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Abstract: The retrieval of precipitation (snowfall and rainfall) from satellite sensors on a global basis
is essential in aiding our knowledge and understanding of the Earth System and for many societal
applications. Measurements from surface-based instruments are essentially limited to populated
regions, necessitating the use of satellite-based observations to provide estimates of precipitation
across the whole of the Earth’s surface. The temporal and spatial variability of precipitation requires
adequate sampling, especially at finer resolutions. It is, therefore, necessary to exploit all available
data from precipitation-capable satellites to ensure the proper representation of precipitation. To date,
the estimation of precipitation using passive microwave observations has been largely concentrated
upon the conically scanning imaging instruments, with relatively few techniques exploiting the
observations made from the cross-track sounders. This paper describes the development of the
Precipitation Retrieval and Profiling Scheme (PRPS) to retrieve precipitation from cross-track sensors,
together with its performance against surface radar data and other satellite precipitation retrievals.

Keywords: global precipitation measurement; precipitation retrievals; rainfall; snowfall; validation

1. Introduction

Precipitation (rainfall and snowfall) is a crucial element of the global energy and
water cycle through the deposition of water from the atmosphere to the Earth’s surface [1].
Precipitation also controls the availability of fresh water that is so important to our economic
wellbeing and impacting the environment around us through events such as droughts or
floods [2]. Despite the importance of precipitation, measurements made by conventional
means, such as by rain (and snow) gauges and radar, are generally limited to the more
populous regions [3]. Gauges, although essentially providing the de facto measure of
precipitation, suffer from systematic biases (e.g., [4]) and may not be representative of
the area surrounding the gauge location (see [5,6]). The spatial representation is better
addressed in part by using surface-based weather radar, although the radar backscatter to
rain-rate (or snow intensity) conversion is not precise, while globally the radar coverage is
similar to that of the gauge networks. Most importantly, precipitation varies greatly in time
and space, particularly at fine resolutions which are so important to studies of the physical
processes associated with precipitation both in the atmosphere and at the surface. Many
applications require timely, frequent, and regular measurement of precipitation to capture
these variations. For example, the response of a drainage basin generally dictates the
temporal sampling of the precipitation necessary to model floods correctly [7], and changes
in the duration and intensity of precipitation events and the response of a catchment in a
changing climate [8].

The main advantage of satellite-based observations is that they can be used for global
precipitation estimation, covering both land and sea, although with differing capabilities.
Visible (Vis) and/or Infrared (IR) observations provide frequent and regular observations,
particular from geostationary (GEO)-based sensors. While imagery of cloud tops (which
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allow measures of reflectivity, cloud top characteristics and cloud top temperature) are
useful, the precipitation falling from the base of the cloud must be inferred from these
cloud top properties. Consequently, the mainstay of current precipitation observations
is based upon passive microwave (PMW) sensors that are sensitive to the hydrometeor
particles within and falling from the base of the clouds (see [9]).

A range of PMW instruments have been developed and operated over the last 50 years,
the characteristics of which are described in Aonashi and Ferraro [10]. These sensors can
be categorised by their observational characteristics and/or scan type. Sensors exploiting
the window channels are generally termed “imagers”, while those utilizing absorption
bands are termed “sounders”. In the absence of hydrometeors the window channels allow
a relatively unrestricted observation of the Earth’s surface, while the latter exploit the
differences in the absorption through the atmosphere to extract the vertical distribution of
key parameters. Recent satellites carry sensors with both imaging and sounding capabilities
to exploit the synergies between the different channels. Sensors can be further categorised
by their scan pattern with conically scanning sensors providing observations scribing
a cone-shape pattern (allowing consistent Earth incidence angles; EIA) and cross-track
sensors whose scan lines are perpendicular to the orbital path of the satellite.

Although cross-track sensors have a relatively long history, their use for the retrieval of
precipitation has been secondary to the conically scanning sensors. Challenges relating to
their full utilisation include observations that are made at higher frequencies which are not
directly related to liquid precipitation at the surface, and their scan geometry which results
in varying EIA, footprint size and atmospheric path length at each scan position. The
footprint resolution, although ranging from 20 × 17 km at nadir to 67 × 28 km at edge of
scan for the Microwave Humidity Sounder (MHS) instrument [11], is comparable with that
of some imaging sensors (e.g., Special Sensor Microwave Imager Sounder; SSMIS). While
the channel selection of sounders is designed for sounding atmospheric profiles of water
vapour and temperature, scattering caused by precipitation-sized hydrometeors provides
a means to generate precipitation estimates. Crucially, the inclusion of observations from
cross-track sensors into any global precipitation measurement scheme is essential to provide
the necessary temporal sampling to capture the variability of precipitation [12]. The Global
Precipitation Measurement (GPM) mission [1] includes cross-track sensors as an integral
part of the intercalibrated observations from GPM constellation [13]. The current cross-track
sensors contributing to the GPM constellation include five MHS sensors [14], two Advanced
Technology Microwave Sounder (ATMS) sensors [15], and the Sondeur Atmospherique du
Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) sensor [16]: the details of these
instruments are outlined in Table 1. Thus, precipitation retrievals from cross-track sensors
affects the quality of merged global precipitation rate [17].

Table 1. Current operational cross-track sounding instruments with precipitation-retrieval capability.
Numbers in brackets indicate number of channels at that specific centre frequency, while V and/or H
indicates vertical and/or horizontal polarization.

Sensor Satellites Dates Orbit Channels Resolution 1

MHS

NOAA-18
NOAA-19
MetOp-A
MetOp-B
MetOp-C

2005–present
2005–present
2005–present
2005–present
2005–present

SunSync

89V
157V

183.31H(2)
190.31V

16 × 16 km

SAPHIR Megha-Tropiques 2011–present NonSunSync 183.31H(6) 10 × 10 km

ATMS S-NPP
NOAA-20

2011–present
2011–present SunSync

23.8V, 31.4V,
50.3–57.3H,

87–91V,
164–167H,
183.31H(5)

75 × 75 km
32 × 32 km
16 × 16 km

1 Resolution at nadir.
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This paper describes the development of a simple, flexible, yet robust algorithm,
called the Precipitation Retrieval and Profiling Scheme (PRPS), to retrieve precipitation
from cross-track sensors, together with its performance against surface radar data and
existing satellite precipitation products.

2. Precipitation Retrievals

Alongside the deployment of new PMW sensors has been the development of schemes
to retrieve precipitation from their observations. Initial schemes used fundamental char-
acteristics of radiation emitted from raindrops over the oceans to convert the observed
brightness temperatures (Tbs) into rain rates. Over land, due to higher background emis-
sivities, higher frequency channels had to be utilised such as the 89 GHz that first flew on
the Special Sensor Microwave Imager (SSMI) from 1987 (see [9]), exploiting the scattering
signal caused by precipitation-sized ice particles. Multi-channel retrieval schemes exploit
the emission and scattering responses at different frequencies to improve the retrievals,
although separate techniques are often required for ocean vs. land retrievals [18]. Radiative
transfer modelling (RTM), used to understand the basis of the observed Tbs and improve
precipitation retrievals, ranges from relatively simple modelling of Tb-rainrate relation-
ships (see [19]) to inverse RTM to elucidate precipitation associated with the observed
signal [20], although many RTM techniques are computationally expensive. To overcome
this, many retrieval techniques use a priori databases that are populated with, for example,
Tbs from a set of modelled atmospheric profiles (e.g., [21–23]). These database entries are
then referenced to best match the observation, providing not only the surface precipita-
tion, but also other modelled parameters used in that databases entry. While the original
Goddard Profiling (GPROF) scheme (e.g., [24]) envisaged a RTM database, it was clear that
the modelled Tbs required adjustments such that the current GPROF database relies upon
the combined Dual-frequency Precipitation Radar (DPR)-GPM Microwave Imager (GMI)
product to ensure consistency. A similar approach is employed by the retrieval schemes
developed by the EUMETSAT Satellite Applications Facility on Support to Operational (H-
SAF) for retrievals from both the conically scanning and cross-track scanning radiometers
(see [11,25,26]).

The retrieval of precipitation from observations made by PMW sounding instruments
was addressed by Surussavadee and Satelin [27] who developed a Mesoscale Model 5
(MM5) model-trained neural network retrieval scheme for Advanced Microwave Sounding
Unit (AMSU) observations. The scheme generates a number of atmospheric parameters,
including surface precipitation at 15 km resolution across all scan positions. Validation
of the products (see [28]) showed good agreement between the satellite and MM5-based
retrievals, although problems occurred over Polar or high-altitude regions where column
water vapour is minimal. Munchak and Skofronick-Jackson [29] investigated the abil-
ity of cross-track sounding instrument sensors to observe and retrieve precipitation by
comparing Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), GMI
and AMSUA/B data against radar data over the US. Over the oceans the GMI and TMI
performed best due to the availability of the emission-based channels, while the AMSU
instruments performed well over land especially when constrained by model information.
The higher frequencies of the sounding instruments also respond to the shape and size
distribution of the snowflakes [30], although the modelling of the scattering signal associ-
ated with complex ice particles these at high frequencies is somewhat problematic [31,32].
Laviola and Levizzani [33] developed the 183-Water-vapour Strong Lines (183-WSL) tech-
nique to exploit the observations from the AMSU-B and MHS sensors. Although the
constants within the 183-WSL retrieval scheme were critical for the low rain rates and at
high latitudes, validation against surface radar over western Europe was encouraging [34].

More recently, the inclusion of the observations from cross-track sensors in the GPM
constellation has been crucial to achieve the necessary temporal sampling. Consequently,
the GPROF scheme has been adapted to include these observations. The first GPROF
cross-track scheme was developed by Kidd et al. [23] using model-derived database entries
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to retrieve precipitation from MHS observations. However, in order to better integrate the
cross-track observations later versions of GPROF use the DPR-GMI combined observational
database, extended to the MHS and ATMS sensors through modelling the different footprint
resolutions and frequencies. The cross-track GPROF retrievals use databases segregated by
the total precipitable water content (TPW) and the 2m air temperature (T2m) (see [35]), as
well as by surface type to mitigate problems arising from the under-constrained nature of
the retrieval. The current GPROF scheme was not extended to include observations from
the (183 GHz-only) SAPHIR instrument whose current operational retrievals are generated
by the PRPS-SAPHIR scheme using a purely observational database but constrained by
TPW and T2m.

The EUMETSAT H-SAF has developed a number of precipitation products over the last
few years (see [11,36]) based upon the Cloud Dynamics and Radiation Database (CDRD).
To ensure consistency, both imager and sounders use the same CDRD physics although
conically scanning sensors use a Bayesian retrieval scheme, while cross-track retrievals use
the Passive Microwave Neural Network Precipitation Retrieval (PNPR) scheme (see [25]).
A more recent version of the PNPR scheme has extended the neural network approach to
the conically scanning instruments [26].

The current operational GPROF retrieval scheme, now used for both conically scanning
and cross-track sensors, has evolved over the last 20-plus years to process observations
from a range of different sensors and incorporate model information to help constrain
the retrievals. However, it has a number of disadvantages. First, model information is
used to constrain the retrievals by ensuring the correct database entries are assessed at
the retrieval stage (see [35]), as well as making the scheme more computationally efficient.
However, model data are not available to every developer who might want to test and
develop the retrieval technique further. Furthermore, the retrieval scheme becomes model-
dependent thus making it less useful for the validation of the model themselves. Second, the
GPROF scheme relies upon a single common database generated from coincident combined
DPR-GMI observations, from which the databases for individual sensors are generated
through modelling the characteristics of the different sensor footprints and frequencies.
The "transfer" of information from the single database to the sensor database relies on a
number of assumptions and consequently is not perfect, particularly when dealing with
the high frequency channels which are often difficult to correctly model the radiation
scattering due to the diversity of particle sizes and shapes. Third, the GPROF scheme is
computationally intensive, despite having a well thought out strategy for constraining the
retrievals. The database is built from over 400 million GMI-DPR observations, which are
then grouped into entries with similar characteristics to improve the retrieval efficiency.
Finally, the database is built up over a limited period: For GPROF 2017, this was September
2014 through August 2015, during which time it is assumed that the overall characteristics
of the database are representative of the periods outside this range. Nevertheless, the
GPROF scheme may be considered one of the state-of-the-art schemes against which other
retrieval schemes may be compared.

3. The Precipitation Retrieval and Profiling Scheme (PRPS)

The PRPS was developed initially for the cross-track sensors using model-rainrate
relationships to complement and contribute to the GPROF scheme (see [23]) prior to the
launch of the GPM Core Observatory. Results from this early model-based scheme were
encouraging, although it was clear that there were differences between modelled and
observed Tbs and their derived rain rates. Since the PRPS was developed very much as a
test bed to evaluate new approaches it was also developed to more flexible than the GPROF
scheme. In particular, the PRPS was built upon three main criteria:

(i) Avoid the use of dynamic ancillary data, such a model information, snow maps or
surface emissivity;

(ii) Use observational databases to better represent the characteristics of each sensor;
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(iii) Be computationally efficient to allow testing of, for example, different channel
combinations.

The mechanics of the PRPS is similar to the GPROF retrieval scheme, with the process-
ing effectively split into two: the first step is the generation of the a priori databases that
will be used at the retrieval stage, and the second step is the actual retrieval itself where the
satellite observations are compared against the a priori database to provide the estimate of
precipitation.

3.1. The PRPS Database

The key element of the PRPS (and GPROF) is the a priori database against which the
observed Tbs are compared and the associated DPR (or combined) rain intensity retrieved.
Crucially, the database needs to be representative of the range of precipitation regimes that
the sensor will observe. While the GPROF scheme utilises a common GMI-DPR database
which is then modelled for the specifics of the other sensors in the GPM constellation,
the PRPS generates separate databases based upon matched observations of each sensor
and the DPR. This approach has a significant advantage of representing the characteristics
and nuances of each sensor type and incorporating the subtle differences between each
individual sensor.

An additional feature of the PRPS is that the database is based on a standard 16 × 16 km
footprint, derived from 3 × 3 DPR footprints which corresponds to the size of the MHS
and ATMS (high resolution) footprints at nadir. Although the resolutions of the cross-
track sensors deteriorate towards the edge of swath, the same 16 × 16 km resolution is
maintained in the retrieval (similar to the approach of Surussavadee and Staelin [28,29]).
While this is not physically correct, the linkage between the 3 × 3 DPR footprints and the
associated resolution at a particular scan position is maintained. Moreover, a consistent
resolution is more beneficial to the end user than a constantly changing resolution since it
maintains the statistical characteristics of the retrieved precipitation, such as frequency of
precipitation occurrence.

To generate the a priori database the orbital tracks of the DPR and MHS/ATMS are
analysed to find the latitude and longitude of the intersections of their orbits to within
5 min of each other (Figure 1). Note that the actual scan geolocations are used, rather than
sub-satellite positions to ensure more precise matchups. This stage outputs the filenames
of the MHS/ATMS Level 1C (L1C) data and the DPR Level 2 (L2A) data, together with
the date, time, latitude, longitude and distance and bearing of the crossing location. This
information is then used to generate the full a priori database from which the operational
database will be generated. Data from the following products are included in the full
database: (i) L1C MHS/ATMS sensor data, (ii) L1C GMI sensor data, (iii) L2A MHS/ATMS
GPROF retrieval, (iv) L2A GMI GPROF retrieval and (v) L2A DPR retrieval. Note that the
GMI and GPROF data are only included for comparison and further scientific analysis and
is omitted from the operational database. Each of these data product fovs are mapped to a
5 km equal area projection within ±3000 km of the orbital crossing location, as shown in
Figure 2. The mapping to 5 km ensures that only closely matched footprints are considered
in the database. Ancillary data, such as time, geolocation, scan line/position are also
included in the data-cube for further analysis and traceability if required. The data-cube is
then processed to extract the locations which have coincident footprints across all of the
sensor channels and the DPR (the mapped DPR value representing the 3 × 3 mean DPR
footprint). Note that since the lower ATMS channels have a lower resolution and slightly
different geolocation, they are replicated in adjacent grid boxes to ensure matches with the
higher-resolution channels. Table 2 lists the number of MHS/ATMS orbital crossings with
the DPR, while Table 3 shows the number of matched MHS/ATMS-DPR footprints by year
from 2014 through 2020.



Remote Sens. 2021, 13, 947 6 of 14

Figure 1. Global distribution of the orbital crossing locations between the MHS and the DPR sensors
for one year, 2016. The different colours represent the four MHS sensors on MetOp-A (red), MetOp-B
(green) NOAA-18 (blue) and NOAA-19 (yellow). Note the latitudinal limit imposed by the coverage
of the DPR sensor.

Figure 2. Schematic of the datacube generated for each co-incident DPR-sensor orbital crossing. The
DPR and the sensor data are mapped onto an equal-area projection centred on the crossing point of
the sensors with a resolution of 5 km.

Table 2. Number of DPR-MHS/ATMS overpass crossings within 300s of each other by year.

Year MetOp-A MetOp-B MetOp-C NOAA-18 NOAA-19 NPP NOAA-20

2014 826 1031 0 1027 1032 1028 0

2015 1333 1333 0 1340 1320 1341 0

2016 1311 1326 0 1319 1326 1347 0

2017 1326 1342 0 1316 1301 1328 111

2018 1320 1319 0 1042 1320 1327 1324

2019 1083 1145 672 0 1107 1323 1328

2020 0 1289 1266 0 1300 1302 1295
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Table 3. Number of DPR-MHS/ATMS matched footprints obtained from the coincident overpasses
by year.

Year MetOp-A MetOp-B MetOp-C NOAA-18 NOAA-19 NPP NOAA-20

2014 1,207,022 1,515,746 0 1,505,917 1,509,139 1,440,487 0

2015 1,927,395 1,907,666 0 1,918,439 1,914,316 1,839,842 0

2016 1,965,687 2,000,644 0 1,955,691 1,938,503 1,869,282 0

2017 1,934,333 1,952,317 0 1,903,839 1,878,869 1,875,394 133,677

2018 1,987,148 1,979,471 0 1,556,543 1,929,831 1,825,881 1,832,296

2019 1,548,812 1,626,948 992,100 0 1,665,005 1,904,014 1,908,076

2020 0 1,862,960 1,830,529 0 1,843,978 1,780,979 1,773,997

The output of the datacube for each orbital-match is stored as a text file for ease of read-
ing and checking, and contains a header consisting of the five input filenames followed by
the crossing lat/lon and the scale used for the mapping. Following the header each line of
text consists of information specific to each sensor, such as the date/time, geolocation, scan
position, Tbs for each channel for the L1C data, or the rain retrieval/TPW/T2m/surface
type for the L2A data. These data files provide more comprehensive data to enable further
analysis, or troubleshooting, of required, and are the basis of the a priori databases that are
used in the retrieval scheme.

The full database is then processed and indexed ready for use in the retrieval scheme.
To enable the operational database to be loaded into the computer memory (for processing
efficiency) only data pertinent to the retrieval process are extracted for inclusion. The key
variables are the L1C Tbs, the associated DPR-derived rain rate, scan line/position and
the geolocation. To further increase the efficiency of the retrieval, an indexing scheme is
used to ensure only the database Tbs close to the observed Tbs are searched. The index is
generated first by selecting the most diverse channel combination: in the case of the MHS
these are the 150 and 183 ± 7 GHz channels, while for the ATMS 31.4 and 183 ± 7 GHz
channels are used. Note that the precise channel selection is not necessarily critical since it
only provides a first guess to narrow the initial search. The database is then sorted by the
Tbs of these two channels so that at the retrieval stage the index provides a start and end
location of the relevant database entries.

Initial studies showed that a large number of database entries is most important in the
extreme precipitation situations, but there is essentially little difference between 15M or
30M database entries as long as the entries are representative of the global precipitation
systems. Consequently, no fixed size of the databases is currently implemented, but rather
the use of all available data with careful quality control screening as necessary.

3.2. PRPS Retrieval Methodology

The basic retrieval methodology of the PRPS, like GPROF, is simple: compare the set of
observed Tbs with those in the a priori database and select the best match(es). However, the
way the comparisons are carried out differ greatly. The GPROF scheme first only considers
database entries that match or are close to the values of TPW and T2m as determined
by the ancillary model data, and then uses a Bayesian scheme to weight the database
entries. Kidd et al. [37] explored different schemes to find the closest database-observation
matches, including distance-weighted, Gaussian-weighted and means. Subtle differences
were found between the different approaches with no single technique being significantly
better than any other.

One of the main challenges of any cross-track retrieval scheme is caused by the cross-
track scan pattern that causes variations in EIA, atmospheric path length and footprint
size. While the effects of this may be modelled and accounted for within the retrieval
scheme, the PRPS scheme takes a simpler approach. Each of the database entries includes
the scan position of the original sensor-DPR matchup, therefore only like-scan positions are
considered when comparing the observed Tbs with the database Tbs. To avoid limiting the
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number of available data entries a scan position range is calculated over which nearby scan
positions may also be included. This range is large at the centre of scan where differences
between neighbouring scan positions are small and become more restricted towards the end
of scan where the differences between adjacent scan positions are greater. To ensure that
sufficient database entries per retrieval are available a Tb search parameter is also generated
to find a minimum of 10,000 entries within ±25K of the index Tbs. This criterion ensures
that where data entries are plentiful (e.g., non-raining values), the search radius is kept
small, while in data sparse regions a larger search radius help to ensure a representative
number of data entries for the retrieval.

The PRPS calculates the mean of the six closest database entries which was found
to be a good compromise between speed and retrieval accuracy [37]. The selection of a
number of closest database entries also allows measures of fit between the database and
observation Tbs and of the retrieval variability amongst the selected entries. The current
scheme outputs the retrieved rain rate, fit and variability based upon the mean of the
six database entries, together with the most likely precipitation based upon the closest
database entry to the observed Tbs. It should be noted that since the distribution of the
rain rates are heavily skewed towards zero this is reflected in any a priori database, and
consequently any scheme that combines multiple database entries will underestimate the
precipitation intensity in the retrieval.

4. Results

A comparison of the PRPS retrievals against surface reference data from the UKMO
European radar composite data is described here. The PRPS retrievals are based upon
the methodology described above with the PRPS output providing the geolocation and
retrieved precipitation information at a nominal resolution of 16 × 16 km. The surface
radar data are available every 15 minutes at a resolution of 5 × 5 km and is therefore
averaged to 15 × 15 km by a simple 3 × 3 area moving average to match that of the PRPS
retrievals. These retrievals are mapped to the same (Polar Stereographic) projection as the
radar data for each overpass and coincident retrieval/radar values are used in subsequent
statistical analysis.

A qualitative comparison of the retrievals is shown in Figure 3 with precipitation
estimates from the surface radar network together with retrievals from the GPROF and
H-SAF PNPR schemes. This case study, using MHS observations from the METOP-A
satellite on 13 September 2015 at 20:34 UTC shows a broad area of precipitation over
southern France and smaller regions of precipitation over the southern North Sea and
western Ireland, as well as a number of isolated precipitation features. The results from the
three MHS retrievals are broadly similar to the radar composite, although it can be noted
that they vary in intensity and extent. The GPROF retrievals appear to be most similar
to the surface radar, although the spatial variability of the GPROF rainfall is somewhat
smoother than that of the radar. The H-SAF PNPR product, while identifying the main
regions of precipitation, does not identify the small isolated cells, and produces more light
precipitation (0.25–0.5 mm/h). The PRPS retrievals appear slightly noisier than the surface
radar, although many of the small precipitation features are captured by this scheme.

A quantitative assessment of the retrievals for this case study are shown in Table 4
using four basic statistical and three descriptive measures. It can be seen that the GPROF
technique performs best across the statistical scores, followed by the PRPS and then the H-
SAF retrievals. For this overpass the (retrieval/reference) ratios are less than one, indicating
an underestimation with respect to the surface radar, particularly for the H-SAF technique,
while the correlations are generally good. The PRPS generates a mean rain rate closest to
the surface radar data (0.43 vs. 0.47 mm/h), although GPROF is closest for the conditional
rain rate and the H-SAF technique for the maximum rain rate.
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Figure 3. Comparison of the surface radar precipitation with retrievals from the MetOp-A MHS
observations at 20:34 UTC on 13 September 2015 using GPROF (top right), H-SAF (bottom left) and
the PRPS (bottom right).

Table 4. Statistical comparison of the MetOp-A MHS retrievals at 20:34 UTC on 13 September 2015.

Statistic Radar GPROF H-SAF PRPS

Bias - −0.02 −0.12 −0.04

Ratio - 0.944 0.728 0.913

RMSE - 0.955 1.144 1.500

Correlation - 0.739 0.585 0.632

Mean rainrate 0.47 0.41 0.31 0.43

Conditional RR 1.21 1.27 1.47 1.58

Maximum RR 16.56 24.46 11.45 41.01

A more comprehensive set of statistical results are shown in Table 5 for the MHS
and Table 6 for the ATMS retrievals. To remove issues related to statistical sampling on a
case-by-case basis, all the instantaneous retrievals and associated surface data for an entire
month and analysed together. For the MHS retrievals, the GPROF technique performs
better in terms of the correlation score than the PRPS technique, although the results are
more mixed for the ratio. This graphically illustrated in Figure 4 which also compares
the statistics of conditional rain rate (both ≥ 0.2 mm/h), and thresholded retrievals. Both
schemes show significant seasonal variations, with low ratio and correlation scores in the
colder seasons: this variation is typical of most PMW retrieval schemes. The results for
the ATMS retrievals (Table 6 and Figure 5) show that the GPROF and the PRPS scheme
are closer in terms of correlation, but more varied in terms of their ratio. Interestingly, the
correlation scores for the GPROF-ATMS are generally lower than those of the GPROF-MHS
(0.492–0.606 vs. 0.483–0.667, respectively) and with a small seasonal variation, while the
PRPS-MHS scores are consistent (see Tables 5 and 6 below).
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Table 5. Statistics of instantaneous GPROF and PRPS retrievals for the MetOp-A MHS sensor by
month for 2015 over Western Europe.

GPROF PRPS

Year-Month Bias Ratio RMSE CC Bias Ratio RMSE CC

2015-01 −0.09 0.425 0.472 0.499 −0.08 0.509 0.521 0.426

2015-02 −0.05 0.483 0.358 0.528 −0.05 0.553 0.416 0.428

2015-03 −0.05 0.498 0.372 0.483 −0.04 0.595 0.402 0.421

2015-04 −0.03 0.523 0.291 0.587 −0.03 0.612 0.325 0.504

2015-05 −0.04 0.624 0.386 0.562 −0.04 0.666 0.429 0.500

2015-06 −0.01 0.868 0.377 0.620 −0.01 0.800 0.489 0.520

2015-07 −0.02 0.808 0.445 0.607 −0.02 0.782 0.493 0.571

2015-08 0.00 0.967 0.555 0.632 −0.02 0.872 0.680 0.551

2015-09 −0.02 0.796 0.400 0.667 −0.02 0.735 0.488 0.566

2015-10 −0.02 0.783 0.379 0.619 −0.02 0.716 0.422 0.545

2015-11 −0.06 0.604 0.442 0.528 −0.06 0.578 0.492 0.449

2015-12 −0.06 0.574 0.479 0.563 −0.07 0.540 0.513 0.499

Table 6. Statistics of instantaneous GPROF and PRPS retrievals for the NPP-ATMS sensor by month
for 2015 over western Europe.

GPROF PRPS

Year-Month Bias Ratio RMSE CC Bias Ratio RMSE CC

2015-01 −0.09 0.415 0.472 0.506 −0.09 0.434 0.491 0.519

2015-02 −0.06 0.434 0.352 0.492 −0.05 0.454 0.359 0.463

2015-03 −0.05 0.448 0.363 0.509 −0.05 0.511 0.381 0.500

2015-04 −0.04 0.442 0.298 0.522 −0.04 0.438 0.287 0.502

2015-05 −0.04 0.652 0.392 0.550 −0.04 0.685 0.430 0.517

2015-06 −0.01 0.790 0.338 0.563 −0.03 0.649 0.362 0.554

2015-07 −0.02 0.820 0.465 0.603 −0.02 0.814 0.509 0.560

2015-08 −0.01 0.904 0.543 0.606 −0.03 0.784 0.566 0.571

2015-09 −0.02 0.771 0.454 0.592 −0.03 0.651 0.492 0.565

2015-10 −0.01 0.907 0.379 0.596 −0.03 0.676 0.377 0.573

2015-11 −0.06 0.601 0.451 0.527 −0.07 0.557 0.507 0.493

2015-12 −0.07 0.562 0.493 0.560 −0.07 0.543 0.477 0.539
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Figure 4. Comparison of PRPS and GPROF statistics for quantitative assessment of instantaneous retrievals over Western
Europe during 2015 for the MetOp-A MHS sensor. Each dot presents 1 month of instantaneous statistical analysis. Scatterplot
on left compares the ratios (retrieval/observed) while the right scatterplot compares the correlation (retrieval wrt observed).
Filled circles are for all instantaneous comparisons by month, diamonds are for only where both retrieval and observed
were ≥0.2 mm/h, while the squares threshold the rain intensity at 0.2 mm/h (the nominal minimum detectable rain rate of
the DPR).

Figure 5. As Figure 4 above but for the NPP-ATMS sensor.

5. Discussion

The PRPS described above is primarily designed as a straightforward retrieval scheme
that associates the precipitation observed by the GPM DPR with the Tbs observed by a
particular sensor. In particular, the scheme does not use any channel weightings, surface
background information or dynamic/model ancillary data. The scheme relies upon the
information content contained within the observations to provide model-independent
precipitation estimates. The absence of the additional information makes the PRPS scheme
more flexible and computationally faster. The PRPS also provides precipitation estimates
at a constant resolution, which although for cross-track sensors is not necessarily physi-
cally correct, provides the user with a consistent precipitation product that allows easier
integration into multi-satellite precipitation products.

Although the performance of the PRPS is generally lower than that of GPROF, it
does well at identifying and retrieving precipitation. There is clearly a trade-off between
algorithm complexity and improvements in the final retrieval. The PRPS compares the
observed Tbs with those in the database with no additional information, whereas GPROF
uses a Bayesian scheme to select the database entries which are constrained by surface
type, model TPW and T2m. In addition, GPROF uses a hybrid a priori database comprised
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of both DPR (combined) observations and entries derived from the surface based MRMS
radar data. Another major drawback of a complex retrieval scheme is one of traceability:
the PRPS allows the user to find the source of the original database entry, and therefore
the “context” of that particular entry, while the multi-stage elements of the GPROF scheme
makes this much more difficult.

The better performance of the GPROF scheme may in part be due to the information
provided by the model (TPW and T2m) to constrain the retrieval. Clearly the more
information that is available at the retrieval stage, the better the retrieval should be. The
current official NASA retrieval scheme for the SAPHIR cross-track sensor uses the PRPS-
SAPHIR which does incorporate the model data used by the GPROF scheme, primarily
since the SAPHIR is a single frequency, 6-channel radiometer and therefore has limited
channel diversity: the additional model information is required to enable sensible retrievals
to be made. However, the greater channel diversity of the MHS and the ATMS allows
more information to be extracted from the observations themselves. This may, in part,
explain why the PRPS retrievals from the ATMS are better (in terms of correlation) than
those from the MHS, particularly with the inclusion of the 23 and 31 GHz channels on the
ATMS. The correlation performance of the GPROF and PRPS ATMS retrievals suggest that
given sufficient channel diversity, surface type and model information may not actually be
critical. Exploratory studies using PRPS scheme on GMI data (with 13 channels) suggests
that the retrievals match, or even exceed those of the GPROF scheme. This initial work
also highlights one of the main issues using the DPR-derived precipitation in the database
since the DPR cannot see shallow precipitation or precipitation close to the surface since
the minimum retrievable altitude is about 1500 m above the surface.

Future work on the PRPS is ongoing with the aim of improving the retrievals from the
cross-track sensors through better representation of the rainfall in the databases. Retrievals
from additional cross-track sensors, such as the Feng-Yun (FY)-3C Micro-Wave Humidity
Sounder (MWHS)-2 and Time-Resolved Observations of Precipitation structure and storm
Intensity with a Constellation of Smallsats (TOPICS) are also being evaluated at present.
Expansion of the PRPS to conically scanning sensors is also underway with encouraging
initial results. While the algorithm described above outlines the "retrieval" part of the
scheme, the full PRPS also has a proofing capability, as demonstrated by Kidd [38]. The
full implementation of this has not been fully realised since it is computationally more
expensive due to handling 120 levels, rather than just the surface data. The PRPS profiling
element uses the a priori database to refer back to the original L2A DPR data so the profile
information from the DPR can be included if needed. Initial comparisons of the closest
profile associated with the set of Tb observations, was shown to compare well with the
coincident DPR observations. This section is not mandatory but can be added to the
manuscript if the discussion is unusually long or complex.

6. Conclusions

The PRPS has been designed to invoke one of the key goals of the GPM mission: to use
the instrumentation on the GPM Core Observatory as a transfer standard to other sensors
within the GPM constellation. The PRPS utilises the rainfall information from the DPR (or
DPR-GMI combined) to generate an a priori database against which observations from
the cross-track sensors may be compared to retrieve a rain rate. A key goal of the PRPS
was to reduce, or eliminate, the dependence of the retrieval scheme on external data sets,
especially dynamic/model data sets that might require special access or privileges. While
undoubtedly the inclusion of these external data sets provides additional information
that is deemed useful in the retrievals, much of this information is already present in the
satellite observations, particularly for observations made by diverse-frequency sensors
such as the GMI. For the cross-track sensors although the PRPS does not meet the overall
performance of the GPROF scheme, it does show considerable merit, particularly with
the ATMS sensor with the greater range of channels than the MHS. In particular, the lack
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of model information within the retrieval scheme makes it a truly independent source of
precipitation information against which models may be compared.
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