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Abstract: Due to irregular and uncontrolled expansion of cities in developing countries, currently
operational landfill sites cannot be used in the long-term, as people will be living in proximity to
these sites and be exposed to unhygienic circumstances. Hence, this study aims at proposing an
integrated approach for determining suitable locations for landfills while considering their physical
expansion. The proposed approach utilizes the fuzzy analytical hierarchy process (FAHP) to weigh
the sets of identified landfill location criteria. Furthermore, the weighted linear combination (WLC)
approach was applied for the elicitation of the proper primary locations. Finally, the support vector
machine (SVM) and cellular automation-based Markov chain method were used to predict urban
growth. To demonstrate the applicability of the developed approach, it was applied to a case study,
namely the city of Mashhad in Iran, where suitable sites for landfills were identified considering
the urban growth in different geographical directions for this city by 2048. The proposed approach
could be of use for policymakers, urban planners, and other decision-makers to minimize uncertainty
arising from long-term resource allocation.

Keywords: landfill; urban growth; ecological degradation; waste management; remote sensing;
urban planning

1. Introduction

The 20th century has witnessed the largest growth in the urban population, especially
following the second world war. This near-exponential increase in the global population
has led to major economic evolutions. Such economic developments, alongside the ever-
increasing population growth and the accompanied intervention of a new culture of
production and consumption, have left behind rising heaps of urban waste [1,2]. Waste
production and management are directly related to urban development. In the course of
urban growth, calls surged for access to readily available grounds for the disposal of waste
as well as suitable regions for meeting the demands of a new culture, which ultimately
engendered more wastes. The disposal of urban wastes calls for the occupancy of further
grounds in an urban region [3]. On the other hand, the expansion of urban regions from
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current extremities has resulted in the curtailment of areas for the disposal of wastes and,
therefore, lack of sufficient grounds in general [4].

The generation of municipal solid waste by industrial and urban entities causes
several environmental issues [5,6], such as environmental degradation [7], pollution of
surface water and groundwater [8,9], and unpleasant odors [10]. According to the US
Environmental Protection Agency, four priorities in integrated management of solid wastes
in order of preference are (a) lowering waste generation at the source, (b) recycling, (c)
composting, and (d) landfilling [11]. Among these, the most customary and cost-effective
dumping method is sanitary landfilling. The main reasons for such consideration can be
the uncontrolled expansion of cities, the ever-growing waste generation, and the persisting
problems in waste management [12,13].

The selection of a sanitarian waste location is a program that requires extensive
ground assessment processes in order to identify a reachable, feasible, and optimum
location for the landfill. This also needs to comply with the governmental rules and
regulations [14] and simultaneously incur the lowest environmental damage and least
public health threats, as well as being economically viable [15,16]. In recent decades,
numerous studies have been done on choosing a suitable location to establish a landfill
site. However, in these studies, the methods used and the spatial scale of the study
area are different. The integration of geographic information system (GIS) and multi-
criteria decision analysis (MCDA) proved highly advantageous to the decision-maker in
implementing decision analysis functions, such as ranking options for the allocation of
suitable areas for specific purposes [17–19]. In the following, we provide an overview of
various studies on on-site selection issues in the field of waste, with these studies specifically
focusing on the selection of the suitable site. Torabi-Kaveh et al. [20] combined the GIS
analysis with a fuzzy analytical hierarchy process (FAHP) to determine suitable sites for
landfill construction. Barakat et al. [2] combined the Boolean and analytic hierarchy process
(AHP) methods with a set of economic and environmental criteria to landfill site selection
in the city of Morocco. Ding and Shi [21] combined the AHP and entropy method for
landfill site selection in Shenzhen, China. They used environmental, economic, and social
criteria, such as distance to surface water, distance to airports, slopes, and others. Zabihi
et al. [22] developed a landfill site selection methodology based on the AHP-OWA method
using five criteria, namely elevation, maximum temperature, minimum temperature, slope
angle, and rainfall.

The number of studies aimed at evaluating location optimization as well as using
appropriate MCDA methods is not comprehensive. Even though there are studies available
that address the issue of selecting suitable landfill sites, these differ substantially from a
methodological point of view. Table 1 gives an overview of studies that utilized a GIS-based
MCDA approach for evaluating the suitability of areas for landfill development.

Based on the literature review, it was found that most studies did not consider the
urban expansion parameter. In general, the approach mentioned in the literature is as
follows: First, different criteria are specified, then pairwise comparisons are made using a
model and finally assigned to the weighted problem layers, and then with the algebraic
sum of the weights of the maps, the location suitability map for landfill is determined.
This final map is then classified into different classes according to suitability. Next, the
decision-maker chooses the best option from among the very suitable classes. There is no
study in the literature that considers the spatial and temporal dynamics of urban growth as
a component of municipal solid waste management. The choice of landfill sites in the city’s
physical expansion site causes many environmental and economic problems. Therefore, in
this study, in addition to the cases mentioned in the previous articles, urban growth over a
period of 30 years is considered as well as its prediction for the future.
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Table 1. Overview of landfill site selection studies.

References Study Area MCDA Method Criteria Weighting Advantages and Disadvantages of the
Method

Tayyebi et al. [23] Zanjan, Iran Dempster–Shafer Expert interviews

Advantages: uncertainty supported, no bias
in decision-making.

Disadvantages: time-consuming, hard to
convince decision-making.

Gorsevski et al. [24] Polog Region,
Macedonia AHP-OWA Pairwise comparison of

criteria

Advantages: flexible, intuitive and checks
inconsistencies, considers risk in

decision-making.
Disadvantages: uncertainty—not supported,

measurement error can cause significant
problems.

Torabi-Kaveh et al. [20] Iranshahr, Iran FAHP Based on the authors’
expertise

Advantages: similar to human reasoning,
high precision, based on the linguistic model.

Disadvantages: the lower speed and also
longer run time of system, lack of real-time

response, restricted number of usage of input
variables.

Mir et al. [25] Selangor, Malaysia TOPSIS and VIKOR
Direct assignments of criteria

weights based on the
common sense of the author

Advantages: ability to use real and
experimental data, works with fundamental

rankings and makes full use of allocated
information.

Disadvantages: since it uses Euclidian
distances, it does not differentiate between

negative and positive values, lacks
consideration of interactions among criteria.

Rahmat et al. [26] Behbahan, Iran AHP Pairwise comparison of
criteria

Advantages: it is adaptable, intuitive and
verifiable for inconsistencies, computationally
non-demanding, deals with both quantitative

and qualitative criteria.
Disadvantages: irregularities in the ranking,
additive aggregation is used, more pairwise
comparisons are needed, uncertainty—not

supported.

Barakat et al. [2] Béni Mellal-Khouribga
Region, Morocco AHP Pairwise comparison of

criteria

Advantages: it is adaptable, intuitive and
verifiable for inconsistencies, computationally
non-demanding, deals with both quantitative

and qualitative criteria.
Disadvantages: irregularities in the ranking,
additive aggregation is used, more pairwise
comparisons are needed, uncertainty—not

supported.

Ahmad et al. [27] Seberang Perai, Malaysia Fuzzy-OWA No explanation about who
assigns weights

Advantages: in addition to considering the
weight of the criteria, it also considers the

ordered weights, considers risk in
decision-making, prepares different scenarios

for decision-making.
Disadvantages: time-consuming, determining

the type of ordered weights is complicated.

Santhosh and Sivakumar
Babu [28] Bengaluru, India DRASTIC method and

AHP
Direct assignments of criteria

weights

Advantages: scalability, simplicity, absolute
efficiency cannot be measured.

Disadvantages: requires accurate inputs,
uncertainty not supported, time-consuming.

Aksoy and San [29] Antalya, Turkey AHP-WLC Pairwise comparison of
criteria

Advantages: scalability, simplicity.
Disadvantages: uncertainty not supported.

Feyzi et al. [30] Anzali, Iran FANP Pairwise comparison of
criteria

Advantages: uncertainty supported,
independence among elements is not required,

the prediction is accurate because priorities
are improved by feedback.

Disadvantages: time-consuming, hard to
convince decision-making.

Kamdar et al. [31] Songkhla, Thailand AHP Expert interviews

Advantages: it is adaptable, intuitive and
verifiable for inconsistencies, computationally
non-demanding, deals with both quantitative

and qualitative criteria.
Disadvantages: irregularities in the ranking,
additive aggregation is used, more pairwise
comparisons are needed, uncertainty—not

supported.

Rahimi et al. [32] Mahallat, Iran Fuzzy-BWM Based on the authors’
expertise

Advantages: only integers are used, making it
much easier to use, uncertainty supported,

requires fewer Pairwise comparisons.
Disadvantages: time-consuming, Large

problems can be demanding.
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2. Materials and Methods
2.1. Study Area

The selected study area is Mashhad city, which is located in the northeast of Iran
and in the center of the Khorasan Razavi Province, spreading between longitude 59◦26′

and 59◦44′E and latitude 36◦37′ to 36◦58′N (Figure 1). The solid waste of the Mashhad
metropolis urban consists of foods (76.5%), papers and cardboards (4.9%), plastics (6.7%),
glasses (1.7%), metals (2.2%) and others (8.0%). The city has a temperate climate and
is inclined cold and dry, with hot and dry weather in the summer and cold and humid
winters. The winds are mostly southeast to northwest. A 25 km buffer around the city
boundary was drawn so as to delineate the approximate extent of the study area.
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The traditional and non-sanitary landfilling in Mashhad has caused several environ-
mental threats, such as a leachate lake where methane gas is produced and spread in the 
air. The bad smell of this gas and many other unpleasant gases have spread to the whole 
area and have caused diseases associated with skin [33,34], respiratory [35,36] and cancer 
[34,37] among nearby residents. An example of the solid waste situation in Mashhad city 
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Figure 1. Location of the case study, (a) Khorasan Razavi Province in the northeast of Iran (raster format, Google Earth
Imagery), (b) elevation of the Khorasan Razavi Province (raster format, SRTM), and (c) Mashhad city (Raster format,
Landsat 8).

The prime inclusion criteria for the selection of this study area are twofold: (a) as
the second largest city of Iran with a population of more than 3.5 million, the Mashhad
metropolis receives an annual 20 million pilgrimage tourists with an average daily waste
production of 1400 to 1700 tons, (b) the city is a highly dynamic urban settlement, which
will expand even further due to its importance in terms of pilgrimage.

The traditional and non-sanitary landfilling in Mashhad has caused several environ-
mental threats, such as a leachate lake where methane gas is produced and spread in the air.
The bad smell of this gas and many other unpleasant gases have spread to the whole area
and have caused diseases associated with skin [33,34], respiratory [35,36] and cancer [34,37]
among nearby residents. An example of the solid waste situation in Mashhad city is shown
in Figure 2.
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Figure 2. An example of a waste landfill situation in Mashhad metropolis, (a) waste abandoned in
the natural, (b) bird’s accumulation in landfill sites, and (c) leachate from landfills.

2.2. Methodology and Data

In the site selection process, criteria are set in the first step. In the next step, the criteria
map and sub-criteria are prepared and entered into the GIS database. In this research,
12 criteria were used to select the appropriate landfill site. First, the restrictions, including
a 500 m buffer from a landslide, 3000 m buffer from airports, 1000 m buffer from roads,
1000 m buffer from rivers, 500 m buffer from settlements and 300 m buffer from fault,
were considered (the explanation of the reasons on which such restrictions are based are
given in Section 2.3). The criteria used in this study were divided into two main criteria of
economic and environmental [38]. The environmental criteria (leachate from the landfill
engender negative impacts on the environment) and economic criteria (due to financial
constraints) are important. These criteria were selected based on the systematic literature
review [20,26,29,39–44]. Fuzzy logic was used to model uncertainty. The AHP model was
used to weight the criteria. The weighted linear combination (WLC) model was used to
integrate the criteria and identify suitable locations for waste landfills. In addition, the
SVM method is used to classify the images, and the Markov chain is employed to predict
urban growth. The flowchart of the study is shown in Figure 3.
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Table 2 lists the data used in this study.

Table 2. The characteristics of raster and vector data used in the research.

Dataset Satellite (Sensor) Format Date Resolution
and Scale Source

Satellite images Landsat TM5 Raster 1990 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Satellite images Landsat ETM7 Raster 2000 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Satellite images Landsat TM5 Raster 2010 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Satellite images Landsat OLI8 Raster 2018 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Groundwater
depth - Excel, X, Y

Coordinates 2018 - https://www.wrm.i (accessed on 2
October 2020)

Rivers - Vector 2018 1:25,000 http://www.frw.org.ir (accessed on
2 October 2020)

Soil type - Vector 2018 1:50,000 http://www.frw.org.ir (accessed on
2 October 2020)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.wrm.i
http://www.frw.org.ir
http://www.frw.org.ir
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Table 2. Cont.

Dataset Satellite (Sensor) Format Date Resolution
and Scale Source

Geological faults - Vector 2018 1:25,000 http://www.gsi.ir/en (accessed on
2 October 2020)

Wind direction SRTM Raster 2018 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

NDVI Landsat OLI8 Raster 2018 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Landslide - Vector 2018 - http://www.frw.org.ir (accessed on
2 October 2020)

Airport - Vector 2018 - http://www.ncc.org.ir (accessed on
2 October 2020)

City and village - Vector 2018 - http://www.ncc.org.ir (accessed on
2 October 2020)

Slope SRTM Raster 2018 30 https://earthexplorer.usgs.gov/
(accessed on 2 October 2020)

Roads - Vector 2018 1:25,000 https://www.mrud.ir (accessed on
2 October 2020)

2.3. Identification of the Criteria

Choosing a suitable landfill depends on a complete understanding of the factors and
how they are selected. The factors selected in this study were based on expert opinion.
The selected locations should minimize not only economic, environmental, health and
social costs but also be concordant with existing government regulations [45]. As a result,
using the research background and expert opinion, 12 maps of input layers were created in
which the main criteria are classified into two categories of environmental and economic
criteria [2,46].

2.3.1. Environmental Criteria

Groundwater depth: a landfill should be built on land with underground water that
is deep enough for its quality to remain unaffected by leachates from the landfill [47,48].
The inverse distance weighting (IDW) method was utilized to prepare groundwater depth
maps. The basic assumption of the IDW interpolation method is that close values are more
involved in interpolation values than distant observations [49]. In this study, the shallow
groundwater areas are unsuitable, while deep groundwater areas are.

Distance from rivers: surface waters are important indicators for landfill location. A
suitable distance from surface waters must be reserved in order to prevent pollution caused
by the leachate [41]. Kontos et al. [50] recommend a minimum distance of 1000 m from the
water stream. In this study, the distance considered less than 1000 m as constraint areas.

Soil type: soil grain, which is a combination of sand, clay, and silt, is a crucial factor in
selecting the landfill location. The ratio of the three particles defines the permeability of the
soil. That is, the higher the percentage of sand in the soil, the higher its permeability. On
the contrary, an increase in the percentage of clay means a decrease in the permeability of
the soil. Moreover, soil with higher clay ingredients participates more in cation transport
and increases the probability of filtration phenomenon, which is due to the increased level
of colloid particles [46,51]. The highest weight was given to desert soils and the lowest
weight to the alluvial ones.

Distance from faults: landfills should be located far from faults and seismically active
areas. An adequate distance prevents the fusion of leachate into underground waters.

http://www.gsi.ir/en
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.frw.org.ir
http://www.ncc.org.ir
http://www.ncc.org.ir
https://earthexplorer.usgs.gov/
https://www.mrud.ir
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Being inattentive of the faults brings about the probability of leachate extension to a vast
area and triggers environmental and anthropogenic catastrophes [52].

Landslides: landslides mostly occur in mountainous landscapes with high precipi-
tation and alluvial lithology [53]. Considering the climatic and geographical conditions,
constructions in high slopes, and other hillside destabilizing factors, landslides have be-
come a major concern in the western part of the study area.

Distance from airports: one of the important reasons for choosing a landfill at a
suitable distance from the airport is that landfills are the center of many bird gatherings,
which can pose serious hazards when aircrafts land [54]. According to Kontos et al. [15],
the suitable distance from airports is considered to be at least 3 km. In this study, a distance
of 3 km is selected as the constraint area. Thus, the greater the distance is, the more suitable
the site.

Distance from city and village: landfills require being outside cities and far from
populated areas due to their negative impact on land value and future development of
residential areas. On the other hand, a landfill should be as close as possible to cities
and villages so as to cut the transportation costs and constrain the investigation domain.
According to Allen et al. [55], the distance should be at least 5 km from urban centers and
500 m from the suburban regions. In this study, a distance of 500 m from urban and village
locations is considered as the constraint area.

Wind direction: dwellings near landfills get highly affected by the stink of the landfills.
Thus, it is better to build a landfill in a place where the wind direction is not pointed at
dwellings [2]. In order to study the wind direction in the investigated region, the direction
map was developed using DEM of the region as recommended by Şener et al. [41]. The
efficiency of this model for mapping wind direction based on meteorological station data
has been confirmed. The main wind direction in the study area is southeast and east (lowest
value), and the least frequent winds are in west and northwest directions (highest value).

Normalized Difference Vegetation Index (NDVI): Due to the dangerous environmental
effects, landfills should not be located in vegetated areas (forests, agricultural lands and
rangelands) [56]. The NDVI index was used to extract vegetation.

NDVI is an index developed to describe vegetation using points of difference between
near-infrared (strongly reflected by plants) and red light (absorbed by plants) [57]. The
NDVI was derived images using Equation (1):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where, ρNIR and ρRed are the ground reflectance of near-infrared and red bands. The value
of the NDVI is −1 to 1. Values less than 0 indicate water, and values above 0 indicate bare
soil and vegetation. Higher values of the NDVI indicate greener vegetation [58,59].

2.3.2. Economic Criteria

Slope: From the economic point of view, the slope factor plays an important role since
higher slopes require high costs [38]. The slope also plays a key role in maintaining soil
water, the amount of runoff and potential erosion. Furthermore, it is not economically
efficient to construct waste sites in high-slope areas [60]. The SRTM images with a resolution
of 30 m were used to generate the slope map of the target area. In this study, the slope for
creating a landfill site is between 8 and 12%.

Distance from roads: According to international regulations, landfills should be situated
as far as possible from primary and secondary road networks [38,61]. On the other hand,
landfills should be available in all seasons and all weather conditions, have roads with
enough width, minimum traffic, and be ready in connection with expressways and possibly
with a railroad [41]. In this research, a distance of less than 1000 m was considered as the
constraint area.
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2.4. Spatial Analysis and AHP-WLC

Having specified the set of criteria for assessing landfills, each criterion should be
measured and represented as a GIS map layer in the database. Depending on the criteria
used, specific spatial analysis tools are used to produce the criteria map. The Euclidean
distance function is used to produce the criteria map related to the distance, such as distance
from roads. In addition, to generate groundwater depth maps, spatial interpolation based
on water resources management data is used [62]. Surface analysis functions based on
topography to produce slope and aspect are used. The fuzzification of criteria maps was
done with the fuzzy theory. The details of the fuzzy theory are in [45,63,64].

One of the most comprehensive MCDA methods is AHP [65], primarily recognized
for its potential in reformulating complicated real-world problems into hierarchical frame-
works, as well as its capacity for including both quantitative and qualitative criteria of the
subject problem [66]. AHP works by assigning the highest weight to the most relevant
layer, i.e., the layer with the highest impact on the objective. In other words, the measure
of weights assigned to each informational unit is a function of the maximum impact it has
inside the layer [67]. According to studies by Saaty and Vargas [68], a range is suggested
for the comparison of criteria with quantities between 1 and 9. Each digit within this range
represents the relative importance for the corresponding unit: 1 indicating similar (equal)
importance, 3 moderate importance, 5 strong importance, 7 very strong importance and 9
absolute importance. In addition, numbers 2, 4, 6 and 8 represent the intermediate values.

The MCDA method was used to combine the map and weight of the criteria obtained.
The WLC is located between the operator OR and the operator AND [69,70]. In the WLC
model, two components of the value of functions v(aik) and the weight of criteria (wk) are
used and calculated using Equation (2):

V(Ai) =
n

∑
k=1

wkv(aik) (2)

2.5. Simulation of Urban Growth

Given the importance of the physical growth of the city in determining the appropriate
location for the landfill in this study, (1) the SVM model was used to determine the built-up
extraction and physical growth of the city in different directions, and (2) the CA-Markov
model was used to estimate urban growth. In general, the choice of the number of directions
is related to the physical growth of an area. Further directions can be used for areas where
the physical growth of the city is heterogeneous. For example, to accurately investigate
urban growth changes in very dynamic and large cities, 8 or 16 directions can be used [71].
For smaller cities, fewer directions, such as 4, can be used. Studies, such as [72–74], have
used 8 directions to examine the spatial location of urban development in different areas.
Therefore, this study used 8 geographical directions.

2.6. The SVM Algorithm

In this research, the study area was categorized into two classes of built-up and non-
built-up, using the SVM method. Built-up areas include residential, while non-built-up
areas include bare lands and vegetation. The SVM method was used to extract urban
growth. The SVM classification is one of the supervised nonparametric classification
methods based on statistical learning theory [75]. It works on the assumption that there
is no information about how the dataset is distributed. The SVM finds a hyperplane
that separates the data set into a separate predefined class in a way that fits the training
examples [76]. This algorithm was successfully used in many fields [21,77].

Following the classification procedure, the classification accuracy test was performed.
Upon verification of the classification accuracy and significant confirmation of errors, the
land use map was extracted. The overall accuracy parameter was used to evaluate the
accuracy of the classification results. The overall accuracy is the average of the classification
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accuracy, which indicates the number of correctly classified pixels proportionate to the
total number of pixels.

2.7. Urban Growth Estimation

The Markov model is the process-based theory of forming Markov stochastic process
systems for prediction and is considered one of the prime methods of optimal control
theory [78]. Entries of this model include predicted interval, two raster maps (first and the
second year) and respective intervals (see for details Firozjaei et al. [57], Arsanjani et al. [79],
Sang et al. [80]). In this study, images from the years between 1990 and 2018 were used to
estimate urban growth.

The Markov model is a combination of automated cells and the Markov chain. In
the Markov chain model, although the transfer probabilities per user are very accurate,
there is no information on the location distribution of the land use [81]. Thus, the Markov
stochastic model lacks any spatial dependency information. For this reason, the CA model
is used to add a spatial attribute to the model [80,82].

2.8. Classification of the Achieved Suitable Map

The maximum and minimum values were used to classify the final landfill map.
Then, using the standard deviation and mean of the normalized map in accordance with
Table 3, the final map was classified into five categories, namely very unsuitable, unsuitable,
moderately suitable, suitable and very suitable.

Table 3. Classification of landfill map.

Suitable Class Class Range

Very unsuitable T ≤ Tmean − 1.5STD
Unsuitable Tmean − 1.5STD < T ≤ Tmean − STD
Moderate Tmean − STD < T ≤ Tmean + STD
Suitable Tmean + STD > T ≤ Tmean + 1.5STD

Very suitable T > Tmean + 1.5STD
Note: T = the value of WLC per pixel; Tmean = the average value of WLC in the area; STD = standard deviation of
WLC values in the area.

3. Results

The current study benefited from the inputs of an interdisciplinary team of 30 experts
from planning and environmental management and GIS engineering to weighting and
prioritizing metrics according to pairwise comparisons. The weighting of the criteria was
carried out using the Saaty method between 1 and 9 so that the relationship between weight
and priorities was based on environmental regulations and technical rules for landfills.
Then, a matrix weight was prepared, and the final weight of each criterion was calculated
(Table 4). Due to the high use of groundwater in agriculture and rural settlements, the
highest weight from the environmental criteria set was allocated to groundwater. In
addition, from two economic criteria, the distance from roads was the highest weighted,
as landfills should be in the vicinity of road networks, which leads to a reduction in
transportation costs.
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Table 4. Weight of criteria with fuzzy functions.

Criteria Weight CR Sub-Criteria Weight CR Fuzzy Function

Environmental 0.75 0 Groundwater depth 0.17 0.006 Linear—increasing
Distance from rivers 0.12 Linear—increasing

Soil texture 0.07 Linear—increasing
Distance from fault 0.03 Linear—increasing

Landslide 0.05 Linear—increasing
Distance from airport 0.08 Linear—increasing
Distance from village 0.14 Linear—increasing

Distance from city 0.13 Linear—increasing
Wind direction 0.1 Linear—increasing

NDVI 0.11 Linear—decreasing
Economic 0.25 Slope 0.38 0.033 Large and small

Distance from roads 0.62 Large and small

Note: CR = consistency ratio.

The results show that the consistency ratio for all criteria is less than 0.1. This demon-
strates the acceptability and consistency of the opinions of 30 experts. The environmental
and economic criteria were provided by using fuzzy functions in Table 4, and criteria maps
were created. Economic criteria, such as slope and distance from roads as well as environ-
mental criteria, including groundwater depth, distance from rivers, soil texture, distance
from the fault, landslide, distance from airports, distance from villages, distance from the
city, wind direction and NDVI. Figure 4 shows the normalized maps corresponding to each
of the environmental and economic criteria.

One of the steps in identifying suitable areas for the location of waste landfills and
removal of constraint areas in the final map is the combination of layers with a Boolean
overlay method. Areas that are suitable for waste disposal are assigned a value of 1, and
areas that are unsuitable are assigned a value of 0. Finally, the most important constraints
were selected using a set of questionnaires sent to urban managers, literature reviewers,
environmentalists, and economists. All restrictive layers in the GIS software were masked
using the intersect tool, and residual areas were defined as suitable sites. In addition, from
the entire study area, 63% are in the suitable class, and 37% are in the unsuitable class
(Figure 5).

Using the weight assigned to each criterion, the WLC method was used to calculate the
set of environmental and economic criteria. Figure 6 shows the final map for selecting the
waste landfill. The suitability map was classified into four classes, namely very unsuitable,
unsuitable, moderate, suitable and very suitable. In the study area, areas with a value of
0.8–1 were considered for the construction of landfill sites. The suitability map shows that
45% (141,576 ha) of the study area is unsuitable, 22% (68,912 ha) is suitable, and the other
33% (104,282 ha) has moderate potential for landfill sites.

The most suitable areas are found towards the northeast, southeast and northwest
of the study area. Due to the high level of groundwater in the area, there are numerous
marshes and rivers in the area that are suitable for drinking water in addition to being used
for the cultivable of the residential community.

The appropriate slope of between 8 and 12% is required to construct a landfill. In this
study, areas with a slope of less than 1% and above 5% were not considered for selecting
the suitable landfill site. Sites with a slope below 8% would have fewer construction
cost requirements as the volume of groundwater level in this area is high, the risk of
groundwater contamination increases. On the other hand, according to field surveys, areas
with a slope above 25% have a high level of underground water. In addition, suitable areas
are at a good distance from roads because proper access to landfills reduces transportation
and maintenance costs.
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After considering the economic and environmental criteria, the characteristics of the
locations selected are shown in Table 5. Based on Table 5, there are limitations to all selected
sites, so measures should be taken to mitigate adverse effects. Slope variations are between
6 and 20%, which indicates a suitable slope compared to other sites selected site 2. Site 2
and 3 in suitable locations due to the value of the NDVI because an NDVI value between
0 and 0.1 represents bare soil. Because the adequate distance from rivers is considered
2000 m, sites 1, 3 and 4 are within a reasonable distance from the rivers. In the study area,
all sites are within a suitable distance of landslides, faults, and rivers. The selected sites are
also more than 25 km from the airport.
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Table 5. Feature of selected sites.

Site 4 Site 3 Site 2 Site 1 Criteria

90–110 60–80 >130 >100 Groundwater depth (m)
6500 6000 2000 5000 Distance from rivers (m)

Alluvial Salty Latosol Desert Soil type
6000 8000 1500 3000 Distance from fault (m)
4500 42,000 12,000 8500 Landslide (m)

35,000 25,000 36,000 38,500 Distance from airport (m)
4000 9000 30,000 6500 Distance from city (m)
900 5000 1500 2000 Distance from village (m)

South North West Northwest Wind direction
0.2–0.3 0.003–0.04 0.0006–0.008 0.08–0.2 NDVI

<20 <9 <12 <6 Slope (%)
4000 1500 1500 4000 Distance from roads (m)

The overall accuracies were used to assess classification accuracy. The overall accu-
racies for 1990, 2000, 2010, and 2018 were, respectively, 89.5%, 92.6%, 92.2%, and 94.3%.
The study area experienced rapid urban growth during the period 1990–2018. A thorough
analysis of Landsat images exposes how the rate of built-up areas has increased from
10,241 ha to 15,244 ha from 1990 to 2000, respectively, corresponding to an increase of
48.85%. The urban growth continued reaching an area of 18,675 ha in 2010, corresponding
to an increase of 3431 ha, equivalent to 22.5%. For 2018, a massive increase in urban
areas occurred compared to previous years, with an increase of 8842 ha within 2010–2018,
summing up to 27,517 ha. The main reasons for this increase in urban growth in 2018 are
(i) the appropriate economic situation of this city, (ii) suitable conditions in terms of climate
and natural resources, (iii) location of tourists and religious attractions and (iv) being in
the path of the main communication roads that have turned it as a strategic area. The
images from 1990 and 2018 were used to predict the urban area of 2048. The urban area is
expected to reach 62,252 ha by 2048, which represents more than a 200% increase over the
next 30 years. It should be noted that this expansion will occur under the business-as-usual
scenario, i.e., in accordance with the change rate of the 2010–2018 period.

In order to select the most suitable site, the suitable candidate locations will be exam-
ined while considering the future urban expansion. For this purpose, the SVM classification
model was combined with the binary technique for the extraction of built-up of 1990, 2000,
2010, 2018, and 2048 as presented in Figure 7. The city center is considered the starting
point of the casted transects towards eight directions.

Using the spatial analysis of zonal statistics, the area of land constructed in different
geographical directions for 1990, 2000, 2010, 2018 and 2048 was calculated. Then, the trend
and rate of urban growth for different directions in the period from 1990–2018 years were
extracted and shown in Table 6.

The extent of urban growth in various directions is shown in Table 6. Within 1990–
2018, the greatest expansion occurred in the northwest direction. That is, the value reached
from 2288 hectares in 1990 to 11,430 hectares in 2018. This is equal to a 399.56% urban
expansion. That is followed by the second most area increment of 1866 hectares in the
western part. The south-west direction experienced the least expansion of built-up lands
during these years, which is most importantly due to the natural obstacles, including the
topography of the region. This direction has experienced an expansion of 122 hectares. For
the prediction period of 2018–2048, the greatest and smallest expansions are expected to
occur in the northwest and south-west directions, respectively.



Remote Sens. 2021, 13, 949 15 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 7. Urban growth in geographic directions, (a) 1990, (b) 2000, (c) 2010, (d) 2018, (e) 2048. 

Using the spatial analysis of zonal statistics, the area of land constructed in different 
geographical directions for 1990, 2000, 2010, 2018 and 2048 was calculated. Then, the trend 
and rate of urban growth for different directions in the period from 1990–2018 years were 
extracted and shown in Table 6. 

  

Figure 7. Urban growth in geographic directions, (a) 1990, (b) 2000, (c) 2010, (d) 2018, (e) 2048.



Remote Sens. 2021, 13, 949 16 of 22

Table 6. Area of urban growth in geographical directions (ha).

2048 2018 2010 2000 1990

4226.04 1744.92 1294.02 1285.11 825.84 E
6325.02 2469.78 1643.67 1197.09 1037.61 N
3507.75 2174.94 1764.54 1417.95 1216.44 NE
28,548 11,429.73 7176.96 5325.57 2288.25 NW
3137.04 2081.25 1603.53 1051.74 884.43 S
7412.49 2017.8 1674 1296.54 1055.88 SE
1355.13 765.45 676.26 656.01 643.86 SW
7320.78 4279.77 3352.5 3124.35 2413.62 W

Figure 8 shows the candidate sites and the urban expansion trend for various direc-
tions, which is calculated using spatial analysis and applying overlap principles for spatial
layers.
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According to Figure 8, the greatest urban growth has occurred in the northwest and
west directions. This is the reason sites 1 and 4 were removed from suitable locations
since they would be located within the upcoming urban areas of the study area and hence
avoiding great environmental and economic issues in the future. The south-west direction
will face the smallest level of urban growth; however, a natural obstacle, i.e., the Binalud
mountain range, will increase the construction costs, and the leach will contaminate surface
water during rainfalls. Therefore, sites 2 and 3 are chosen as the ultimate suitable locations
considering urban expansion and their high levels in all the criteria.

4. Discussion

Choosing a suitable waste site is one of the most important components in the waste
management process. Allocating an inadequate location can lead to economic inefficiency,
social and political conflicts, and environmental damage [4]. Waste management is closely
related to the dynamics of urban development. Urban growth affects the land demand for
landfills. In general, population growth leads to increased waste production. The disposal
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of this waste includes increased demand for land in most urban areas [1]. On the other
hand, the expansion of urban areas to the outside is gradually reducing the availability of
land for waste disposal. In this context, land scarcity is becoming a potential problem [83].
Previous studies to determine the location of landfills have not considered the impact
of urban physical growth in the future. Therefore, the purpose of this study is to select
suitable places for landfilling with emphasis on urban development for the future.

GIS is used as a powerful and integrated tool for storing, manipulating and analyzing
landfill criteria [31,32,84], and given that many criteria can have an impact on choosing
the suitable location, the use of MCDA methods acquisition can facilitate the selection of
the appropriate location by considering key criteria in the decision-making process [47,85].
Numerous studies have shown that GIS-based MCDA models are a powerful and flexi-
ble tool in determining suitable landfills. According to the experts and AHP model, the
criteria of groundwater depth and distance from roads were the most important among
the environmental and economic criteria, respectively. AHP is a common method among
decision-makers for MCDA, providing several advantages in the MCDA process [86]. The
method is simple with a structured hierarchical format, which allows for a transparent
selection process and provides the possibility to check the priority inconsistency. However,
several disadvantages of the AHP method were reported in the previous studies [87–90].
However, the incompatibility rate of less than 0.01 indicates the acceptability and consis-
tency of the opinions of 30 experts in this study [91]. Combining the criteria using the WLC
method showed that there are only four suitable areas for landfilling in the study area. The
CA model has been used to predict urban expansion. By integrating environmental models
with socio-economic ones, the CA model provides a dynamic simulation and modeling
framework [92]. In addition, the WLC method and CA model are conceptually more
accurate, complete, and clearer than conventional mathematical systems [93]. Based on the
current status and past information, the possible future for lands not built and untouched
areas around the city can be predicted (Arsanjani et al., 2013). By estimating the pattern
of urban growth and its distribution in space, using the CA model will lead to proper
planning for sustainable development and the absence of surprises in the face of possible
future events [94]. Previous studies have shown that the physical growth of built-up for
a city in the past and future is different in different geographical directions [72,95]. The
urban growth prediction for 2048 showed that the northeast and east directions will have
the most expansion. Therefore, out of the four selected options, two options were left out
because they will be on the path of urban expansion in the future because, in addition
to environmental problems, potentially having to relocate these places will have high
economic costs. In general, based on the findings of this study, the combination of GIS
and remote sensing can be necessary to select the optimal and appropriate locations. The
strategy proposed in this study is simple, comprehensive, integrated, flexible and scalable.
Due to the increase in waste production and its environmental importance, determining
suitable locations for waste disposal of metropolitan cities, such as Mashhad, is of great
importance worldwide. On the other hand, with the increase in population of different
cities of the world, the urban physical growth will accordingly increase. Due to the lack of
limitations in terms of data type and model used and the independence of the proposed
model to the geographical conditions, the proposed model can be suitable for determining
the optimal landfill locations in all cities of the world.

5. Conclusions

Due to rapid urban development in the developing world, creating landfills has
become more challenging as our allocation strategies are mainly based on the current
landscape circumstances, while they will change in the future. Hence, it is recommended
to build landfills away from future urban growth channels. The main contribution of this
research was to adapt the current practices with oversight to the future landscape patterns
using a dynamic case study of Mashhad over a 30-year timeframe to the future. This study
presented a methodical approach inspired by expert knowledge for doing so by coupling
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satellite images and GIS data and methods. Consequently, candidate locations suitable
for landfilling were determined, with about 5% of the study area being determined to be
highly suitable. Our analysis of future urban development from 2018 until 2048 reveals a
large expansion of Mashhad towards different directions in particular northwest and west.
This is due to the fact that the ratio of uncultivated land to agricultural land is greater in
these directions, and also, there are no natural obstacles in these directions. This resulted
in removing two candidate sites from the list. This indicates how unreliable our landfill
allocation for the study area could be if there was no consideration of the future. Our
results are sensitive to a number of factors, including (i) accuracy of classification model for
built-up extraction; (ii) performance of the CA-Markov model for urban growth prediction;
(iii) experts’ uncertainty in the weighting process; and (iv) performance of the MCDA
model; and (e) future regional plans.

Our findings, the presented methodology and utilized data can help stakeholders and
decision-makers in the area to gain better insights into the allocation of land and resources.
The practice of including expert knowledge was a useful experience to reflect their input
while setting up a decision support system for landfill site selection. As future directions,
consideration of public participatory approaches for receiving citizens’ opinion about such
activities is proposed. Fuzzy and OWA models can be used to model uncertainty and risk
to produce more accurate landfill maps. Furthermore, the use of neural network-based
models to predict the physical growth of the built-up can be useful in improving the
efficiency of the strategy proposed in this study to determine suitable landfill locations.
Implementing the proposed strategy for different cities around the world can be effective
in solving the problems and challenges associated with suitable landfills.
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62. Şener, Ş.; Sener, E.; Karagüzel, R. Solid waste disposal site selection with GIS and AHP methodology: A case study in Senirkent–
Uluborlu (Isparta) Basin, Turkey. Environ. Monit. Assess. 2011, 173, 533–554. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jenvman.2008.12.008
http://www.ncbi.nlm.nih.gov/pubmed/19375842
http://doi.org/10.1007/BF03325953
http://doi.org/10.1016/j.wasman.2010.05.024
http://doi.org/10.1007/s12517-013-1107-y
http://doi.org/10.1007/s12665-014-3635-5
http://doi.org/10.3390/su10040999
http://doi.org/10.1007/s12665-012-1836-3
http://doi.org/10.1007/s00267-011-9792-3
http://doi.org/10.3846/16486897.2015.1056741
http://doi.org/10.1007/s13201-014-0172-z
http://doi.org/10.1177/0734242X0302100310
http://doi.org/10.1016/j.wasman.2007.09.032
http://doi.org/10.4236/jgis.2011.34023
http://doi.org/10.1007/s00254-005-0075-2
http://doi.org/10.1007/s12665-013-2966-y
http://doi.org/10.1016/j.ecolind.2018.03.052
http://doi.org/10.3390/rs6054345
http://doi.org/10.1080/01431161.2020.1759841
http://doi.org/10.1016/S0304-3894(97)00116-7
http://doi.org/10.1007/s10661-010-1403-x
http://www.ncbi.nlm.nih.gov/pubmed/20213053


Remote Sens. 2021, 13, 949 21 of 22

63. Kahraman, C.; Cebi, S.; Onar, S.C.; Oztaysi, B. A novel trapezoidal intuitionistic fuzzy information axiom approach: An
application to multicriteria landfill site selection. Eng. Appl. Artif. Intell. 2018, 67, 157–172. [CrossRef]

64. Karasan, A.; Ilbahar, E.; Kahraman, C. A novel pythagorean fuzzy AHP and its application to landfill site selection problem. Soft
Comput. 2019, 23, 10953–10968. [CrossRef]

65. Saaty, T.L. The analytical hierarchy process, planning, priority. In Resource Allocation; RWS Publications: Pittsburgh, PA, USA,
1980.

66. Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [CrossRef]
67. Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [CrossRef]
68. Saaty, T.L.; Vargas, L.G. Prediction, Projection, and Forecasting: Applications of the Analytic Hierarchy Process in Economics, Finance,

Politics, Games, and Sports; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
69. Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability

analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [CrossRef]
70. Boloorani, A.D.; Kazemi, Y.; Sadeghi, A.; Shorabeh, S.N.; Argany, M. Identification of dust sources using long term satellite and

climatic data: A case study of Tigris and Euphrates basin. Atmos. Environ. 2020, 224, 117299. [CrossRef]
71. Dadras, M.; Shafri, H.Z.; Ahmad, N.; Pradhan, B.; Safarpour, S. Spatio-temporal analysis of urban growth from remote sensing

data in Bandar Abbas city, Iran. Egypt. J. Remote Sens. Space Sci. 2015, 18, 35–52. [CrossRef]
72. Firozjaei, M.K.; Sedighi, A.; Argany, M.; Jelokhani-Niaraki, M.; Arsanjani, J.J. A geographical direction-based approach for

capturing the local variation of urban expansion in the application of CA-Markov model. Cities 2019, 93, 120–135. [CrossRef]
73. Karimi Firuzjaei, M.; Kiavarz Moghadam, M.; Mijani, N.; Alavi Panah, S. Quantifying the degree-of-freedom, degree-of-sprawl

and degree-of-goodness of urban growth tehran and factors affecting it using remote sensing and statistical analyzes. J. Geomat.
Sci. Technol. 2018, 7, 89–107.

74. El-Magd, I.A.; Hasan, A.; El Sayed, A. A Century of Monitoring Urban Growth in Menofya Governorate, Egypt, Using Remote
Sensing and Geographic Information Analysis. J. Geogr. Inf. Syst. 2015, 7, 402. [CrossRef]

75. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011,
66, 247–259. [CrossRef]

76. Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth
Obs. Geoinf. 2009, 11, 352–359. [CrossRef]

77. Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; Plümer, L. Early detection and classification of plant diseases
with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [CrossRef]

78. Jiang, G.; Zhang, F.; Kong, X. Determining conversion direction of rural residential land consolidation in Beijing mountainous
areas. Trans. Chin. Soc. Agric. Eng. 2009, 25, 214–221.

79. Arsanjani, J.J.; Kainz, W.; Mousivand, A.J. Tracking dynamic land-use change using spatially explicit Markov Chain based on
cellular automata: The case of Tehran. Int. J. Image Data Fusion 2011, 2, 329–345. [CrossRef]

80. Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov
model. Math. Comput. Model. 2011, 54, 938–943. [CrossRef]

81. Walawender, J.P.; Szymanowski, M.; Hajto, M.J.; Bokwa, A. Land surface temperature patterns in the urban agglomeration of
Krakow (Poland) derived from Landsat-7/ETM+ data. Pure Appl. Geophys. 2014, 171, 913–940. [CrossRef]

82. Yang, X.; Zheng, X.-Q.; Lv, L.-N. A spatiotemporal model of land use change based on ant colony optimization, Markov chain
and cellular automata. Ecol. Model. 2012, 233, 11–19. [CrossRef]

83. Dace, E.; Bazbauers, G.; Berzina, A.; Davidsen, P.I. System dynamics model for analyzing effects of eco-design policy on packaging
waste management system. Resour. Conserv. Recycl. 2014, 87, 175–190. [CrossRef]

84. Hereher, M.E.; Al-Awadhi, T.; Mansour, S.A. Assessment of the optimized sanitary landfill sites in Muscat, Oman. Egypt. J. Remote
Sens. Space Sci. 2020, 23, 355–362. [CrossRef]

85. Eghtesadifard, M.; Afkhami, P.; Bazyar, A. An integrated approach to the selection of municipal solid waste landfills through GIS,
K-Means and multi-criteria decision analysis. Environ. Res. 2020, 185, 109348. [CrossRef] [PubMed]

86. Al-Aomar, R. A combined ahp-entropy method for deriving subjective and objective criteria weights. Int. J. Ind. Eng. Theory Appl.
Pr. 2010, 17, 12–24.

87. Belton, V.; Gear, T. On a short-coming of Saaty’s method of analytic hierarchies. Omega 1983, 11, 228–230. [CrossRef]
88. Dyer, J.S. Remarks on the analytic hierarchy process. Manag. Sci. 1990, 36, 249–258. [CrossRef]
89. Harker, P.T.; Vargas, L.G. The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Manag. Sci. 1987, 33, 1383–1403.

[CrossRef]
90. Triantaphyllou, E.; Mann, S.H. Using the analytic hierarchy process for decision making in engineering applications: Some

challenges. Int. J. Ind. Eng. Appl. Pract. 1995, 2, 35–44.
91. Shorabeh, S.N.; Varnaseri, A.; Firozjaei, M.K.; Nickravesh, F.; Samany, N.N. Spatial modeling of areas suitable for public libraries

construction by integration of GIS and multi-attribute decision making: Case study Tehran, Iran. Libr. Inf. Sci. Res. 2020, 42,
101017. [CrossRef]

92. Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios.
Sustainability 2018, 10, 3421. [CrossRef]

http://doi.org/10.1016/j.engappai.2017.09.009
http://doi.org/10.1007/s00500-018-3649-0
http://doi.org/10.1287/mnsc.32.7.841
http://doi.org/10.1504/IJSSCI.2008.017590
http://doi.org/10.1016/j.jag.2006.01.003
http://doi.org/10.1016/j.atmosenv.2020.117299
http://doi.org/10.1016/j.ejrs.2015.03.005
http://doi.org/10.1016/j.cities.2019.05.001
http://doi.org/10.4236/jgis.2015.74032
http://doi.org/10.1016/j.isprsjprs.2010.11.001
http://doi.org/10.1016/j.jag.2009.06.002
http://doi.org/10.1016/j.compag.2010.06.009
http://doi.org/10.1080/19479832.2011.605397
http://doi.org/10.1016/j.mcm.2010.11.019
http://doi.org/10.1007/s00024-013-0685-7
http://doi.org/10.1016/j.ecolmodel.2012.03.011
http://doi.org/10.1016/j.resconrec.2014.04.004
http://doi.org/10.1016/j.ejrs.2019.08.001
http://doi.org/10.1016/j.envres.2020.109348
http://www.ncbi.nlm.nih.gov/pubmed/32278923
http://doi.org/10.1016/0305-0483(83)90047-6
http://doi.org/10.1287/mnsc.36.3.249
http://doi.org/10.1287/mnsc.33.11.1383
http://doi.org/10.1016/j.lisr.2020.101017
http://doi.org/10.3390/su10103421


Remote Sens. 2021, 13, 949 22 of 22

93. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating
multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

94. Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J.
Environ. Manag. 2018, 206, 10–19. [CrossRef]

95. Karimi Firozjaei, M.; Sedighi, A.; Jelokhani-Niaraki, M. An urban growth simulation model based on integration of local weights
and decision risk values. Trans. GIS 2020, 24, 1695–1721. [CrossRef]

http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1016/j.jenvman.2017.10.012
http://doi.org/10.1111/tgis.12668

	Introduction 
	Materials and Methods 
	Study Area 
	Methodology and Data 
	Identification of the Criteria 
	Environmental Criteria 
	Economic Criteria 

	Spatial Analysis and AHP-WLC 
	Simulation of Urban Growth 
	The SVM Algorithm 
	Urban Growth Estimation 
	Classification of the Achieved Suitable Map 

	Results 
	Discussion 
	Conclusions 
	References

