Nile runoff. The Main Nile
Basin begins at the confluence of the White and Blue Niles. It also receives flow from the
Atbara River a short way downstream. The Main Nile Basin itself grades from semiarid
to arid in the north. Consequently, the basin experiences little to no surface runoff. It also
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experiences large evaporation losses due to high temperatures nearly year-round [6], the
Main Nile is the second water sink region in the basin.
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cubic meters.

The total annual rainfall is variable in amount and timing across the different sub-basins
of the NRB. In the Equatorial Lakes, rainfall varies between ~900 to 2000 mm/yr. The rainy
season is bimodal, occurring between March to May and August to December [2]. The
Ethiopian highlands receive an annual rainfall that varies between 1200 and 1800 mm/yr.
with an average of about 1000 mm/yr. Most precipitation occurs between July to October. For
the Atbara sub-basin, the annual average precipitation reaches 553 mm/yr., the lowest among
other southern Nile sub-basins [9]. The rainfall amount over the Sudd wetlands is around 800
to 900 mm/yr., occurring from April to November [64]. The precipitation rate across the Main
Nile Trunk, located within an arid climate, is approximately 200 mm/yr. [9].

As a product of precipitation (gross precipitation rates), theoretically, the basin’s water
storage should reach ~1661 BCM/yr.; The sole contribution of each water source in the
basin is as follows. The Equatorial Lakes provide ~517 BCM/yr., the water storage at the
Ethiopian highlands reaches ~935 BCM/yr., of which only ~590 BCM /yr. reaches the Blue
Nile waters. In southern Sudan, the total storage reaches ~554 BCM/yr. of the Nile water.
The total precipitation flux within the basin produces an average of 1000 m3/yr. per capita;
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an amount that surpasses the present absolute water scarcity status. The available Nile
water share per capita is less than ~500 m3/yr. [13,65]. Several climate projections have
revealed a spike in the rainfall amount in the NRB [43,46]. Despite these projections, the
hot and dry conditions coupled with a rising population will reduce the amount of runoff
and the water available for agricultural, ecological, and residential use [43].

Due to terrain-topography and climate complexities, the river flow is very low,
~0.98 L/s. Km2 or ~99.20 BCM/yr. [50,66]; the Nile river is one of the lowest flowing
rivers globally. The total runoff water in the Nile river basin has been predicted to be
161 BCM annually, with the total amount of water reaching Aswan in Egypt predicted to be
~84 BCM/yr.; This is less than 5% of the total drainable water storage in the basin; ~54 km3

per annum arriving at the delta [67]. The runoff is a key component of the water balance
that defines the amount of renewable water resources within the basin [68]. The lack of
in situ and gauging stations in the region make such an assessment incomprehensive and
fragmented; few gauge stations are available to monitor the total streamflow on the main
Blue Nile watercourse, at the headwater zone of the Owen Reservoir, at the exits of the
White Nile, the Atbara tributaries, and as cumulative streamflow from all tributaries at the
Aswan Dam (see, Figure 1).

The ET figures follow the general precipitation patterns across the basin, where ET
rates exceed 1000 mm/yr. in the Equatorial Lake region, and drop to less than 80 mm/yr.
in the arid zone [3,28,69]. Higher ET rates across the region are responsible for significant
water losses annually. The ET diminished by: ~260 to 310 BCM of water over the Equatorial
Lakes, Lake Tana and the Sudd marshes; ~7 BCM at the conjunction of the two river systems;
and ~19 BCM yearly over the Lake Nasser area [69]. In total, this equates to ~286 to 336 BCM
of water being lost to ET yearly. Within the basin resides several natural lake systems,
open water areas, and artificial reservoirs that provide a buffer against seasonal rainfall
variations, and maintain a regular water flow. The total lake area, however, represents less
than 3% of the basin’s total area.

3. Data and Methods

This research utilizes several gridded observations for hydrological variables (i.e.,
TWSA, precipitation), temperature records, and a number of drought indicators. The
datasets are available at various grid-scales and span different temporal extents. To rec-
oncile with the varied spatial resolutions, the data were summarized at the same spatial
extent (same boundaries/area), either for the basin-level or the sub-basin scale.

3.1. GRACE TWS Observations

This research utilized GRACE and GRACE-FO (Follow-On) TWSA records between
2002 to 2017, and 2018 to 2020, respectively. Herein, we employed GRACE data of release- 6
(RL06), version 2 [70–73] from both SHs (spherical harmonics) and mascons (mass concen-
tration blocks) solutions. See Table S1 for more details about GRACE datasets. Traditionally,
GRACE-based equivalent water thickness (EWT) estimates were obtained from SH func-
tions via several spatial filtering (north–south destriping), and spatial smoothing tools [70].
Unlike SHs, the mascon solutions do not require the application of any filtering and can re-
tain good gravity signals over ocean and land [73]. The GRACE gravity maps are available
at a spatial resolution of 300 Km, or 3◦ × 3◦ degree area, using either SHs or mascons solu-
tions. GRACE data provide an excellent source for global TWSA as EWT in cm/month [39].
Arithmetically, GRACE TWSA is the sum of changes in water stored in all forms, i.e.,

∆TWS = ∆SWS + ∆SMS + ∆GWS + ∆SNS (1)

where ∆SWS represents changes in surface water storage; ∆SMS represents changes in
soil moisture storage (SMS); ∆GWS represents changes in groundwater storage, and ∆SNS
represents changes in snow cover.

This research incorporates GRACE and GRACE-FO data in the original grids, as
posted by the three major mission partners: the Center for Space Research, University of
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Texas Austin (CSR; SH and mascon); the Jet Propulsion Laboratory in California (JPL; SH
and mascon); and the Geo Forschungs Zentrum (GFZ, SH) in Potsdam, Germany. The data
can be accessed freely from the GRACE Tellus portal.

3.2. LSM Datasets

The long-term TWS estimates were also extracted using GLDAS LSM outputs of
version 2.2 from the CLSM-F2.5 (catchment land surface model). In general, the GLDAS
model generates land surface fluxes via ingesting satellite- and ground-based observational
data products in advanced LSM and data assimilation (DA) tools [74]. The GLDAS 2.2
model is forced using a combination of model, observational data, and DA from GRACE
and GRACE-FO [75]. The CLSM-based TWS data were obtained from the Goddard Space
Flight Center (GSFC) Hydrological Sciences Laboratory (HSL) and the Goddard Earth
Sciences Data and Information Services Center (GES DISC). The data are available at a
0.25◦ × 0.25◦ grid resolution for the period between 1948 and 2014 [76].

3.3. GPCC and CRU Datasets

We utilized long-term precipitation records between 1901–2020 from the GPCC (Global
Precipitation Climatology Centre) gridded gauge-analysis precipitation products. The data
were obtained from the Deutscher Wetterdienst (DWD), the German Meteorological Service.
The GPCC provides global monthly gauge-corrected precipitation products at a 0.5◦ × 0.5◦

grid-scale [77,78]. The long-term monthly precipitation, temperature, and PET records
were obtained from time-series (TS) datasets from the CRU (Climate Research Unit) at the
University of East Anglia, UK. The CRU data were calculated at a resolution of 0.5◦ × 0.5◦

based on 4000+ weather stations around the world [79]. This research employed the most
recently released CRU-TS of version 4.04 between 1901–2020.

3.4. ClimGen Data

The future precipitation and temperature projections were obtained using the CRU
ClimGen precipitation and temperature records between 2021 to 2050. The datasets are
freely available through the CRU ClimGen data portal. The ClimGen datasets provide
spatial climate scenarios for future climate records at regional scales [80]. ClimGen is
based on the “pattern-scaling” approach, which encompasses the geographical, seasonal,
and multi-variable structure of future climate information. The pattern-scaling approach
derives the magnitude of the future precipitation (mm/month) and temperature (degree
Celsius) from the GCM at different climate sensitivities and emission scenarios using a set
of exponential and logistic functions [81]. The pattern-scaling was initially introduced to en-
able the creation of transient climate projections, especially for probabilistic approaches [82].
It is typically set to a specific warming level to either explore the magnitude of climate pro-
jections or the associated uncertainties [81]. The reliability assessment of the pattern-scaling
outputs showed smaller error margins compared to the uncertainties exist in other future
climate scenarios [83]. The ClimGen was simulated by coupled atmosphere–ocean general
circulation models (AOGCMs) under different emission scenarios. ClimGen initially pro-
vided these scenarios in a common format, with options to extract user-defined regions,
seasons, and specific periods. (Osborn et al., 2009) has provided detailed information about
the ClimGen data [80].

3.5. Drought Indicators

To characterize different drought incidents across the NRB region, several drought
indicators were employed, including: the GPCC drought index (GPCC_DI) between 1952
to 2014 [84]; the CRU self-calibrated Palmer Drought Severity Index (scPDSI) between 1901
to 2018, i.e., Palmar Drought Severity Index (PDSI) 1901 to 2014; the Standardized Precipi-
tation Index (SPI) between 1901 to 2016; and the Standardized Precipitation–Evaporation
Index (SPEI) between 1901 to 2015 [85]. The SPI and SPEI were utilized on 6-moth time
scales. The scPDSI was determined using the CRU precipitation and PET records according
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to the scPDSI-package in R Development [86]. The SPI was calculated using precipitation
records according to [87]. Table S1 provides the source links and information about all
utilized drought indicators in this research. Additionally, the long-term drought records
were constructed for the period between 1901–2050 using the GRACE-based total water
storage deficit (TWSD) (see Section 3.10).

3.6. GAMLSS Model

To develop retrogressive (inclusive) TWSA records for the NRB between 1901–2002,
and projected (exclusive) TWSA records from 2021 to 2050, a probabilistic conditional
distribution fitting was performed using the GAMLSS (generalized additive model for
location, scale, and shape approach) [88]. The long-term CRU precipitation and temperature
records were used as regressors to estimate TWSA. The GAMLSS approach makes use of a
probability distribution function (PDF) scheme to accommodate the nonlinearity between
the predicted and predictor variables, as well as in the location and heteroskedasticity scale.
Additionally, the PDF offers a set of probabilistic quantiles (Q) or percentile ranges within
which all possible TWSA values could be generated. Here, we generated TWSA within
7 quantiles between Q5 to Q95.

The model was developed using continuous monthly GRACE-TWSA records obtained
between 2002–2010 as a training period and these were subsequently validated using the
TWSA data from 2011–2017. The assumption was made that the training TWSA set between
2002–2010 follows a known distribution with a density f (TWSA|µ,σ) which is conditional
on the parameters mean (µ) and standard deviation (σ). Similarly, the mutually indepen-
dent observed TWSA records for 2011–2017 give the parameter vector (µ,σ). Simply, to
distinguish between systematic variability/trends and (random) uncertainties, conditional
PDFs were fitted using the first two moments: the location, µ, describing the systematic
trends, and the scale, σ, representing the associated uncertainties. The distribution was
given according to Equation (2) as

f (TWSA|µ, σ) =
1√
2πσ

e−
(TWSA− µ)2

2σ2 (2)

After selecting the distribution family, an iterative procedure following forward,
backward, and step-wise models was used to refine the model structure and to test the best
model output. Then, penalized splines were used to fit the trends for each parameter for
their flexibility to model complex nonlinear relationships [89,90]. The GAMLSS goodness-
of-fit was tested using supervised diagnostic plots and significant information criteria tests
(i.e., the Akaike information criterion (AIC), the Schwarz Bayesian criterion (SBC), the
generalized AIC), as well as standard goodness-of-fit diagnostics. Based on the model
performance during the training and validation periods, the GAMLSS model was used to
build the backward (retrogressive) inclusive records for TWSA between 1901–2002, and
forward exclusive TWSA records from 2021 to 2050. The model was accessed using the
GAMLSS-package in R Development [91]. For additional details about the GAMLSS model,
please see [90].

3.7. ARIMA Model

To fill the one-year gap (July 2017 to July 2018) between GRACE and GRACE-FO
records, an ARIMA (Auto-Regressive Integrated Moving Average) model was used on the
GRACE TWSA data. The ARIMA model was selected to explore another statistical-based
approach (deterministic statistic) to fill the missing record between GRACE and GRACE-
FO. Currently, several ongoing research efforts are implementing either complex modeling
tools [92], different explanatory variables from satellite or LSMs (i.e., precipitation, and tem-
perature) [31,93], or independent geophysical datasets (i.e., Swarm satellite data) [94] to fill
the one-year gap between GRACE and GRACE-FO. Herein, we present an alternative/easy-
to-apply approach to fill the one-year gap without any exogenous/independent vari-
ables/data. ARIMA, as a deterministic model, provides “deterministic values” using the



Remote Sens. 2021, 13, 953 8 of 30

time series itself [95]. The ARIMA model generates a single output predication of the input
variable using the variable main statistical characteristics, moving average, autocorrelation,
seasonal, and different lags. The model follows a system of linear equations to capture the
relationship between two consecutive values of the system as:

Yt =
p

∑
i=1

aiYt−i +
q

∑
i=1

miεt−i + εt (3)

where Yt is the independent variable. The missing value is derived using the variables first
differencing of Yt−i and the (p, q), which represent the variable autoregressive and moving
average parameters, respectively. The terms (ai, mi) represent the model coefficient for
the seasonal and moving average, the error term is given as (εt), and is generally assumed
to be independent and randomly distributed. The ARIMA model non-seasonal part of the
ARIMA model is set at 0-order, 1-degree differencing, and the 1-month moving average.
The seasonal part of the model is fixed using the same parameters’ set with a seasonal spike
at lag 12. The ARIMA model was performed using 31 iterations. The model was accessed
using the forecast-package in R Development [95]. The goodness-of-fit of the model was
tested using the AIC criterion among other criteria.

3.8. Uncertainty Analysis and Model Performance

The uncertainties in GRACE-TWSA and LSM-based TWSA were assessed following a
standard approach as introduced by [96,97]. Specifically, each time series was detrended by
removing the deterministic components including the long-term trend, the annual and semi-
annual components that were determined using STL (seasonal and trend decomposition
using a LOESS (locally estimated scatterplot smoothing) decomposition model as

Stotal = Scycle trend + Sseasonal + Sresidual (4)

where Stotal is the total time series component, Scycle trend is the cycle/cyclic trend, Sseasonal
is the seasonal component, Sresidual is the residual component.

Next, a linear regression approach was applied to remove any further trend (determin-
istic) signals in the reminder signals (residual), then, we interpreted the standard deviation
as the maximum uncertainty or measurement error (the amplitude of the measurement
error). This approach was utilized to express the uncertainty bounds for the retrogressive
and the projected TWSA records as well.

For the GAMLSS-based TWSA outputs, we interpreted the standard deviation of
the total time series as the uncertainty bounds to account for all possible dispersions
in the series. Additionally, GAMLESS and ARIMA model performances were tested
using standardized evaluation criteria including supervised coevolution plots between
the simulated and actual TWSA during GRACE-era, cumulative distribution function
(CDF), Pearson correlation coefficient (R-Square), the Nash Sutcliffe Coefficient Efficiency
(NSCE), Root Mean Square Error (RMSE), among other goodness-of-fit coefficients. The
performance of the GAMLSS-based long-term TWSA, and the extended TWSD were
evaluated against independent TWSA from CLSM-F2.5 LSM and other standardized
long-term drought indicators including SPI, SPEI, PDSI, GPCC_DI, and precipitation
anomalies, see Section 4.5.2. The CRU precipitation was evaluated against the GPCC
corrected precipitation record.

3.9. NRB Water Storage

The water storage was assessed using an ensemble record of SH and mascons solutions
between 2002 to 2020 for the NRB, two major water source areas (i.e., Lake Victoria and
BNB water towers), and two main water sink regions (Sudd Basin and Main Nile area).
The analysis over the water towers and water sinks was carried out at the mascon levels
of a 3◦ × 3◦ degree area. The missing GRACE record between July 2017 to July 2018 was
estimated using the ARIMA approach, see Section 3.7. The storage assessment was done



Remote Sens. 2021, 13, 953 9 of 30

for wet periods between July to October, and dry periods from November to June for the
NRB, BNB, and Sudd Basin. Because of a two-month storage lag, the wet period for the
Main Nile area (Nile trunk) runs between September to December, and the dry period goes
from January to August. Because the Lake Victoria water tower region is characterized
by bimodal wet periods between March to May and August to December, the intervening
months define the dry period in the region. CLSM-F2.5 LSM-based TWSA estimates were
used to assess comparative TWSA estimates for the NRB.

Additionally, the STL approach (Equation (4)) was utilized to assess the TWS annual
cycle trends over the NRB. Next, to identify the relative changes in the mean (short-term
average) TWSA, a regime-shift detection (change in the mean), multiple change points,
was applied on the total TWSA time series and the cycle component. The regime-shift
algorithm was developed by [98].

3.10. GRACE Total Water Storage Deficit (TWSD)

GRACE-based total water storage deficit (TWSD), and extended TWSD were calcu-
lated by comparing the monthly TWSA to a reference monthly value. Here, we utilized the
monthly median value for time series data as

TWSDi = TWSAi − M (5)

where TWSDi is the water storage deficit for the i month, TWSi is the corresponding
monthly TWSA, and M is the median value. GRACE-TWDS and the drought severity
index (DSI) defines the drought and flooding incidents across the season, respectively.

Then, the drought severity levels were obtained via standardizing the TWSD values
as follows,

sTWSDi =
TWSDi − TWSD

σ
(6)

where, TWSD is the mean TWSD value, and σ is the standard deviation.
The sTWSD delineates the conditions from very dry to very wet following standard

thresholds, see Supplementary Information Table S3. Similarly, we standardized all drought
indicators utilized in this research following Equation (6).

To assess the year-to-year flooding and drought frequencies in the NRB, the severity,
timing, and duration of each event were assessed. Severity was described as extreme wet,
normal, and extreme dry using standardized thresholds (see, Table S3). Likewise, to assess
the exceedance probability and recurrence, each flood event was ranked according to the
severity levels. The exceedance probability was then calculated as

E =
R

n− 1
(7)

where R is the rank, n is the total number of years on record. While the recurrence (return
period) was calculated as

RI =
1
E

(8)

The timing and duration were assessed by the approximate dates of onset and cessa-
tion, while the accumulated drought magnitude (DM), during either flooding or drought
incidents, was assessed as

DM = ±
{

n

∑
i=1

sTWSDi

}
(9)

where ± refers to flooding (+) or drought (–) events in time series, n is the number of
months for each event at i timestep, and the sTWSDi is the standardized GRACE-based
drought indicator.



Remote Sens. 2021, 13, 953 10 of 30

4. Results
4.1. Uncertainty Analysis and Model Performance

The performance of CRU precipitation (explanatory variable) was evaluated against an
independent precipitation record from GPCC gauge corrected data, see Figure S1A. Overall,
the coevolution plot shows a strong agreement between both variables with a significant
p-value < 0.0001. Figure 2 shows the performance of the simulated/reconstructed TWSA
against GRACE-based TWSA using standard evaluation criteria including a coevolution
plot (Figure 2A), CDF (Figure 2B), and R-Square (Figure 2C). Additionally, the historical
simulated TWSA records were compared to CLSM-based TWSA estimates from 1948 to
2010 (Figure 2D and Figure S1B). The ARIMA model was also evaluated using coevolution
and residual plots (Figure S2A,B). Other evaluation criteria incorporate the goodness-of-
fit for both the GAMLSS and ARIMA model outputs, including NSCE and RMSE (see
Table S2). The uncertainty bounds in the simulated TWSA were expressed using standard
deviation as described earlier (see Section 3.8).
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from Q05 to Q95. The catchment land surface model (CLSM)-based TWSA (red-line) covers the period from 1948 to 2010.

Figure 2A unveils the performance of the GAMLSS model during the training period
between 2002 and 2010. The coevolution results show strong agreement between simulated
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TWSA and GRACE-based estimates. As noted earlier, to account for all possible dispersion
in the time series, the shaded area (uncertainty bounds) represents the standard deviation of
the total series. The CDF plot, Figure 2B, between the simulated and GRACE-based TWSA
records revealed a strong agreement between the two estimates, with a p-value < 0.0001.
As the plot shows, the simulated TWSA matches the GRACE-TWSA across all spectra.
Apart from some higher values, the model slightly underestimated the TWSA. The NSCE
indicates a 0.86 agreement, with an R-square of 0.86, and a p-value < 0.0001 (Figure 2C).
Further, the historical TWSA records were evaluated using CLSM-based TWSA (Figure 2D).
The historical plot shows a good agreement temporal between the CLSM-TWSA and the
simulated TWSA. As expected, there is some mismatching between the magnitudes of the
two figures as a result of the unique nature of the two variables. The performance of the
TWSD-based indicator was tested against independent drought indicators and precipitation
anomalies. The results showed a very good temporal agreement between all hydrological
extreme indicators (see Section 4.5.2). Additionally, the ARIMA model presented a good
coevolution/temporal agreement between the GRACE-TWS and the modeled TWS during
the training period, with an NSCE of 0.87, R-square of 0.87, significant p-value < 0.0001,
and good residual plot (Figure S2). Table S2B shows additional goodness-of-fit criteria for
the ARIMA model.

4.2. Present TWS Changes in NRB (2002 to 2020)

Figure 3 shows the basin-wide TWSA time series between 2002 to 2020 from GRACE,
ARIMA, and GRACE-FO. The result of the homogeneity/change-point analysis (green
line) (Figure 3A) revealed four periods of positive storage increase and two periods of
negative decreases. Notably, two consecutive periods of increases since 2012 have raised
the average TWSA five-fold relative to the early part of the series. Explicitly, (1) between
April 2002 to January 2003, the mean average TWSA pinned at ~33 Gt./yr., (2) between
August 2006 to January 2008, ~58 Gt./yr. of storage with ~75% increase in the storage,
(3) the period between July 2013 to July 2019 during which mean storage increased to 86
Gt./yr. or ~48% increase relative to the previous period. (4) Between August 2019 to June
2020, the mean annual storage in the NRB reached the highest storage of ~280 Gt./yr. or
more than a two-times increase relative to the storage levels between 2013 to 2019. On
the other hand, the TWSA record between 2002 to 2020 indicates two periods of storage
reduction. Between February 2004 to July 2006, the storage dropped ~−58 Gt./yr. In
the second period between February 2009 to June 2012, the storage loss levels reached
~−24 Gt./yr. or ~1.4 times recovery levels in the storage losses compared to the previous
period. The TWSA cycle trend component, Figure 3B, exhibits six main wet cycles. The wet
cycles exhibit a significant TWSA storage increase from ~45 Gt./yr. between April 2002 to
April 2004 to ~251 Gt./yr. in the late year, 2019 or an ~8.5 times increase in the wetness
levels during the year from June 2019 to June 2020. The TWSA cycle showed three negative
cycles, where storage losses started at ~−41 Gt./yr. between April 2004 to October 2010,
then ~−42 Gt./yr. between December 2008 to June 2012, and finally, ~−35 Gt/yr. between
October 2016 to June 2017. The TWSA cycle indicates a ~17% storage recovery between
2004 to 2016. Tables S4 and S5 in the Supplementary Information summarize the wet and
dry records for both total TWSA time series and cycle components.

Figure 4 summarizes the change in the TWSA across the NRB during the wet (A) and
dry season (B), and the net change between the two periods between 2002 to 2020 (C). The
plot shows that, on average, the NRB received storage between 50 Gt./yr. to ~310 Gt./yr.
during the wet season. In contrast, dry season losses ranged between ~30 Gt./yr. to
~70 Gt./yr. As a result, the net TWSA change across the NRB showed a substantial increase
from 2010 to 2020 of about 200 Gt./yr. on average. Additionally, we assessed the year-to-
year rate of change (ROC) in the TWS, and the overall yearly changes compared to the
mean annual average in TWS between 2002 to 2020 (see Figure S3A,B in the Supplementary
Info). The yearly changes in the TWS showed a fluctuation in the trend from one year to
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another. The comparison of the yearly storage to the overall average showed a negative
trend between 2002 to 2013, which later fluctuated to a positive trend from 2014 to 2020.
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Figure 5 shows similar TWSA dynamics during the wet and dry periods at two main
source water areas (i.e., Lake Victoria and BNB). Specifically, Figure 5 shows important
contrasts between the Lake Victoria Basin and the BNB in terms of surface runoff and
TWSA. Recall that the BNB contributes 57% of the surface runoff of the Nile Basin, while
the White Nile contributes approximately 30%. The TWSA suggests another pattern. For
instance, during the wet season (Figure 5A), the Lake Victoria Basin stores, on average,
twice as much as the BNB. Additionally, beginning as early as 2006, the Lake Victoria net
annual storage increased significantly, as confirmed by [23]. During the dry season, TWSA
at the Lake Victoria area indicates a general increasing pattern, except for the years 2005
and 2006. In the BNB, however, during the dry season the TWS improved continuously
since 2002, it did not become positive until 2014. Figure 5C, suggests the net surplus in the
TWSA; generally, the net pattern confirms the significant increase in the TWSA storage
over the Lake Victoria water tower area compared to the BNB. Noteworthy, 2005, 2006, and
2009 displayed the lowest TWSA records over the Lake Victoria region. The years between
2002 to 2005 present the lowest recorded TWSA over the BNB water tower region. The
net storage between 2002 to 2020 was summarized across the three main sub-basins: BNB,
WNB, and Atbara (see Figure S4).
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In the two water sink regions (Figure 6), the temporal patterns observed in the water
source regions are flipped. That is, in both sink areas, net positive water storage occurred
during the early part of the series, followed by water deficits. For instance, during the
wet season (Figure 6A), the Sudd Basin receives an average TWS of ~8 Gt./yr. There were
two negative records of TWSA during the years 2014 and 2016. In contrast, the Main Nile
region showed a significant decline in the TWSA during the wet period, ranging from
~4 Gt./yr. in 2002 to−3 Gt./yr. in 2020. Both the Sudd Basin and Main Nile regions display
significant water volume losses during the dry period (Figure 6B). The Sudd Basin displays
an average of ~−6 Gt./yr. during the wet period. For the Main Nile region, except for the
period from 2002 to 2004, the TWSA displays significant negative records of ~−3 Gt./yr. of
water loss. The net change in TWSA over the regions (Figure 6C) indicates that the Sudd
Basin exhibits a net record of positive storage between 2003 and 2008, and between 2014
to 2015. The Main Nile region, however, shows declining storage from ~4 to ~0.5 Gt./yr.
between 2004 to 2005. The net TWSA change in the Main Nile region presents a continuous
decline in TWSA between 2009 to 2020.
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Figure 7 reveals the spatial patterns and distribution of TWSA across the NRB for the
period between 2002 and 2017 using the mean annual average and standard deviations
of SH06, CSR-M06, and JPL-M06 solutions. Spatially, the reported patterns are consistent
with the temporal trends reported in Figure 4. Overall, a positive TWSA annual average is
observed across the Equatorial Lake region in the south, and the Ethiopian Highlands east
of the BNB (water source regions). While a largely negative annual average is recorded
across the water sink areas including the Sudd Basin, west WNB, and Main Nile in the
north. Specifically, based on an ensemble average of three solutions, during the study
period, the Equatorial Lake region displayed a positive increase of about 0.74 Gt./yr.,
while the sink region in the west (Sudd Basin, Sobat, and Bahr El-Jebel areas) experienced
declines of between −0.25 Gt./yr. and −0.49 Gt./yr. The higher levels of water reductions
are observed at the stream junctions at the Bahr El-Jabal area. The eastern portions of the
WNB, BNB, and northward at the confluence region of the White Nile and the Blue Nile
rivers also had positive TWSAs of between 0.25 Gt./yr. to 0.49 Gt./yr. Finally, the desert
area in the northern portion of the basin declined by about −0.25 Gt./yr.
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The standard deviation plots for the three solutions, Figure 7B, indicate the spatial
variability of the TWSA across the Nile region. From south to north, there is a strong
deviation from the mean—between 1.23 Gt./yr. to 0.74 Gt./yr.—at the southern Equatorial
Lake region, the Western WNB, and the eastern BNB. While, northward, across the Main
Nile region, the standard deviation degrades gradually to around ~0.12 Gt./yr. indicating
that less temporal variability in the TWSA estimates is observed further to the north of the
basin. Overall, the TWS variability in the NRB degrades northward, following the general
pattern of the precipitation records in the region. Extensive precipitation occurred across
the Equatorial Lake region and the Ethiopian Highlands, opposed to the west portion of
the WNB and the Main Nile region.

The mean annual average TWSA period between 2018 to 2020 is represented using
GRACE-FO TWS estimates using an ensembled SH06, CSR-M06, and JPL-M06 solution
(Figure 8). Figure 8A shows the TWS distribution over the NRB between 2018 to 2020. Over
the southern portion of the basin, the Equatorial Lake region exhibits a positive increase in
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TWS of 1.23+ Gt./yr. Northwards over the Sudd Basin, Sobat, and Bahr El-Jebel areas, the
TWS fluctuates between +0.25 Gt./yr. to −0.25 Gt./yr. The western portion of the WNB,
the BNB area, and the area at the junction between the White Nile and the Blue Nile rivers
display positive TWS values that scale between 0.30 to ~2.20 Gt./yr. The desert area in the
northern portion of the basin exhibits a significant decline in the TWS trajectories between
−0.25 Gt./yr. to −1.23 Gt./yr. The standard deviation (Figure 8B) during the studied
periods indicates a strong deviation from the mean, between 1.23 Gt./yr. to 0.74 Gt./yr.,
at the southern Equatorial Lake region and the White Nile basin. The standard deviation
degrades gradually to around 0.12 Gt./yr. further toward the desert portion of the basin.
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Figure 8. Mean annual average GRACE-FO TWS (A) between 2018–2020 using ensembled SH06, CSR-M06, and JPL-M06
mascon solutions, plot (B) shows the standard deviation of each solution during the studied period.

4.3. Past TWS Changes in the NRB (1901–2002)

The monthly reconstructed TWSA was developed for the period before GRACE-era
between 1901 to 2002 (see Figure S1B in the Supplementary Info). Figure 9 summarizes the
general temporal pattern of the reconstructed TWSA using mean annual TWSA estimates
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during the wet (Figure 9A), the dry (Figure 9B), and the net changes in the two seasons
(Figure 9C). The results show substantial yearly variation in the TWSA across the NRB.
During the wet period (Figure 9A), there are three eras of changes in the TWSA annual
mean (regime shift), between 1901 to 1951 with ~98 Gt./yr. of TWS. Then, between 1952 to
1979, the mean annual TWSA peaked at ~133 Gt./yr. During the period from 1980 to 2002,
the mean annual TWSA slightly decreased to 114 Gt./yr. These records indicated that the
TWS during the wet season over the basin had witnessed a positive increase of ~17%. The
dry period (Figure 9B) also showed slight temporal changes in the TWSA annual average
with two identified periods of storage reductions of ~−56 Gt./yr. between 1901 to 1960
and ~−40 Gt./yr. from 1961 to 2002. Overall, the TWS storage witnessed a recovery of
~28% during the dry season. The net changes in the TWS (Figure 9C), show four identified
positive periods—between 1901 to 1951, 1952 to 1960, 1961 to 1979, and 1980 to 2002—of an
average storage of 21 Gt./yr., 38 Gt./yr., 46 Gt./yr. and 37 Gt./yr., respectively. With an
average increase in the TWS of 76%. The uncertainty bounds (gray area) are represented
by one standard deviation of the total time series.
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4.4. Future TWS Scenarios in NRB (2021 to 2050)

The TWSA in the NRB region was projected for the period 2021 and 2050. Figure S5
shows the monthly projected TWSA record. The future precipitation and temperature
records were used to estimate the TWSA following the methodology reported in Section 3.6.
Figure 10 summarizes the overall temporal variability in the TWSA estimates using mean
annual average records during the wet season (Figure 10A), the dry season (Figure 10B),
and the total changes (Figure 10C). Three main regions of TWSA regime shift were recorded,
between 2021 to 2025, 2026 to 2035, and from 2036 to 2050 of ~170 Gt./yr., 116 Gt./yr., and
150 Gt./yr., respectively. The projected TWSA between 2021 to 2050 suggests a reduction
in the TWS between 11 to 30% during the rainy season. The projected TWSA records
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show insubstantial increase changes in the TWSA mean during the dry period across the
basin. While the net changes TWS, Figure 10C, indicates three periods of positive TWS
between 2021 to 2026, 2027 to 2035, and between 2036 to 2050 of 86 Gt./yr., 59 Gt./yr. and
76 Gt./yr., respectively. However, these positive records, the projected TWS between 2021
to 2050 unveiled reduction rates between 10 to 30%. The uncertainty bounds (gray area)
are represented by one standard deviation of the total time series.
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4.5. Drought and Flooding in the NRB
4.5.1. GRACE-Based TWSD between 2002 to 2020

Spatially, Figure 11 shows the yearly TWSD across the NRB between 2002 to 2020
using ensemble SHs and mascons data. Table S3 shows the standard thresholds for the
TWSD levels. As may be expected for a large and heterogenous basin, spatially, the TWSD
varies from extremely wet to extremely dry conditions for different portions of the basin.
For example, the Equatorial Lake region in the south was characterized by abnormally dry
(D0) in 2002 to exceptional drought conditions (D4) between 2005 and 2006. During the
next two years, however, the region recovered to near normal status. On the other hand,
the main stem of the Nile experienced generally moderate to favorable drought conditions
between 2002 and 2007 but adverse drought conditions between 2014 and 2018. For most
parts of the basin, the years 2007, 2008, 2014, and 2018 were wet to abnormally wet, while
2004, 2006, 2017, and 2019 were abnormally dry.
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Other regions across the basin showed remarkable dryness and wetness records
between 2002 to 2020. The western portion of the White Nile at the Bahr El Jabel area, for
instance, exhibited moderate to very wet conditions during the years of 2002, 2003, 2007,
and the year 2008. The years 2014 and 2018 showed extreme wet conditions. The Bahr El
Jabel region demonstrated normal conditions for the period between 2004 to 2006, and the
years of 2009, 2010, 2013, and 2020. In the years 2017 and 2019, the Bahr El Jabel region
recorded extreme dry conditions to moderately dry conditions, respectively. The northern
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portion of the White Nile Basin at the junction between the White Nile and the Blue Nile
rivers fluctuated from moderate drought in 2002 to severe drought conditions in 2004.
This was followed by slightly dry conditions being recorded in 2005, then a progressive
recovery started from 2006 to the year 2008, accompanied with very wet condition status.
The years 2014 and 2018 showed exceptionally wet conditions across the region. The BNB
region changed from ranking as normal conditions in 2002 to moderately dry conditions
in 2004 and 2005. The severity levels show recovered conditions in the years 2007 and
2008. Extreme dry conditions were recorded in 2017, then, the 2018 ranking was towards
the extremely wet conditions. Additional research is recommended to link these recent
hydrological extremes with climatic teleconnection indices.

4.5.2. NRB Drought and Flooding Records (1901 to 2050)

Temporal, historical, current, and future drought and flooding events were established
using statistical-based TWSD between 1901 to 2050. The TWSD records were compared to
other standardized drought indicators including SPI, SPEI, scSPDI, PDSI, GPCC_DI, and
TWSD indicators, along with the precipitation anomaly in the basin. Figure 12 shows both
droughts (−2) and flooding (+2) records from standardized drought indices. Noteworthy,
the inter-comparison between each drought indicator and precipitation anomalies indicates
strong temporal coevolution (p-value 0.0001). According to Table S3, Figure 12 clearly
illustrates different exceptionally dry periods, i.e., during the years of 1913, 1918, 1943,
1984, 1987, 1990, 1992, 2004, and 2009. Additionally, remarkable wet periods were noted
during the years 1917, 1924, 1930 to 1940, 1964, 1989, 2000, 2007, 2014, and the year 2020.
Between 2021 to 2050, the future TWSD record indicates fewer dry conditions relative to
normal, and slightly wetter conditions. Additional research is recommended to investigate
the association of historical variabilities to multidecadal climatic variability in the region.
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Analysis of the entire reconstructed (retrogressive/inclusive), present, and projected
(exclusive) periods (1901 to 2050) shows that the NRB has more wet periods (86 years)
compared to 64 years of dry records (Figure 13). While the dry years are fewer, they tend
to be deeper. For example, both the droughts of 1912 and 1971–1973 exceeded −2.0 on
the DSI scale. Furthermore, the wet and dry years tend to occur as runs. The longest wet
run-length occurred during the decade from 1931–1940. The longest dry run occurred
between 2000 and 2006. Finally, the projection suggests that future wet and dry periods in
the Nile Basin will be mild compared to the historical period.
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Figure 14 summarizes the drought and flooding recurrence intervals and frequencies
in the NRB between 1901 to 2050. The frequency analysis indicates that the recurrence
interval of the normal to moderate wet or dry conditions is ~6 years, indicating that the
basin has short-term drought and flooding intervals. Longer recurrence periods in the
basin are less likely to occur. The analysis also shows that from 1901 to 2050, the recurring
drought events are less intense compared to the flooding record that displays significantly
higher reoccurrence intervals with time.
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Figure 15 illustrates the exceedance probabilities of different severity levels for both
drought and flooding incidents in the NRB between 1901 to 2050. Overall, the exceedance
probability indicates that the near-normal conditions for both hydrological extremes,
drought and flooding events, occupy a percentage of 44 and 52%, respectively. The extreme
and exceptional drought or flooding incidents are likely to occur between 2 and less than
4% in the basin. Moreover, the exceedance probabilities for the abnormally dry and slightly
wet conditions range between 25 and 27%. With respect to the other severity levels, they
are likely to occur with a percentage chance of less than 14%.
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5. Discussion
5.1. Water Storage in the NRB

Distinctive from current research on the NRB that utilizes GRACE-based TWS mea-
surements to study water storage variation relative to hydroclimate variability [24], the
recent changes in the hydrological mass variation in the basin [58,99] interpret the variabil-
ity of different water storage components [26,65] and identify the TWS spatial drivers [30].
This research explicitly provides new insights into the water storage availability and
changes in the NRB using GRACE/GRACE-FO between 2002 to 2020, GRACE-like TWS
data between 1901 to 2002, and their foreseen projections between 2021 to 2050. From this
new perspective, the NRB between 2002 to 2020 has experienced a humid phase; more
storage was received towards the end of the studied period compared to the initial dates.
Additionally, a cursory review of existing research showed that the maximum reported wa-
ter storage from surface water flow in the NRB is ~100 BCM/yr. [100]. Herein, however, our
analysis shows that the total available water storage from all sources (surface, groundwater
storage) is in the order of 200 BCM/yr., nearly double the previous estimate (see Figure S6).
Several factors may account for the differences between the TWS amount reported here and
previous estimates. First, GRACE based TWS estimates represents all water storage down
to the deepest levels of the aquifer, including water locked away in fossil or hydrologically
inactive aquifers. As such, there is an important caveat to these new storage figures; the
total amount of available water cannot be extracted and used due to technological and
economic constraints. Therefore, the new figure likely overestimates the amount of useable
storage within the basin. Despite such differences, GRACE-derived TWS estimates have the
advantage of being spatially distributed rather than lumped as in most previous estimates.
It also most likely that the conventional water budget-based approach underestimates the
total amount of water storage within the basin. Moreover, even with these new higher
storage estimates, the basin would still be considered a water-stressed [65] based on current
and projected population figures.

Accordingly, this research, contributes to the ongoing efforts to improve the TWSA
assessment and its associated dynamics for transboundary river basins. While other
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research studies on the NRB utilized lumped/basin-average TWSA estimates, i.e., [58],
the current study unequivocally acknowledges the spatial variability of TWSA at different
parts of the NRB region. Spatially, the TWS displays uneven storage patterns across the
region. The Equatorial Lake region, the WNB, and the BNB, for instance, show positive
TWSA records with higher standard deviation values due to the strong seasonal amplitude
fluctuations. The northern portion of the basin, on the other hand, displays a remarkable
decline in the TWS values with low standard deviation values due to minimal seasonal
amplitudes. Moreover, analysis of the TWS at mascon-level across two main water towers
(Lake Victoria and BNB), and two other water sink regions (Sudd Basin and Main Nile),
specifies the TWSA dynamics during the GRACE and GRACE-FO era.

Our results highlight another aspect of the Nile Basin hydrology not generally ap-
preciated. That is, while the BNB contributes between 57 to ~60% of the Nile’s runoff,
the WNB—especially the Equatorial Lake region—holds twice the total water storage
of the BNB. This is important because the NRB is sensitive to changes in the TWSA; an
increase/decrease of +/−~2 cm of TWS across the basin would increase/decrease the total
available storage by (+/−)~60%. Accurate information on the available water storage
greatly facilitates water resource planning and management throughout the basin.

5.2. Hydrological Extremes in the NRB

Several research studies have implemented various statistical tools to extend the
GRACE-TWS to before-GRACE-era, i.e., [31,92,101–104]. Fewer studies, however, have
provided GRACE-like TWS in the NRB during the past century, i.e., [31]. Furthermore, no
available research has considered the future TWS trajectories in the region. Herein, armed
with the new 100 yearlong TWSA simulated time series, this research provides inclusive
insights about the long-term hydrological extremes in the region. Via a probabilistic
conditional distribution fitting, the GAMLSS model, we produced all possible probabilistic
estimates for the TWSA using a PDF distribution; GAMLSS outputs were evaluated using
standard evaluation criteria (see Section 4.1 and Table S2). Aside from this, we employed
another deterministic approach, the ARIMA model, to fill the one-year-gap between
GRACE and GRACE-FO missions. As noted, all model evaluation results are satisfactory
to excellent.

Thus, using GAMLSS-based extended TWS records and the future projections, the
20th-century TWS variabilities were evaluated during the wet and dry seasons across
the basin. Overall, the wet-months were more frequent compared to the dry-months
in the region. The projected TWS indicated insignificant TWS changes during the dry
seasons compared to normal, and slightly wetter conditions during the wet seasons. These
projections are compared favorably with those reported by, e.g., [43,46], that showed a trend
towards increased water resources in the NRB and considerable changes. For example,
the increased TWS is likely driven by the projected increase in precipitation over the
basin during the next five decades. While the temperature will also likely increase, the
net precipitation increase exceeds the expected higher water losses via ET due to higher
temperatures [20]. There are good grounds for presuming that such changes result from
global warming, the intensity of which has increased considerably in the last few decades.

Additionally, both GRACE-TWS and the extended GRACE-like TWS estimates were
utilized to produce a long-term comprehensive water deficit indicator, TWSD. Compared
with other traditional drought indicators, i.e., SPI, SPEI, and PDSI, the GRACE-based
TWSD illustrates a holistic overview of the storage deficit/surplus within all stocks of
waters. Noteworthy, exiting research studies, i.e., [60,103,105,106], used GRACE-based
TWSD to illustrate the recent water storage shortage within a basin or study region during
GRACE-era [103]. Yet, the extended TWSA records were not fully implemented to produce
retrogressive records of TWSD. Furthermore, the TWSD has not yet been employed to
evaluate the future hydrologic extremes (drought and flooding) severity/magnitude and
recurrence frequencies in the NRB basin or similar regions. Based on TWDS results, the
NRB is dominated by near-normal conditions relative to the extreme events. Additionally,
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the frequency intervals of the normal to moderate wet or dry conditions are within ~6 years
intervals. Such recurrence highlights the fact the NRB needs a short period to fully recover
from any extreme conditions. The upcoming 30+ projections have confirmed that the NRB
will experience more frequent near normal-conditions. Yet, the NRB is too sensitive to any
hydroclimatic variability. Noteworthy, historical drought and flooding records in the NRB
have shown that six feet (~2 m) of water in the river channel above/below normal during
flood/drought season could bring life and prosperity to the land and renew its fertility.
Alternatively, this could bring severe drought and famine, reducing agricultural yields by
three-quarters [107].

5.3. Call for Further Water Resources Planning

The reported TWSA trajectories as well as the uniquely produced TWSD thresholds
call for further water resources planning in the region. Recently, the basin has experienced
a substantial water storage during the wet season. Additionally, the total water loss at the
Sudd Basin area is approximately twice the water storage loss at the Main Nile region. In
total, half of the Sudd water inflow is lost to evapotranspiration [64]. Despite the recent
and future TWS projections, the NRB is still threatened by significant water shortage
status. Currently, for instance, many parts across the basin are under severe water stress
conditions. In Egypt, for example, the available water to use per capita is approximately
less than 500 cubic meters a year [65]; a threshold that represents an absolute water scarcity
condition. Moreover, the NRB between 2021 to 2050 is projected to experience a severe
water deficit of between ~11 to 30% during the wet period. The available water storage,
consequently, will not be enough to meet the peoples’ demands of many riparian states in
the future. The projected population in the basin is expected to reach 800 million by 2050.
More than ever before, the riparian states need to reinforce conservative agreements for
future water planning and new water-sharing policies, especially during flood seasons.
Establishing an intrinsic water-sharing agreement among riparian nations to govern the
water resources allocation in the region is a must. It is not an easy task for the 11 countries
in the basin to agree to a water-sharing plan. However, the key to ensuring cooperation
among riparian states is good information sharing and technical cooperation to avoid
chronic water shortages in the future.

6. Conclusions

TWS is critical for understanding the water availability and changes in the NRB.
This research, hence, developed a comprehensive 100+ yearlong TWSA record for the
pre-GRACE, GRACE (GRACE and GRACE-FO), and beyond-GRACE-era between 1901 to
2050. The GRACE-like TWS data were derived using a probabilistic statistical distribution
fitting via the GAMLSS model. Herein, the results provide new insights into the TWSA
variability, drought and flooding severity/magnitude, duration, and recurrence frequencies
in the NRB. The results showed the following key findings:

- The present TWS changes in NRB (2002 to 2020) indicated that the basin is experiencing
a generally humid phase. In recent years, the NRB has received more water storage.
Furthermore, the TWSA exhibited more wet cycles compared to the dry cycles in
the region.

- Temporally, the net changes in TWAS were assessed during the wet, dry seasons
across the NRB, two main water source regions (Lake Victoria and BNB), and two
main water sink areas (Sudd and Main Nile regions).

- TWS basin-wide water storage records indicated that the basin has received ~50 Gt./yr.
to ~310 Gt./yr. during the wet season, and lost ~30 Gt./yr. to ~70 Gt./yr. during the
dry season.

- While the BNB contributes between 57 to ~60% of the surface runoff in the Nile River,
the Lake Victoria region (Equatorial Lake area) holds at least twice as much water
storage during the wet season compared to BNB.



Remote Sens. 2021, 13, 953 25 of 30

- The Sudd Basin, on the other hand, loses twice the amount of water storage compared
to that of the Main Nile region.

- Spatially, GRACE-based TWSA displayed positive changes at the Lake Victoria and
BNB regions, with strong temporal variability. While in the area to the north, the TWS
degrades negatively with less temporal variability.

- The basin-wide TWSA from GRACE shows significantly higher storage amounts
compared to the reported water storage volume from surface water flow (i.e., 200 BCM
vs. 100 BCM). The discrepancy in the TWSA estimates is likely due to the fact that the
GRACE satellite detects all forms of available storage, including the deep groundwater
component, as well as the anthropogenic influence on different water stocks.

- The past and future TWS changes in the NRB between 1901 to 2002 and 2021 to 2050,
respectively, were evaluated using standard evaluation criteria. Overall, the model
performance showed satisfactory results. The uncertainty bounds for the extended
(past and future) TWS records were illustrated using standard deviation.

- The Past TWS records indicated that NRB has witnessed a positive increase in TWS
of ~17% during the rainy season. While, the TWS has recovered by ~28 during the
dry periods.

- The future TWS scenarios suggest slight positive changes in the TWSA mean during
the dry period across the basin. However, TWS in the NRB is subjected to decrease by
10 to 30% from 2021 to 2050.

- The flooding and drought analysis using the reconstructed (inclusive), present, and
projected (exclusive) TWSD records between 1901 to 2050 showed that the NRB has
more wet periods, 86-years, compared to 64-years of dry record.

- The recurrence analysis of the drought and flooding records in the NRB between 1901
to 2050 revealed short drought and flooding intervals of ~6 years recurrence intervals.

- The exceedance probability analysis for the extreme hydrological events in the basin
indicates that the near-normal conditions occupy a higher percentage of 44 and 52%
relative to the extreme events.

- The future projections of TWSA indicate an insignificant increase in the TWS during
the wet and dry seasons of the projected TWSA compared to the overall mean average.
The reason for this is likely related to the projected increase in the precipitation amount
in the region.

The complex hydrology and social–environmental systems in the Nile Basin, histor-
ically, have required delicate negotiations and management. Future dynamics related
to population growth, climate change, and the socio-economic and political decisions
of the countries which cohabit the Nile Basin will require an ever-increasing amount of
information regarding the shared resources of the NRB, of which, water is by far the most
important. This study demonstrates that GRACE data can provide unique new insights
and perspectives relevant to the sustainable management of water resources in the Nile
River and similar transboundary river systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/953/s1, Figure S1: Coevolution between monthly GPCC and CRU precipitation data
(A), and GAMLSS-based TWSA and CLMS TWSA (B), Figure S2: Simulated ARIMA TWS (A), the
dark blue of the plot is the one-year gap, plot (B) shows the residual the model, Figure S3: The
year-to-year changes in TWSA (A) between 2002 to 2020, and the yearly changes (compared to the
overall average) of the TWSA (B) across the NRB, Figure S4: GRACE-based net storage changes
between 2002 to 2020 across BNB (A), WNB (B) and Atbara sub-basins (C), Figure S5: Monthly
projected TWSA between 2021 to 2050. Figure S6: NRB storage figures from TWS (A), GWS (B),
SMS (C), and runoff (D) between 1948 to 2014 from the CLSM-F2.5 LSM. The storage-based figures
are relatively higher relative to the runoff in the basin. Table S1: Source information for datasets
and drought indicators utilized in this research, Table S2: GAMLESS (A) and ARIMA (B) models’
goodness-of-fit criteria, Table S3: Standard thresholds used to identify the drought and flooding
severity levels, Table S4: Summary of the regime-shift analysis of the NRB mean TWS between 2002

https://www.mdpi.com/2072-4292/13/5/953/s1
https://www.mdpi.com/2072-4292/13/5/953/s1


Remote Sens. 2021, 13, 953 26 of 30

to 2020, Table S5: Summary of the regime-shift analysis of the NRB in the TWS cyclic component
between 2002 to 2020.
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