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Abstract: Gross primary productivity (GPP) represents total vegetation productivity and is crucial in
regional or global carbon balance. The Northeast China (NEC), abundant in vegetation resources,
has a relatively large vegetation productivity; however, under obvious climate change (especially
warming), whether and how will the vegetation productivity and ecosystem function of this region
changed in a long time period needs to be revealed. With the help of GPP products provided by
the Global LAnd Surface Satellite (GLASS) program, this paper gives an overview of the regional
feedback of vegetation productivity to the changing climate (including temperature, precipitation,
and solar radiation) across the NEC from 1982 to 2015. Analyzing results show a slight positive
response of vegetation productivities to warming across the NEC with an overall increasing trend of
GPPGS (accumulated GPP within the growing season of each year) at 4.95 g C/m2. yr−2 over the
last three decades. More specifically, the growth of crops, rather than forests, contributes more to the
total increasing productivity, which is mainly induced by the agricultural technological progress as
well as warming. As for GPP in forested area in the NEC, the slight increment of GPPGS in northern,
high-latitude forested region of the NEC was caused by warming, while non-significant variation of
GPPGS was found in southern, low-latitude forested region. In addition, an obvious greening trend,
as reported in other regions, was also found in the NEC, but GPPGS of forests in southern NEC did
not have significant variations, which indicated that vegetation productivity is not bound to increase
simultaneously with greening, except for these high-latitude forested areas in the NEC. The regional
feedback of vegetation productivity to climate change in the NEC can be an indicator for vegetations
growing in higher latitudes in the future under continued climate change.

Keywords: vegetation productivity; Northeast China; climate change; spatiotemporal distribution

1. Introduction

Gross Primary Productivity (GPP) of a terrestrial ecosystem refers to the amounts
of organic compounds accumulated by green vegetations through assimilating carbon
dioxide from the atmosphere via photosynthesis and a series of internal physiological
processes [1–3]. GPP can partially offset anthropogenic CO2 emissions [3–6], so that
vegetation plays a critical role in the global carbon balance. Statically, vegetation can store
about 500 Gt of carbon, which accounts for 20% of all carbon in the terrestrial biosphere [7].

To date, studies [8,9], using leaf area index (LAI) as a reference, found a significant
global vegetation greening; however, the question of whether the vegetation productiv-
ity and ecosystem function varies under the obvious vegetation greening has yet to be
unraveled. Compared with widely discussed leaf area (LAI or some vegetation indexes)
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variation, the variation of vegetation productivity is of more practical significance, because
it can not only illustrate the variation of vegetation growth but also reflect vegetation’s
feedback to the carbon cycle. Satellite-based vegetation productivity inversion generally
employ Production Efficiency Models (PEMs), which are based on the Monteith’s light use
efficiency (LUE) theory [10,11]. There are a lot of different GPP products for a great amount
of satellite datasets existing nowadays, e.g., using the SEVIRI/MSG satellite products
to derive daily GPP [12]. Till now, the Moderate Resolution Imaging Spectroradiometer
(MODIS) GPP product (MOD17) [13] is widely used [14,15]; however, the MOD17 can only
provide GPP products since 2000, which is not long enough for analyzing the spatiotem-
poral interaction between vegetation and ecosystem. The Global LAnd Surface Satellite
(GLASS) program provides GPP product covering with the longest time period (1982–2015),
and it has been verified at 54 eddy covariance sites covering six major terrestrial biomes:
deciduous broadleaf forests, mixed forests, evergreen needleleaf forests, grasslands, savan-
nas, and croplands [16,17], providing a reliable and useful data source for the evaluation of
terrestrial ecosystems carbon storage capacity.

The Northeast China (NEC) is a crucial zone in regional, even global carbon balance
because there are abundant vegetation resources: there distributes one-third of forests
in China, with boreal forests distributing in the north and southeast NEC, moreover, the
boreal forests in the NEC are characterized with high carbon density, high carbon storage,
and slow decomposition [18] and are revealed as an important carbon sink in China with
3.44~4.63 Pg carbon storage [19]. Additionally, the NEC is one of the most important
agricultural bases in China, providing about one-third of the national grain over the last
three decades [20]. What’s more, as a transition region from middle to high latitude as
well as one of the most climate-sensitive areas in China, the average air temperature in the
NEC has increased by 0.38 ◦C per decade over the past five decades [21], increasing more
significantly since the 1980s [22]. This kind of warming has greatly changed vegetation
growth in national or global scale due to response of plant respiration, photosynthesis, and
evapotranspiration to climate change [23–26]. For instance, Zhu et al. [8] found that rising
temperatures have resulted in greening of the high latitudes and the Tibetan Plateau, while
Yuan et al. [27] revealed a turning point in late 1990s of global vegetation productivity from
increasing to decreasing due to a sharp increase in VPD (Vapor Pressure Deficit). All in all,
under the circumstance of obvious climate change, the NEC is a representative place for
analyzing regional feedback of vegetation productivity to global warming.

A majority of studies focusing on vegetation dynamics in the NEC use LAI or veg-
etation index (e.g., NDVI) as indicators [28–33]. A few studies [34–37] focused on the
spatiotemporal variation of net primary productivity (NPP) over a short time period. For
example, using a statistic-based multiple regression model, Ji et al. [37] simulated forest
NPP across China and then revealed a significant increasing of forest NPP in Northeast
China from 2000 to 2018. However, seldom have studies focused on analyzing vegetation
productivity under climate change across the entire NEC over a relatively long period of
time, and thus, it is necessary to have a thorough analysis on the spatiotemporal variation
of vegetation productivities in the NEC, which can provide an example of interactions
between vegetation and climate in other higher latitude place in the future.

In this article, our aims can be summarized as three parts: (1) detect the spatiotemporal
trends of vegetation productivity across the NEC from 1982 to 2015, (2) quantify the
contribution of three meteorological factors (daily average temperature, precipitation, and
daily solar radiation) on vegetation productivity, and (3) compare the relationship between
GPP and commonly used LAI.

2. Materials and Methods
2.1. Study Area

The NEC consists administratively of three provinces in China: Liaoning, Jilin, and
Heilongjiang provinces (Figure 1a). It has a total area of 787,300 km2 and had a population
of about 108 million in 2019. The region is separated from Far Eastern Russia to the north
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primarily by the Amur, Argun, and Ussuri Rivers, from North Korea to the south by the
Yalu and Tumen Rivers, and from the Inner Mongolian Autonomous Region to the west by
the Greater Khingan Range.
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Figure 1. (a) Location of the study area with elevation from a Digital Elevation Model (DEM) and (b) Vegetation types of
the Northeast China (NEC). (Vegetation type is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD12Q1 datasets [38] in 2015).

Across from mid to high latitude (approximately 39–53◦ N), the NEC has a large
variation in annual average temperature from 10 ◦C in south to−5.5 ◦C in north. Moreover,
located at the northernmost region of China, the NEC contains the coolest region in China.

The accumulated temperature greater than 0 ◦C is around 2000~4200 ◦C, and the
average temperature during summer is 20–25 ◦C. Influenced by the Eastern Monsoon
of China, the NEC has a great variation in annual precipitation, decreasing from wet
southeast (900 mm) to semi-arid northwest (400 mm), and a majority of precipitation occurs
in summer (July to September).

There are three mountains: the Greater Khingan Mountain (GKM), the Lesser Khingan
Mountain (LKM), and the ChangBai Mountain (CBM) (Figure 1a) that form important
natural barriers for the NEC, so that the NEC can be divided into four zones (one plain
and three mountains). The heartland of the NEC is the Northeast China Plain (Figure 1a,
including Sanjiang Plain, Songnen Plain, and Liaohe Plain), which mainly located at the
western NEC and grows a lot of crops (Figure 1b) for its rich, deep, black soil. Owning these
plains, the NEC is one of the most important centers of commercial agriculture in China for
both food grains (wheat, rice, and maize) and economic crops (soybean and sugar beets).
The rest three mountainous zones also play a crucial role in ecosystem function. There are
a great amount of forests growing in these three mountains, e.g., the LKM and the CBM
are widely covered with broadleaved deciduous forests, and the GKM owns the special
bright coniferous forest which is the southern boundary of the Boreal forests of Eurasia.
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2.2. Data
2.2.1. GPP Datasets

GPP data used in this paper were provided by the GLASS program [39]. Generally,
the GPP can be estimated using the LUE model as follows:

GPP = PAR× f PAR× εmax × f , (1)

where PAR is the incident photosynthetically active radiation (MJ m−2) per time period (e.g.,
day or month), fPAR is the fraction of PAR absorbed by the vegetation canopy, εmax is the
potential LUE (g C m−2 MJ−1 APAR) without environment stress, and f is a scalar varying
from 0 to 1 and represents the effects of temperature, moisture, and other environmental
conditions on LUE.

GLASS-GPP products were estimated using an improved EC-LUE (Eddy Covari-
ance Light Use Efficiency) model, which is derived by satellite data and eddy covariance
measurements [16,17]. There are four kinds of input parameters: NDVI, PAR (photosynthet-
ically active radiation), air temperature, and the Bowen ratio of sensible-to-latent heat flux.
NDVI datasets are provided by Advanced Very High Resolution Radiometer (AVHRR),
which cover a long period starting from 1979. Net radiation (Rn), air temperature (T),
relative humidity (Rh), and photosynthetically active radiation (PAR) from the MERRA
(Modern Era Retrospective-Analysis for Research and Applications) archive [40] were
used in GPP retrieval. The MERRA dataset was provided by the NASA. Its theory uses
a fixed global atmospheric model and data assimilation system to analyze the historical
satellite and conventional data records into a continuous global gridded dataset. The
spatial resolution was 0.5◦ latitude by 0.6◦ longitude.

The GLASS-GPP datasets provides datasets covering from 1982 to 2015 with a spatial
resolution of 0.05◦ and a temporal resolution of 8 days. We downloaded 1564 scenes with
46 scenes per year, and then used the Savitzky-Golay [41] filter to correct errors and fill gaps.
After a series of re-projection, extraction, we acquired the available time series of GPP of the
NEC. Aiming to analyzing inter-annual variation of GPP, we calculated accumulated GPP
during the growing season (April to October) of each year (denoted as GPPGS, hereafter)
and, finally, acquired the 34-year GPPGS time series for further analysis.

2.2.2. Auxiliary Datasets

For the attribution analysis of the spatiotemporal GPP variation, there are two kinds
of datasets: the meteorological datasets and human intervention indices.

The meteorological datasets used in this study came from the China Meteorological
Forcing Datasets [42], which can be acquired from the Cold and Arid Regions Science
Data Center [43]. Specifically, the air temperature dataset was produced by merging
observations from 740 meteorological stations of China Meteorological Administration
(CMA) into the corresponding Global Land Data Assimilation System version 1 (GLDAS-1)
dataset [44]. The precipitation dataset was produced by combining the observations from
the 740 CMA stations, the Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation
products [45], and the GLDAS-1 rainfall rate data. The downward solar radiation was
constructed by correcting the Global Energy and Water Cycle Experiment-Surface Radiation
Budget shortwave radiation dataset [46] with radiation estimates from meteorological
station observations.

We downloaded reanalyzed meteorological data (including daily average temperature,
daily precipitation rate, and daily solar radiation) with monthly temporal resolution and
spatial resolution of 0.1◦ × 0.1◦. First, daily average temperature and daily radiation data
are averaged within the growing season of each year, and the daily precipitation rate were
translated into accumulated precipitation within the growing season of each year to obtain
yearly accumulated precipitation from 1982 to 2015. In the next step, the meteorological
datasets were downscaled to 0.05◦ to match the spatial resolution of GPP datasets for
correlation analysis. Finally, time series of yearly average temperature, yearly accumulated
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precipitation, and yearly average radiation within the growing season from 1982 to 2015
were acquired for further analysis.

Human intervention indices are also considered in this study since crops are heavily
influenced by human activities, so the assessment of the impacts of human intervention on
crops is necessary. This study considered three indices, which can quantify the impacts of
human interventions, i.e., Cropland Area (CA), Crop Yield per Area (CYA), and Irrigated
Area (IA). All these indices were provided by the National Agriculture Database (Statistics
Bureau of China) [47]. The detailed impacts of human intervention on GPP are shown in
Section 4.1 as an additional analysis.

2.3. Statistical Analysis
2.3.1. Mann-Kendall Trend Test

The Mann-Kendall (MK) test is a rank-based non-parametric test for detecting a
monotonic trend in a time series. The method was originally used by Mann (1945) [48],
and the test-statistic distribution was subsequently derived by Kendall (1975) [49]. It is
frequently used for trend detection in hydrologic research [50]. In this study, we use the
MK test to detect monotonic trends in the GPP data series as the test is more powerful than
ordinary parametric trend tests for non-normally distributed series [51].

The MK test statistics (S) for a series x1, x2, . . . , xn can be given by

sign(xj − xi) =


1; i f xj > xi
0; i f xj = xi
−1; i f xj < xi

, (2)

S = ∑N−1
i=1 ∑N

j=i+1_ sign(xj − xi) (3)

where N is the length of the dataset and xi and xj denote the data values at times i and
j. A negative value of S indicates a decreasing trend, while a positive value indicates an
increasing trend [52]. Statistical significance of the trend is checked using the variance of
the MK statistics, while N > 10, which is calculated as

Var(s) =
n(n− 1)(2n + 5)−∑P

i=1 ti(ti − 1)(2ti + 5)
18

, (4)

where P is the number of tied groups, the summary sign (Σ) denotes the summation over
all tied groups, and ti is the number of data in the ith (tied) group. If the tied groups are
not available, this summation process is excluded from the equation.

The standard Z value of the test statistics can be estimated by the following formula.

Z =


S−1√
Var(S)

; i f S > 0

0; i f S = 0
S+1√
Var(S)

; i f S < 0
. (5)

If the computed standard Z value is greater than the critical value of the standard
normal distribution at the specified significance level (α), it is considered to be significant
trend, and the null hypothesis is rejected.

2.3.2. Pearson Correlation

Pearson correlation is a standard parametric method used to analyze the relationship
between two variables. It can be expressed as follows.

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2

√
∑n

i=1 (yi − y)2
, (6)
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where xi and yi (i = 1, 2, . . . , n) are time series for two variables, x and y are multi-year
average values of two variables, and r is the correlation coefficient. A value of r > 0 indicates
a positive correlation between two variables, whereas r < 0 suggests a negative correlation.
The absolute value of r can represent the closeness of two variables, i.e., the larger the value
of r, the closer the two variables are and vice versa. All the correlation coefficients were
conducted using the 0.05 significance level.

2.3.3. Standardized Multivariate Linear Regression Model

Unlike the Pearson correlation method, the Standardized Multivariate Linear Regres-
sion (SMLR) method uses Gaussian normalized values in place of the original ones. Thus,
the effects of changes in different factors can be compared. The SMLR model separates
the relative contribution of each factor. The coefficient before each variable represents
its importance in partitioning the SMLR model, and the fitting coefficients (R) of SMLR
represent the combined effects of driven factors to GPP. The SMLR model is expressed
as follows:

GPP− GPP
σGPP

= β0 + β1
ED1 − ED1

σ1
+ . . . + βn

EDn − EDn

σn
, (7)

where EDi(i = 1, 2, . . . , n) are influencing factors; GPP and ED1 are multi-year mean values
of GPPGS and influencing factors, respectively; σGPP and σED are standard deviations of
GPPGS and influencing factors, respectively, during the study period; and β1, β2, . . . , βn
are regression coefficients that represent the importance to GPPGS. Factors with a larger
coefficient are assumed to contribute more to the variation in GPPGS, and the one with
largest coefficient was identified as the dominant factor to GPPGS in our study area during
1982–2015.

Before using the SMLR model, the Variance Inflation Factor (VIF) is calculated to exam
multicollinearity among the influencing factors. The F-test is conducted on the model,
while the t-test is conducted on the coefficients before each influencing factor. Significant
tests were those below the 0.05 significance level.

3. Results
3.1. Spatiotemporal Distribution and Variation of GPP

Figure 2a reveals an obvious increasing trend of multi-year average GPPGS from north to
south and from west to east in the NEC, which is consistence with the spatial distribution of
vegetation types and climate. The productivity of forests ranges from 700 to 1500 g C/m2. yr−1,
which is obvious larger than that of crops (50–700 g C/m2. yr−1), and the productivity of
forests in warm-humid lower latitude regions is about 1000–1500 g C/m2. yr−1, larger than
that of forests in cold-dry regions (700–1000 g C/m2. yr−1).

Spatial distribution of inter-annual variation of GPPGS in the NEC is shown in
Figure 2b which owns an overall increasing trend, though great spatial heterogeneity
exists. Specifically, the western NEC growing with crops has the largest GPPGS increment
(over 11 g C/m2. yr−2), followed by a slight increment of GPPGS in the GKM and LKM
(around 3–7 g C/m2. yr−2) covered with forests, while the variation of GPPGS is not signifi-
cant for the majority regions of CBM with sporadic pixels showing increases. Statistically,
around 66.4% of the regions in the NEC has an increasing trend in GPPGS, among which
the area of croplands accounts for 67.3%.

We further identified the inter-annual variation of zonal GPPGS at five regions: the
whole NEC, plain, GKM, LKM, and CBM. There is an overall increasing trend of the whole
NEC (the change ratio (denoted as CR, hereafter) = 4.95 g C/m2. yr−2; p < 0.01) from 1982
to 2015 as shown in Figure 3a, which is mostly attributed to the growth of crops in the plain
(Figure 3b). Crops growing in the NEC have a stable increase with the largest amplitude
(CR = 7.47 g C/m2. yr−2; p < 0.01), while, in the other three forested regions, GPPGS shows
a much smaller increasing trend (LKM: CR = 5.35 g C/m2. yr−2, p < 0.01; GKM: CR = 3.28 g
C/m2. yr−2, p < 0.05; CBM: CR = 0.75, p > 0.05) with quite a bit of inter-annual fluctuation
over the past three decades.
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Figure 2. Spatial distribution of (a) multi-year average of accumulated gross primary productivity (GPPGS) (unit: g C/m2.
yr−1) and (b) inter-annual GPPGS trend (unit: g C/m2. yr−2) across the NEC during 1982–2015.

Figure 3. Trend of regional GPPGS anomalies (true value of GPPGS minus multi-average GPPGS) from 1982 to 2015 in five
zones (the Greater Khingan Mountain (GKM), Lesser Khingan Mountain (LKM), the ChangBai Mountain (CBM), and Plain
and the whole NEC) of the NEC (Here, the base value (the blue line) is the multi-year average GPPGS from 1982 to 2015;
CR refers to the change ratio of GPPGS (g C/m2. yr−2), and P refers to the significance testing. The red line is a trend line
calculated by the MK algorithm.).
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3.2. Relationship between GPPGS and Meteorological Factors

Figure 4 shows a warming, wetting, and dimming trend across the whole NEC, and the
impacts of this climate change on vegetation GPPGS are analyzed in the following sections.

Figure 4. The inter-annual trend of (a) yearly average temperature, (b) yearly accumulated precipitation, and (c) yearly
average SRAD (Shortwave Radiation) within the growing season across the NEC from 1982 to 2015.

Table 1 indicates that GPPGS of the NEC is related with the three meteorological
factors (daily average temperature, precipitation, and daily solar radiation), especially
the obviously warming; nevertheless, this correlation has a great spatial heterogeneity. In
plains, warming (Figure 4a) can improve the productivity of crops, while precipitation
(Figure 4b) and solar radiation (Figure 4c) do not have significant impacts. In mountainous
areas, positive impacts of warming on forest productivity only exist in high-latitude
GKM and LKM, and solar radiation comes into positive effect on GPPGS in GKM and
CBM. Precipitation has a negative effect on GPPGS of forests according to the correlation
results, nevertheless, those negative effects were not significant when eliminating the
coupling effects between temperature and radiation with precipitation as partial correlation
coefficients display. The difference in correlation and partial correlation results manifest that
in the NEC, precipitation indirectly impacts vegetation growth by affecting temperature
and solar radiation. For example, there is a remarkable dip in GPPGS time series of the
GKM and LKM in 2003 (Figure 3b,c), which is in line with the small amount of radiation
caused by extreme large quantities of precipitation in 2003.

Table 1. Correlation coefficient (CC) and Partial correlation coefficient (PCC) between regional
accumulated GPP (GPPGS) and meteorological factors (daily average temperature, precipitation and
daily solar radiation) in different regions (Plain, GKM refers to the Greater Khingan Mountain, LKM
refers to the Lesser Khingan Mountain, and the CBM refers to the ChangBai Mountain).

Temperature Precipitation Solar Radiation

CC PCC CC PCC CC PCC

Plain 0.467 ** 0.479 ** 0.018 −0.149 −0.134 −0.218
GKM 0.501 ** 0.512 ** −0.433 ** −0.165 0.776 ** 0.695 **
LKM 0.590 ** 0.628 ** −0.376 * −0.202 0.389 * 0.189
CBM 0.238 0.177 −0.483 ** −0.199 0.567 ** 0.391 *

* Significant at the 5% level; ** significant at the 1% level.

The contribution of each meteorological factors on GPPGS can be quantified using the
SMLR method, and thus the dominant meteorological factors for GPPGS variation over
the last three decades can be identified as shown in Figure 5. In mountainous areas, the
combination of the three meteorological factors has great impacts on forest productivity.
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The inset map in Figure 5 shows that 70.5% of the GPPGS variation in LKM is caused by
these three factors among which temperature is the dominant factor. Meteorological factors
can explain 61.0% of the variation in GPPGS of CBM where solar radiation is the dominant
factor. In GKM, climate effects accounts for 84.0% of the variation in GPPGS, and both
temperature and solar radiation are equally important for vegetation productivity.

Figure 5. Dominant factors for GPPGS during 1982–2015 at pixel scale (main map) and at regional
scale (the inset map).

Contrary to productivity of natural forests in mountainous areas, crops growing
in plain are less related with the three meteorological factors, although warming still
has positive effect on vegetation productivity in some areas. Furthermore, the linear
combination of temperature, precipitation, and solar radiation can only explain 40% of the
significant GPPGS increase in crops, indicating that some other facilitating factors exist for
crop productivity increments in the NEC.

3.3. Relationship between GPP and LAI

The comparison between GPP and LAI is noteworthy. We download GLASS-LAI
products with an 8-day temporal resolution and 0.05◦ spatial resolution from 1982 to
2015 [39,53,54] and then pre-processed it to a 34-year time series of mean value of LAI
within the growing season (denoted as LAIGS) across the whole NEC (Figure 6a). The
detection of LAI trend across the NEC shows a dramatic increase in LAIGS across the whole
NEC over the last 30 years (Figure 6b). It is the same as the widely reported worldwide
greening [8,55–57].
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Figure 6. Spatial distribution of (a) multi-year average mean value of LAI within the growing season (LAIGS) and (b) trend
in LAIGS across the NEC from 1982 to 2015.

Different from the significant increase in LAIGS across the whole NEC as Figure 6b
shows, there is a relatively smaller increment of GPPGS in forested region across the NEC
(the slight increment in the GKM and LKM, and even no increments of GPPGS in the CBM);
quantitatively, the absolute change ratio (ACR) and relative change ratio (RCR, defined as

ACR∗study period
multi−year mean value ) of GPPGS and LAIGS in each part of the NEC are displayed in Table 2.
In forested regions, the increments of LAIGS are larger than that of GPPGS, especially in
CBM, while, in croplands, the RCR of GPPGS is twice that of LAIGS. The relationship
between GPPGS and LAIGS seems to vary in different regions.

Table 2. The absolute change ratio (ACR) and relative change ratio (RCR) of GPPGS and mean value
of LAI within the growing season (LAIGS) from 1982 to 2015 across the NEC.

GPPGS LAIGS

ACR RCR ACR RCR

GKM 2.88 11.24 0.014 22.26
LKM 4.77 15.51 0.012 17.46
CBM 0.79 2.33 0.012 15.84
Plain 7.345 29.75 0.0057 15.18

According to correlation analysis (Figure 7), GPPGS is correlated with LAIGS in rela-
tively high-latitude forests (GKM: R = 0.652, p < 0.05; LKM: R = 0.691, p < 0.05) and parts
of cropland; however, in mid-latitude CBM, there is non-significant correlation (R = 0.334;
p > 0.05), indicating that GPP is not always changing simultaneously with LAI.
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Figure 7. Spatial distribution of the correlation coefficient between GPPGS and LAIGS across the
entire NEC.

4. Discussion
4.1. Differences of Crops and Forests in GPPGS Trend

In both pixel or regional scales, the inter-annual variation trend of GPPGS in the NEC
(Figures 2 and 3) indicates that the crops growing in plains provide the majority inter-
annual increments of terrestrial ecosystem productivity while forests in mountainous area
contribute less in productivity increasing over the last 30 years. Furthermore, meteorologi-
cal factors are not much important for crops in the NEC (Figure 5). Previous studies [58–60]
identify two main reasons for the variation of crop productivity, i.e., climate change and
agricultural technological progress. Fang et al. (2000) [60] concluded that agricultural
technological progress plays a much more important role than climate for rice yield in
Heilongjiang, which may be suited for the whole NEC.

The relationship between GPPGS of crops and the three human intervention indices
(IA, CA, and CYA) are displayed in Figure 8. All these indices are highly correlated with
GPPGS where the IA (R = 0.897, p < 0.05) owns the largest correlation, followed by the
CA (R = 0.896, p < 0.05), and finally, the CYA (R = 0.784, p < 0.05). The increments of
vegetation productivity of crops in the NEC benefits greatly from human intervention (e.g.,
fertilization, irrigation, and cropland area expansion), instead of meteorological factors
identified in Table 1, which is in line with Yuan’s findings [61].
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All in all, human intervention contributes a lot to vegetation productivity of crops,
which greatly facilitates vegetation growth of crops directly leading to the differences of
crops and forests in GPP trend.

4.2. Different Trends of GPP and LAI

Song et al. (2017) [62] defined vegetation productivity as a combination of net as-
similation rate, LAI, and photosynthesis duration. That is to say, apart from the LAI, net
assimilation rate and photosynthesis duration are also decisive for GPP.

Firstly, the net assimilation rate is related with the vegetation type as well as vegetation
age. There is a great spatial difference of vegetation type across the whole NEC as Figure 1b
and Qian et al.’s study [63] display, so that the relationship between GPP and LAI has
great spatial heterogeneity. In addition, the vegetation age is different with time went by
which the correlation between GPP and LAI is also influenced. Second, combined with
the correlation analysis between GPP and meteorological factors (Figure 5), we found that
the CBM is a radiation-dominant region. so, the decreasing trend in solar radiation (or
sunshine duration) (Figure 4c) may offset the effect of increasing LAIGS (Figure 6b), leading
to non-significant variation in GPPGS over the 30 years.

Actually, LAI and GPP describes vegetation growth from two different aspects. LAI is
defined as one half of the total green leaf area per unit horizontal ground surface area [64],
which aims to quantify the amount of leaf area in an ecosystem [65], so in the NEC, the
increasing LAIGS reflects that the leaf quantity and vegetation coverage of the canopy in the
NEC increases, while the small variation in GPPGS indicates that vegetation’s contribution
to regional carbon balance has not changed during the three decades of interaction with its
environment across the NEC.

In summary, although LAIGS indicates a greening trend, ecological productivity may
not have corresponding variation. GPPGS may be a more suitable parameter to reflect
variation in vegetation growth and vegetation’s impacts on carbon cycle [1–7].

4.3. Uncertainties and Future Works

This paper has revealed the slight increasing of GPPGS in the NEC from 1982 to 2015,
and simultaneously identified the effects of climate change on GPPGS. Nevertheless, some
uncertainties still exist for this analysis.
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First, we used the GLASS-GPP products which can provide vegetation productivity
from 1982; however, the spatial resolution of GLASS-GPP (around 5 km) is rather rough,
and thus some variations of GPP may be overlooked, especially in heterogeneous regions,
leading to overestimation or underestimation of the trend of vegetation productivity.

Another uncertainty comes from correlation analysis between GPPGS and three meteo-
rological factors. In this study, we chose the fixed growing season (April to October) of each
year as our study period, and then considers the impacts of the three meteorological factors
(daily average temperature, precipitation, and daily radiation) within the growing season,
nevertheless, these three factors may influence vegetation growth during the whole year.
Take temperature as an example, winter temperature also influences spring phenological
events of the next year [66]. Therefore, using fixed growing season period as well as
considering annual average temperature during growing season to analyze the effects of
warming on vegetation productivity may bring some uncertainties. In the next step, we
should consider a variable growing season length, such as using temperature thresholds
(e.g., 0 and 5 ◦C) as a sign for growing season, so that a more comprehensive impact of
meteorological factors on GPP can be taken into account.

Finally, uncertainty may exist when quantified the effects of each meteorological
factors on GPP using SMLR models. The SMLR model assumed that the combined effect
of meteorological factors is linear, actually, there is a more complex relationship between
GPPGS and meteorology, in addition, there is a coupling effect between vegetation and
atmospheric dynamics, that is to say, apart from the effect brought by climate change on
vegetation, the variation of vegetation would impact climate simultaneously as a lot of
studies [67–69] have revealed. The relationship between weather and vegetation is too
complex to quantify using a statistic-based model. So, a land process models based on
biochemical mechanisms, such as CABLE [70], ORCHIDEE [71], and LPJ [72], is needed for
more accurate analysis. Apart from reducing uncertainties mentioned above, one important
thing that needs further exploration is the relationship between GPPGS and LAIGS. This
paper found that the relationship between GPPGS and LAIGS across the NEC has large
spatial heterogeneity, indicating that the widely reported greening is not bound to have
great contribution to improve carbon sink capability. Whether this relationship between
GPPGS and LAIGS found in this paper is specific to the NEC or a common phenomenon in
the terrestrial ecosystem is still to be seen.

5. Conclusions

This study focuses on the regional feedback of vegetation in the Northeast China
(NEC) to the obvious climate change using GLASS GPP products as indicators. Results
shows that, from 1982 to 2015, GPPGS across the NEC has an overall increasing trend
(4.95 g C/m2. yr−2, p < 0.01) within which great spatial heterogeneity exists. Vegetation
productivity of crops distributing in western NEC is the smallest but has the largest
increment (7.47 g C/m2. yr−2, p < 0.01). On the contrary, vegetation productivity of
forests is obvious larger than that of crops but only has slight increments in northern NEC
(GKM: CR = 3.28 g C/m2. yr−2, p < 0.05; LKM: CR = 5.35 g C/m2. yr−2, p < 0.01) and
non-significant variation in southern NEC (CBM).

Correlation analysis between GPPGS and meteorological factors indicates that warm-
ing can improve vegetation productivity of crops as well as forests located in temperature-
limited high latitude (GKM and LKM), while this positive effect vanishes in mid-latitude
CBM. In addition, for crops of the NEC, apart from the facilitating effect of warming,
human intervention plays a decisive role in vegetation productivity increasing over the
last 30 years, which directly leads to the difference of crops and forest in GPPGS trend.

Contrary to the slight or even non-significant variation of vegetation productivity in
forested region, an obvious vegetation greening is found across the whole NEC. Corre-
lation analysis between GPPGS and LAIGS over the last three decades illustrates that the
simultaneously increment of GPPGS and LAIGS only exists in high-latitude NEC (GKM
and LKM), while in other region, facilitating effect of greening on GPPGS may be offset by
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other factors, such as the shortage of solar radiation in CBM. The different variation trend
of GPPGS and LAIGS reminds us that apart from focusing on vegetation growth dynamics
(greening or browning), more attention should be paid on vegetation’s feedback to climate
as well as its role in carbon cycle.
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