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Abstract: Forecasting scenarios of future intra-urban land-use (intra-urban-LU) expansion can help to
curb the historically unplanned urbanization in cities in sub-Saharan Africa (SSA) and promote urban
sustainability. In this study, we applied the neural network–Markov model to simulate scenarios of
future intra-urban-LU expansion in Lusaka city, Zambia. Data derived from remote sensing (RS) and
geographic information system (GIS) techniques including urban-LU maps (from 2000, 2005, 2010, and
2015) and selected driver variables, were used to calibrate and validate the model. We then simulated
urban-LU expansion for three scenarios (business as usual/status quo, environmental conservation
and protection, and strategic urban planning) to explore alternatives for attaining urban sustainability
by 2030. The results revealed that Lusaka had experienced rapid urban expansion dominated by
informal settlements. Scenario analysis results suggest that a business-as-usual setup is perilous,
as it signals an escalating problem of unplanned settlements. The environmental conservation and
protection scenario is insufficient, as most of the green spaces and forests have been depleted. The
strategic urban planning scenario has the potential for attaining urban sustainability, as it predicts
sufficient control of unplanned settlement expansion and protection of green spaces and forests. The
study proffers guidance for strategic policy directions and creating a planning vision.

Keywords: intra-urban land use; artificial neural network; Markov model; modeling and simulation;
scenario analysis; Lusaka

1. Introduction

Sustainable urban development in Africa has mainly been hindered by rapid un-
planned and uncontrolled population growth and urbanization [1,2]. Over the last two
decades, Africa has experienced one of the fastest urbanization rates in the world, with
sub-Saharan Africa (SSA) being at the fore [3]. While most of Africa is still essentially rural,
rapid human population growth and urbanization have occurred in the urban capitals that
dominate their respective national economies [4]. Amidst the rapid urbanization, there has
been low economic development and growth in many SSA cities [5,6]. Therefore, many
cities are not capable of coping with the ever-increasing demand for basic infrastructure
and services, such as housing, water and sanitation, electricity, waste disposal, employment,
education, and health services [7]. These phenomena have been seen in most SSA cities
emerging as unplanned cities dominated by overcrowded informal settlements haphazardly
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located close to urban growth centers, such as the central business district and other indus-
trial and commercial areas [8,9]. Consequently, ecological and environmental conditions in
these cities are under continuous threat.

The challenges of urbanization in SSA are worsened due to the limited availability of
data resources, useful tools, and proficiency [10], which are crucial for monitoring changes
in the urban landscape. Monitoring urban land use (urban-LU) changes requires under-
standing and predicting the dynamic social–ecological processes and spatial patterns of
urbanization at different periods [11]. In recent years, spatially explicit land-use change
(LUC) models that simulate and predict future land use have become widely recognized
as effective tools for monitoring changes in the urban landscape. LUC models are used
to understand the causes and consequences of land-use dynamics [12], as well as explore
future scenarios to support urban land-use planning and policy [13]. Therefore, LUC mod-
els present an opportunity for SSA cities to envision different future urban-LU expansion
scenarios aimed at curbing the historic unplanned urban growth.

Notwithstanding the vast literature on LUC modeling, local and regional context-based
models remain imperative. The interaction dynamics of urban-LU drivers (i.e., biophysical,
socioeconomic, political, cultural, etc.) and the complexity of urban landscapes vary among
different geographical regions. This makes it illogical to apply the same LUC models among
other localities. For example, some of the notable LUC modeling (e.g., [14–16]) has been
conducted in developed countries, which are characterized by highly developed urban
environments and well-planned urban-LU systems. Applying these LUC models in SSA
cities where urban development is mostly unplanned may present incorrect results, as the
drivers may be very different.

Besides, most LUC models focus on simulating all the intra-urban-LUs (e.g., residential,
industrial, commercial, public, etc.) as an individual urban/built-up category [11,13,17,18].
In the context of SSA cities, these generalized simulation approaches to the urban area
can lead to broad and nonspecific pieces of advice that are not very beneficial to African
urban planners and policymakers. Scaling down to intra-urban-LUs enables researchers
and urban planners to understand better the structure and functioning of a city based
on more solid knowledge of its inner land-use dynamics [19]. Intra-urban simulations
aim to comprehend the intrinsic urban evolution through intra-urban-LU maps, urban
socioeconomic and political attributes, and spatial analysis tools [20]. As such, intra-urban
simulations do not only show the spatiotemporal urban-LU change processes but also
explain how these trends can provide essential information for urban planners to begin
possible future spatial configuration and urban revitalization [20,21]. For example, trends of
intra-urban-LU dynamics can inform urban planners of areas needing urban refurbishments,
improvement of public services and environmental quality, installation of urban equipment,
and revitalization of the commercial and residential sectors [21].

A few recent studies have scaled down to intra-urban-LU simulations [19–24]. Cellular
automata (CA) has been the most frequently applied modeling technique in these studies.
However, CA models have several shortcomings in simulating intra-urban-LU changes [20].
CA models assume that urban-LU development depends on neighborhood characteristics
in a particular location [25]. CA models are also strictly governed by universally applied
transitional rules that rely on ad hoc definitions and heuristics, which make their calibration
and validation challenging [26,27]. As a result, these models do not explicitly consider the
underlying drivers [16] required for accurate intra-urban-LU simulations [20]. The accuracy
of CA models is thus affected when applied to complex intra-urban-LU systems with
nonlinear and unbalanced development [22]. To overcome these limitations, other studies
simulating urban-LU have suggested combining CA with other applications, such as
random forests (RF) [20], artificial neural networks (ANNs) [19], agent-based modeling [28],
and Markov chains [23].

The mixed development of unplanned and planned intra-urban-LUs in most SSA
cities displays a disordered spatial pattern suggesting a complex nonlinear and unbalanced
development overtime. In the SSA city of Lusaka, Zambia, for example, Simwanda and
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Murayama (2018) [8] used binary logistic regression to model the spatial dependency of
urban-LUs and found that the growth of unplanned urban-LUs does not follow neighbor-
hood characteristics; instead, they follow a spontaneous and nonlinear growth process
that is either spatially dependent on the growth of planned urban-LUs (e.g., commercial
and industrial areas), or is just random, depending on the availability of unoccupied land.
Simwanda, Murayama, and Ranagalage (2020) [29] also used analytic network process
(ANP) modeling to assess the drivers of urban-LU changes in Lusaka and concluded that
the mixed unplanned and planned development of urban-LUs was driven by complex
interactions of socioeconomic, population, and political factors. Therefore, the simulation
of intra-urban-LUs in SSA cities requires methods that can handle the complex nonlinear
interrelationships between LUC and their drivers.

Hence, in this study, we applied the neural network–Markov model to simulate scenar-
ios of future intra-urban-LU expansion in Lusaka city, Zambia. Artificial neural networks
(ANNs) have been proven to be successful in simulating LUCs in many urban settings
with a high degree of complexity [19,30]. The advantages of the ANN approach (see details
in [31–33]) include capabilities to handle nonlinear functions, perform model-free function
estimation, learn from data relationships that are not otherwise known, and generalize to
unseen situations. Therefore, ANNs make powerful tools for intra-urban-LU modeling,
especially when the underlying complex relationships in data (e.g., unplanned vs. planned
intra-urban-LUs in SSA cities) are unknown [33]. On the other hand, Markov models are fre-
quently used as excellent projectors of future LUCs. Markov is a stochastic model designed
to describe the probability of one state changing into another [34]. The Markov model not
only explains the quantification of conversion states between the land-use types but can
also reveal the transfer rate among different land-use types [35]. Therefore, combining the
ANN and Markov models is a robust approach that can be used to successfully model and
simulate future intra-urban-LU expansion.

To the best of our knowledge, there are no studies that have simulated future scenarios
of the mixed unplanned and planned expansion of intra-urban-LUs in the context of SSA
cities. Past studies have concentrated on either specifically mapping and monitoring [36–38]
or assessing the drivers [25,29] of unplanned development. Karolien et al. [17] carried out
a scenario-based analysis of urban growth in Kampala, Uganda, but did not scale down
to the intra-urban-LU level. Our study uses data derived from RS and GIS techniques,
including intra-urban-LU maps (from 2000, 2005, 2010, and 2015), and selected biophysical,
neighborhood, social, and economic explanatory variables to develop, calibrate, and validate
a neural network–Markov model to simulate the expansion of unplanned and planned
intra-urban-LUs in Lusaka, Zambia (2000–2030). Unplanned development refers to informal
settlements and all other areas developed without proper authorization from the local
planning office (i.e., areas that are not in compliance with planning regulations) and vice
versa. Our study considers three scenarios of intra-urban-LU expansion: (1) business as
usual; (2) environmental conservation and protection; and (3) strategic urban planning, for
the years 2020, 2025, and 2030. The scenarios are used to explore different alternatives for
achieving future urban sustainability in Lusaka, as a case study for SSA cities. Our study is
also aimed at contributing to the efforts for attaining the envisioned 2030 United Nations
(UN) Global Sustainable Development Goals (SDGs), particularly SDG No. 11 (Sustainable
Cities and Communities) [39].

2. Materials and Methods
2.1. Study Area

Lusaka city is located in the Lusaka Province of Zambia (Figure 1). Its central geo-
graphical coordinates are 15◦24′24” S and 28◦17′13” E (Figure 1). It lies on a plateau in
the south and west with an altitude of 1200m above sea level (asl) that increases gently to
1300 m asl toward the north and east. Lusaka is the country’s provincial headquarters and
capital city. The city is also the political, cultural, and economic center of the country and
home of the central government. As such, many institutional, commercial, and industrial
activities are concentrated in Lusaka.



Remote Sens. 2021, 13, 942 4 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 26 
 

 

home of the central government. As such, many institutional, commercial, and industrial 
activities are concentrated in Lusaka. 

 
Figure 1. Study area: Lusaka city, located in the Lusaka Province of Zambia. 

Over the last three decades, Lusaka city has expanded rapidly both in population 
size [40] and spatial extent [38]. The population increased from about 120,000 in 1963 to 
about 1.7 million in 2010 [40,41], and is currently estimated to be over 2 million. Lusaka's 
spatial extent expanded to 420 km2 from 2.6 km2 when it was initially established in 1935. 
Rapid urbanization has exerted pressure on land administration and delivery of social 
services, as well as future urban planning for sustainable development. 

2.2. Data and Intra-Urban-LU Classification 
The data used in this study included four intra-urban-LU maps for 2000, 2005, 2010, 

and 2015). The intra-urban-LU maps for 2000 and 2010 were obtained from [38], while the 
intra-urban-LU maps for 2005 and 2015 were processed in this study. Of note, an attempt 

Figure 1. Study area: Lusaka city, located in the Lusaka Province of Zambia.

Over the last three decades, Lusaka city has expanded rapidly both in population
size [40] and spatial extent [38]. The population increased from about 120,000 in 1963 to
about 1.7 million in 2010 [40,41], and is currently estimated to be over 2 million. Lusaka’s
spatial extent expanded to 420 km2 from 2.6 km2 when it was initially established in 1935.
Rapid urbanization has exerted pressure on land administration and delivery of social
services, as well as future urban planning for sustainable development.

2.2. Data and Intra-Urban-LU Classification

The data used in this study included four intra-urban-LU maps for 2000, 2005, 2010,
and 2015). The intra-urban-LU maps for 2000 and 2010 were obtained from [38], while the
intra-urban-LU maps for 2005 and 2015 were processed in this study. Of note, an attempt
was made to produce intra-urban-LU maps prior to the year 2000; however, some intra-
urban-LU classes could not be modeled, as they were almost nonexistent at that time point,
and thus the year 2000 was chosen as the initial year. We also could not produce intra-urban-
LU maps later than 2015, as the classification methods used were highly dependent on
cadastral data, which was only available up to 2015.
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We used the method proposed in [38]: an integrated approach of RS and GIS tech-
niques developed in view of the inherent challenges of intra-urban-LU classification in
SSA cities (i.e., spatial complexity and spectral confusion; lack of high-resolution satellite
imagery, and the limited applicability of available intra-urban-LU classification methods).
To produce the intra-urban-LU maps, first we extracted the built-up land from Landsat
TM/+ETM data using a combination of pixel-based and object-based classification tech-
niques, plus post-classification image control for accuracy purposes. Second, we created
land parcels as homogenous units separating intra-urban-LU classes in the study area using
road-network data. Then, we classified the parcels into six separate intra-urban-LU classes
using a combined detail of cadastral maps, land-use data, and high-resolution Google
Earth imagery. The parcels were then used to divide the initially extracted built-up land
into the six intra-urban-LU classes (Table 1). The residential intra-urban-LU classes were
further separated by residential density (RD), measured in dwelling units (du) per square
kilometres (km2); and population density (PD), measured in people per km2. A detailed
description of the intra-urban-LU mapping approach and accuracy assessment can be found
in [38]. The overall accuracy values of the intra-urban-LU maps for 2000, 2005, 2010, and
2015 were 91.3%, 88.9%, 93.0%, and 92.1%, respectively. Thus, the overall accuracies of the
intra-urban-LU maps obtained from [38] (2000 and 2010) and those produced in this study
(2005 and 2015) were relatively similar, as they all exceeded the minimum standard of 85%.

Table 1. Descriptions of the intra-urban-LU classes [38].

No. Intra-Urban-LU Class Description

1 Unplanned High-Density
Residential (UHDR)

Unplanned 1 residential areas comprising dense informal settlements with very high
population density (RD > 2000 du/km2 and PD of 12,000–28,000 people/km2)

2 Unplanned Low-Density
Residential (ULDR)

All unplanned residential areas with medium- to high-cost housing and low population
density (RD < 2000 du/km2 and PD of 400–2000 people/km2).

3
Planned
Medium-/High-Density
Residential (PMHDR)

Planned 2 residential areas with low- to medium-cost houses with high population density
(RD > 2000 du/km2 and PD of 2000–22,000 people/km2).

4 Planned Low-Density
Residential (PLDR)

Planned areas with high-cost houses and low population density RD < 2000 du/km2 and PD
of 400–2000 people/km2).

5 Commercial and
Industrial (CMI) 3

Areas comprising general retail, shopping malls, markets, hotels, financial services,
manufacturing, warehousing, quarrying, and commercial agriculture facilities

6 Public Institutions and
Service (PIS) 4

Areas comprising education and health facilities, religious institutions, government and
administration houses, municipal utilities, transportation terminals, and aviation facilities

Note: 1 Unplanned refers to all residential areas that developed without proper authorization as declared by the local planning authority.
These areas lack basic services and are mainly characterized by sparse road networks, poor access to electricity, no water or sanitation,
and poor access to social amenities like public schools, health centers, and public recreational open spaces. 2 Planned refers to all areas
that developed with proper authorization from the local planning office. These areas generally have functional basic services, including
paved roads and municipal water and sanitation services. 3 CMI refers to areas for economic activities. 4 PIS refers to areas for public social
services (see Table 2 below as well).

Ancillary spatial data were also collected to aid in modeling and simulation. The
ancillary data included the latest city administrative boundary, a 1985 topographic map,
a 2003 partial QuickBird satellite image (0.6 m spatial resolution), and the Shuttle Radar
Topography Mission (SRTM) 30 m resolution digital elevation model (DEM) for Lusaka
downloaded from the US Geological Survey website. The Lusaka urban development plan
(2010–2030) was also obtained to assist in scenario development for future intra-urban-
LU simulation.



Remote Sens. 2021, 13, 942 6 of 25

Table 2. Representation characteristics of driver variables (refer to Figure 3 for abbreviations).

No. Driver Variable Representation Characteristics Nature of Representation (Influence of)

1 UHDR

1. Physical
2. Neighborhood
3. Social/economic
4. Policy/planning

1. Informal settlements with highest number of du/km2

2. Highest population density areas
3. Residential areas with high poverty levels and poor public services
4. Spatial planning and policy challenge

2 ULDR

1. Physical
2. Neighborhood
3. Social
4. Policy/planning

1. Unplanned residential areas with low number of du/km2

2. Low population density areas
3. Residential areas with poor access to public services
4. Spatial planning and policy challenges

3 PMHDR

1. Physical
2. Neighborhood
3. Social
4. Policy/planning

1. Planned residential areas with medium-high number of du/km2

2. Medium-high population density areas
3. Residential areas with adequate access to public services
4. Spatial planning and policy implementations

4 PLDR

1. Physical
2. Neighborhood
3. Social
4. Policy/planning

1. Planned residential areas with low number of du/km2

2. Low population density areas
3. Residential areas with adequate access to public services
4. Spatial planning and policy implementations

5 CMI
1. Physical
2. Economic

1. All commercial and industrial areas including general retail, markets, hotels, financial services, manufacturing,
warehousing, quarrying, and commercial agriculture facilities

2. Accessibility to economic activities

6 PIS
1. Physical
2. Social

1. All public institutions and service areas including education and health facilities, religious institutions,
government and administration houses, municipal utilities, transportation terminals, and aviation facilities

2. Accessibility to public social services

7 Major roads 1. Social/economic 1. Accessibility to transportation
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Table 2. Cont.

No. Driver Variable Representation Characteristics Nature of Representation (Influence of)

8 CBD 1. Economic 1. Accessibility to city center with major economic activities

9 DEM 1. Physical 1. Topography effects

10 Slope 1. Physical 1. Topography effects

11 Forest 1. Biophysical 1. Accessibility to forests

12 Agriculture 1. Biophysical 1. Accessibility to agriculture/cultivation/crop lands

13 Water 1. Biophysical 1. Accessibility to water resources: streams, rivers, and lakes



Remote Sens. 2021, 13, 942 8 of 25

2.3. Modeling Intra-Urban-LU Expansion

In this study, we used the land-change modeler (LCM) provided in the TerrSet Geospa-
tial Monitoring and Modeling software [42] to implement the neural network–Markov
model. The LCM has a set of tools for analyzing land use/land cover, empirically modeling
its relationship to explanatory variables and simulating scenarios of future land-use/land-
cover changes [42]. The LCM is one of the leading modeling systems, and has been widely
applied in studies involving modeling and simulating urban expansion (e.g., [10,11,43–46].

The development and implementation of the neural network–Markov model in this
study involved four steps: (1) selection of model explanatory (or driver) variables; (2)
transition-potential modeling and simulation; (3) model validation; and (4) scenario de-
velopment and simulation of future intra-urban-LU expansion. The modeling framework
applied in this study is presented in Figure 2.
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intra-urban-LU maps for 2005 and 2010 were used for calibration and simulation to 2015 (dashed red arrows).

2.3.1. Selection of Driver Variables

In order to produce the best fit between empirical data and the observable reality, the
selection of the best set of model explanatory (or driver) variables for each transition is very
important in urban LUC modeling [11]. While there are no universal set of driver variables
for LUCs [44], several researchers have demonstrated that the selection of modeling drivers
varies depending on the specific landscape changes in different study areas [11,19,20,45].
Although similar driver variables have been used in various studies, the degrees to which
they contribute to LUCs differ [47]. Therefore, variables are selected based on study-area
characteristics, observed LUCs, and expert knowledge of specific study areas.

In this study, we selected driver variables based on the premise that the expan-
sion of intra-urban-LUs is driven by a combination of biophysical, social, economic, and
policy/planning factors [48]. Reference was also made to two previous studies [8,29].
Simwanda and Murayama [8] investigated the spatial explanatory factors influencing the
pattern of intra-urban-LU changes and also modeled the spatial dependency of unplanned
and planned intra-urban-LUs in Lusaka. Simwanda, Murayama and Ranagalage [29] also
investigated the drivers of intra-urban-LU changes in Lusaka using ANP modeling. This
intensive approach involved the incorporation of ground surveys and inputs from a diverse
set of experts.
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Thus, based on expert knowledge of the study area and the observed intra-urban-LU
changes, 13 driver variables were selected and used in this study (Figure 3 and Table 2).
Table 2 outlines the selected drivers and their representation in terms of physical, neighbor-
hood, social, economic, and policy/planning characteristics. The quality and availability
of basic social, economic, and demographic data to inform policy continues to be a signif-
icant challenge across Africa [49]. Therefore, it is our argument in this study that scaling
down to the intra-urban-LU level enables researchers to indirectly incorporate data that is
otherwise not readily available or inaccurate for most SSA cities. In this study, for exam-
ple, the Unplanned High-Density Residential (UHDR) class represents data on informal
settlements (physical) with high population densities (neighborhood), high poverty levels
(social/economic), and poor access to basic public services (policy and planning challenges).
This kind of data is very challenging to obtain in most SSA countries.
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2.3.2. Transition-Potential Modeling and Simulation

To carry out transition-potential modeling, we used the multilayer perceptron (MLP), a
form of ANN that uses the back-propagation algorithm to calculate LUC transition potentials.
The multilayer perceptron neural network (MLP-NN) model is one of the commonly used
forms of ANN in urban LUC modeling [11,45,50]. The MLP-NN comprises one input layer,
one or more hidden layers, and one output layer. When training the MLP-NN model, the
input layer presents input data to the network. The input data is received by the hidden
layers, which extract information from the input layers and express them as weights. The
results in the output layer depend on the back-and-forth interactions among the input,
hidden, and output layers.

According to Shafizadeh-Moghadam, Asghari, Tayyebi, and Taleai [51], the MLP-NN
back-propagation algorithm starts with the ANN assigning random values to the network’s
weights and biases (ANN parameters), which is followed by the application of these random
weights and biases to the input data by the MLP to estimate the outputs. Next, the ANN
calculates the error between the estimated outputs and reference outputs, which is then
propagated backward to the previous layers [51,52]. Based on the error-reduction principles
and this back-and-forth iterative process, the weights and biases are updated until an
acceptable error is obtained and the correct weights are assigned to the final output (for
more details, see also [53]).

We combined the MLP-NN and Markov chain models provided in the LCM to create
the neural network–Markov modeling framework. In the LCM, the MLP-NN is based on a
multivariate function that integrates driver variables to predict the transition potential of
LUCs between two time points at any location [11,54]. The Markov chain model computes
transition rates over time [42]. The selected driver variables in Table 2 and intra-urban-LU
maps were used to create submodels for each transition (i.e., nonbuilt to each intra-urban-
LU class). In this study, calibration was done twice; intra-urban-LU maps for 2000 and 2005
were used to create transition submodels for simulation to 2010 (Figure 2, black arrows),
while intra-urban-LU maps for 2005 and 2010 were used to create transition submodels for
simulation to 2015 (Figure 2, dashed red arrows).

For each transition potential submodel (i.e., the change from nonbuilt to each of the six
intra-urban-LU classes), we trained the MLP-NN using a random sample of 10,000 pixels,
out of which 50% were used for training and 50% were used for testing. The MLP-NN was
trained using three layers: the input and hidden layers with the same number of neurons
or nodes as the selected number of driver variables (i.e., 13 variables; Table 2); and an
output layer representing a transition potential map for each submodel. The other MLP-NN
training parameters were set as 0.01 to 0.001 learning rate, 0.5 momentum factor, 1.0 sigmoid
constant, and 0.01 acceptable error. The MLP-NN was run at 10,000 iterations for each
transition using dynamic automatic training. The backward stepwise analysis in the LCM
was used to remove the variables without power for each transition-potential submodel to
reduce the likelihood of overfitting [42].

The accuracy values achieved for all transitions from nonbuilt to each of the six intra-
urban-LU classes were acceptable, ranging from 87.87 % to 95.65 %. Eastman [54] recom-
mended an accuracy rate of around 80%. Note that this accuracy is a measure of calibration
and not validation [50]. We created transition-potential maps depicting the potential of
each of the modeled transitions at each location within the study area. We then applied
the Markov chain model to compute the transition probabilities expected in the future
prediction based on the 2000 to 2005 and 2005 to 2010 intra-urban-LU changes. Finally, we
simulated the intra-urban-LU maps for 2010 and 2015, and proceeded to model validation.

2.3.3. Model Validation

We used two indices for model validation: the Kappa index [55] and the figure of
merit (FoM) [56]. Three alternative Kappa indices to the standard Kappa (Kno (Kappa
for no ability), Klocation (Kappa for location), and Kquantity (Kappa for quantity)) were
generated. Kno is an index that measures the overall agreement based on no information;
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Klocation measures the agreement based on location only; and Kquantity measures the
agreement based on quantity only [55,57]. Kappa indices range from −1 (indicating no
agreement) to 1 (indicating perfect agreement) between two maps of the same variables.

However, the Kappa indices cannot provide components of agreement and disagree-
ment between the observed and simulated intra-urban-LU maps. Pontius and Millones [58]
presented that Kappa indices can be useless, misleading, and/or flawed for the practical ap-
plications in RS, and recommended using the cross-tabulation matrix to summarize simpler
parameters, quantity disagreement, and allocation disagreement for accuracy assessment
and map comparison. In this study, we cross-tabulated the observed and simulated 2010
and 2015 intra-urban-LU maps and computed four components of agreement and disagree-
ment [59]: (1) observed change simulated correctly as change (hits); (2) observed persistence
(i.e., all intra-urban-LU built-up class and non-built-up) simulated correctly as persistence
(null successes); (3) observed change simulated incorrectly as persistence (misses); and
(4) observed persistence simulated incorrectly as change (false alarms). Based on the hits,
misses, and false alarms, the FoM was determined using Equation (1) [56]. In addition, three
ratio indices (Equations (2)–(4)) that quantify the number of hits, misses, and false alarms
relative to the observed change [60] were also determined.

FoM =
H

(H + M + F)
(1)

HOC =
H

(H + M)
(2)

MOC =
M

(H + M)
(3)

FOC =
F

(H + M)
(4)

where H, M, and F are the hits, misses, and false alarms, respectively, while HOC, MOC,
and FOC are the respective ratios of hits, misses, and false alarms to the observed change
(i.e., the sum of hits and misses), respectively.

2.3.4. Scenario Development for Future Intra-Urban-LU Simulation

Several studies have demonstrated that the development and simulation of
future scenarios in urban studies are essential tools for future urban-development
planning [11,17,22,60–63]. In this study, we developed three types of scenarios to sim-
ulate future intra-urban-LU expansion for the years 2020, 2025, and 2030: Scenario 1,
business as usual or status quo; Scenario 2, environmental conservation and protection;
and Scenario 3, strategic urban planning. Scenario 1, also referred to as a spontaneous
scenario, was based on simulating future intra-urban-LU expansion following the historical
land-transition trends without any constraints or modifications. Scenario 2 was also based
on the historical land-transition trends but considered the full conservation and protection
of all forests and other green spaces.

Lusaka, like many other SSA cities, has experienced rapid urbanization that has cre-
ated pressure on the environment. High population growth coupled with increasing ur-
banization has outstripped land supply for development [64,65]. As a consequence, un-
planned/informal settlements have increased, occupying ecologically valuable lands and
impairing the provision of urban-ecosystem services [8]. Increased demand for social ser-
vices (e.g., housing, water, and sanitation) has also drastically increased, creating pressure
on the environment. Scenario 3 was developed based on this background.

Scenario 3 applied the same constraints as Scenario 2 (i.e., protection of green spaces
and forests) but added a law that restricts the expansion of UHDR (i.e., informal settle-
ments). Scenario 3 was developed based on the Lusaka urban-development plan (2010–2030;
also referred to as the Lusaka Vision 2030), a policy proposal to restrict the expansion of
informal settlements while upgrading or normalizing the existing ones, which are referred
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to as statutory improvement areas [66]. To implement this policy, we added a constraint
restricting the growth of the UHDR class from 2020 onwards. Under this scenario, all other
residential land uses (i.e., ULDR, PMHDR, and PLDR) were allowed to expand to meet the
housing demand. Of note is the assumption that, since the Lusaka urban development plan
proposes to normalize all unplanned areas, the growth of ULDR areas was considered as
planned expansion under Scenario 3. The purpose of Scenario 3 was to stimulate strategic
sustainable urban-development planning while promoting environmental sustainability at
the same time.

2.3.5. Intra-Urban-LU Change Detection and Analysis

After performing simulations of future intra-urban land-use expansion under the
three scenarios, we then computed the area and percentage estimate of each intra-urban-
LU class for each observed (2000, 2005, 2010, and 2015) and simulated (2020, 2025, and
2030) time point. The total area expansion of each intra-urban-LU class and its percentage
contribution to the sum change of all intra-urban-LU classes were also computed for each
of the time intervals and the temporal study extent. We then used the Pareto principle (also
known as the 80/20 rule) to identify the intra-urban-LU classes that would significantly
contribute to the total future intra-urban-LU expansion (i.e., sum change of all intra-urban-
LU classes) under each scenario in the 2015–2020, 2020–2025 and 2025–2030 time intervals.
The Pareto principle is a statistical distribution of data asserting that 80% of an outcome
can be explained by 20% of the total observations [67]. In other words, the principle states
that 80% of effects come from 20% of causes. Details of the Pareto principle can be found
in [67,68]. In addition, we calculated the percent change of each intra-urban-LU class in
each time interval using Equation (5) [8].

Nti =
(size of net change of i during [Yt ,Yt+1])100%
(size of i at time Yt)(duration of [Yt ,Yt+1])

=

[(
∑J

j=1 Ctji

)
−
(

∑J
j=1 Ctij

)]
100%(

∑J
j=1 Ctij

)
(Yt+1−Yt)

(5)

where Nti is the percent change for class i during the time interval [Yt, Yt+1] relative to the
size of class i at time point t; t is the index for a time point; Yt is the year at time point t; Ctij
is the number of pixels that are class i at time t and class j at time point t + 1; i and j are
indices for an intra-urban-LU class, and J is the number of intra-urban-LU classes. Note
that the order of subscripts j and i in Ctji in the numerator of Equation (1) is intentional so
that the first summation computes the size of class i at the final time Yt+1.

3. Results
3.1. Intra-Urban-LU Maps and Expansion

Four intra-urban-LU maps were produced in this study (Figure 4), and Table 3 presents
the intra-urban-LU expansion statistics for the years 2000, 2005, 2010, and 2015. The study
revealed that intra-urban-LU expansion mainly resulted from the growth of UHDR, CMI,
and ULDR areas during the entire study’s temporal extent (2000–2015) (Table 3). UHDR
areas expanded mainly to the south, west, and northwest, with some isolated expansion
observed in the east and northeast. UHDR areas represented 29.8% of the total intra-urban-
LU expansion (11,317 ha) during the temporal extent. CMI areas expanded mainly to the
west of the CBD, representing 18.7% of the total intra-urban-LU expansion. ULDR areas
had the third-largest expansion, primarily expanding in the southeast and accounting for
17.7 % of the total intra-urban-LU expansion. PLDR, PMHDR, and PIS accounted for 17.0%,
12.0%, and 4.9 % of the total intra-urban-LU expansion, respectively. Overall, residential
intra-urban-LU expansion accounted for 76.4% of the total gain in intra-urban-LU, while
CMI areas and PIS areas accounted for only 23.6%.
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Figure 4. Urban-LU maps for Lusaka city, Zambia, for the years 2000, 2005, 2010, and 2015.

Table 3. Intra-urban-LU (ha) expansion statistics for Lusaka city, Zambia, in four time periods
between 2000 and 2015.

Urban-LU Class
Urban-LU

2000 2005 2010 2015

Area % Area % Area % Area %

UHDR 2526 30.61 3520 33.57 4688 29.52 5898 30.14
ULDR 231 2.8 818 7.8 1589 10 2230 11.39

PMHDR 2196 26.61 2498 23.82 3217 20.26 3554 18.16
PLDR 900 10.91 1348 12.86 2061 12.98 2821 14.42
CMI 1931 23.39 2046 19.51 3365 21.19 4048 20.68
PIS 470 5.69 632 6.03 961 6.05 1020 5.21

8254 10,861 15,881 19,572
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Table 3. Cont.

Urban-LU Class
Urban-LU Expansion

2000–2005 2005–2010 2010–2015 2000–2015

Area % Area % Area % Area %

UHDR 993 38.11 1168 23.28 1210 32.78 3372 29.79
ULDR 587 22.5 771 15.35 641 17.37 1998 17.66

PMHDR 302 11.57 719 14.33 337 9.14 1358 12
PLDR 448 17.17 713 14.2 761 20.6 1921 16.97
CMI 115 4.42 1319 26.28 684 18.52 2118 18.71
PIS 163 6.24 329 6.56 59 1.59 550 4.86

2607 100.0 5020 100.0 3691 100 11,318 100.0

3.2. Model Validation

Figure 5 shows the observed and simulated intra-urban-LU maps for 2010 and 2015,
as well as their validation maps showing the location of the components of agreement and
disagreement (i.e., hits, null successes, misses, and false alarms). The model-validation
statistics are presented in Table 4. All Kappa index values were higher than 80%, suggesting
good agreement between the observed and simulated 2010 and 2015 intra-urban-LU maps.
The model-validation results also revealed that the simulated 2010 and 2015 intra-urban-LU
maps had acceptable null successes, hits, misses, and false alarms relative to the observed
intra-urban-LU maps for 2010 and 2015.
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Table 4. Model validation results of observed and simulated 2010 and 2015 intra-urban-LU maps for Lusaka city, Zambia.

Intra-Urban LU Map Kappa Index (%) Agreement and Disagreement (%) Ratio Indices FoM
(%)Kno Klocation Kquantity N H M F HOC MOC FOC

Simulated 2010 95.15 85.02 83.11 77.17 11.68 6.04 5.11 0.66 0.34 0.30 51.14
Simulated 2015 94.05 92.62 91.09 88.46 8.40 1.34 1.80 0.86 0.14 0.19 72.76

Note: N, H, M, and F are null successes, hits, misses, and false alarms, respectively; while HOC, MOC, and FOC are the respective ratios of
hits, misses, and false alarms to the observed change (i.e., the sum of hits and misses).

3.3. Scenario-Based Intra-Urban-LU Simulation

Figure 6 shows the spatial patterns of the simulated intra-urban-LU expansion in the
three scenarios for the years 2020, 2025, and 2030. The intra-urban-LU expansion statistics
for each scenario in each time interval are presented in Table 5. Figure 7 presents the Pareto
analysis charts identifying intra-urban-LU classes that would significantly contribute to
the total future intra-urban-LU expansion under each scenario. The results reveal that
under business as usual (Scenario 1), over 80% of the intra-urban-LU expansion has been
dominated by the growth of UHDR, followed by CMI and PMHDR areas during the
2015–2020 time interval. In the 2020–2025 and 2025–2030 time intervals, the intra-urban-LU
expansion will still be dominated by UHDR and CMI, but PMHDR will be outpaced by
PLDR areas by 2030 (Figure 7a–c). In terms of percent change during the entire 2015–2030
period, PIS is predicted to have the highest percent change (56%), followed by PLDR (47%),
CMI (43%), UHDR (42%), PMHDR (29%), and ULDR (26%) (Figure 8) (see Equation (5).

Table 5. Intra-urban-LU (ha) scenario (S) simulation results for Lusaka city, Zambia, with projected results for 2025 and
2030. Refer to Figure 6 for abbreviations.

Intra-Urban-LU
Classes

Observed Simulated

2015 2020 2025 2030

S1 S2 S1 S2 S3 S1 S2 S3

UHDR 5898 6750 6747 7701 7694 6750 8359 8057 7035
ULDR 2230 2230 2229 2524 2230 2230 2805 2523 2235

PMHDR 3554 4102 4095 4482 4102 4102 4597 4266 4237
PLDR 2821 3194 3192 3729 3515 3376 4158 3875 5817
CMI 4048 4624 4614 5185 4973 4896 5785 5564 7690
PIS 1020 1280 1280 1438 1280 1280 1588 1437 1310

Total 19,571 22,181 22,157 25,059 24,959 22,635 27,292 23,957 28,325

Percent of total intra-urban-LU Expansion

UHDR 30.1 30.4 30.5 30.7 30.8 29.8 30.6 32.8 24.8
ULDR 11.4 10.1 10.1 10.1 8.9 9.9 10.3 9.3 7.9

PMHDR 18.2 18.5 18.5 17.9 16.4 18.1 16.8 17.1 15
PLDR 14.4 14.4 14.4 14.9 14.1 14.9 15.2 14.7 20.5
CMI 20.7 20.8 20.8 20.7 19.9 21.6 21.2 20.8 27.2
PIS 5.2 5.8 5.8 5.7 5.1 5.7 5.8 5.4 4.6

Intra-urban-LU Expansion

2015–2020 2020–2025 2025–2030 2015–2030

S1 S2 S1 S2 S1 S2 S3 S1 S2 S3

UHDR 852 849 951 947 659 363 285 2461 2159 1137
ULDR 0 0 294 0 282 293 5 575 293 5

PMHDR 548 541 380 8 114 164 135 1043 712 683
PLDR 373 371 535 323 429 360 2441 1337 1054 2996
CMI 576 566 560 359 600 591 2794 1737 1516 3642
PIS 260 260 158 0 150 157 30 568 417 290

Total 2610 2587 2878 1637 2233 1928 5690 7721 6151 8754

Percent Change

UHDR 14.4 14.4 14.1 14 8.6 4.7 4.2 41.7 36.6 19.3
ULDR 0 0 13.2 0 11.2 13.2 0.2 25.8 13.1 0.2

PMHDR 15.4 15.2 9.3 0.2 2.5 4 3.3 29.3 20 19.2
PLDR 13.2 13.1 16.8 10.1 11.5 10.2 72.3 47.4 37.4 106.2
CMI 14.2 14 12.1 7.8 11.6 11.9 57.1 42.9 37.4 90
PIS 25.5 25.5 12.3 0 10.4 12.3 2.4 55.7 40.9 28.5
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Figure 7. Pareto analysis charts identifying simulated urban-LU classes that would significantly
contribute to the total urban-LU expansion for Lusaka city, Zambia. Scenario 1: (a) 2015–2020, (b)
2020–2025, (c) 2025–2030; Scenario 2: (d) 2015–2020, (e) 2020–2025, (f) 2025–2030; and Scenario 3: (g)
2025–2030 and (h) 2020–2030.
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Scenario 2 (environmental conservation and protection) showed minimal differences
with Scenario 1 in the 2015–2020 time interval. Similarly, over 80% of the intra-urban-LU
expansion resulted from the growth of UHDR areas, followed by CMI and PLDR areas
under Scenario 2 (Figure 7d–f). However, Scenario 2 further predicts that with continued
protection of green spaces and forests through the 2020–2025 and 2025–2030 time-intervals,
the expansion of all intra-urban-LUs will be reduced. Particularly, the expansion of ULDR
areas will be reduced to almost zero. Nevertheless, the expansion of UHDR areas will still
be very dominant despite the expansion being reduced slightly (i.e., 37 % change) when
compared to Scenario 1 (42% change) (Table 3). Under Scenario 2, the percent change of
CMI and PLDR will be 37% each, while that of PIS will be 41% during the entire 2015–2030
time interval (Figure 8).

Conversely, under the strategic urban planning scenario (Scenario 3), constraining the
expansion of UHDR areas from 2020 onwards, about 99% of intra-urban-LU expansion will
be from CMI and PLDR areas by the year 2030 (Figure 7g,h). The expansion of UHDR and
ULDR areas will be reduced significantly. During the 2025–2030 time interval, the percent
change of UHDR areas will reduce to only 4.2%, while ULDR areas will only change by
0.2%. In both Scenario 2 and Scenario 3, the model predicts the relatively low expansion
of PMHDR and PIS areas. In terms of percent change during the entire 2015–2030 period,
PLDR (106%) and CMI (90%) are predicted to have the highest change, followed by PIS
(28%), UHDR (19%), and ULDR (19%) (Figure 8).

4. Discussion
4.1. Intra-Urban-LU Expansion and its Drivers

In this study, we assessed the expansion of intra-urban-LUs in the rapidly urbanizing
SSA city of Lusaka, Zambia from 2000–2015. The UHDR areas (i.e., informal settlements)
dominated the expansion of all urban-LUs, contributing about 32.78% during the 2000–
2015 study period, indicating a rapidly growing urban population in Lusaka. Census data
for Lusaka shows an increase of 658,276 people from 2000 (1,084,703) to 2010 (1,742,979),
compared to an increase of only 323,639 people between 1990 (761,064) and 2000 [40,41].
Lusaka accounts for at least 32% of the total urban population in Zambia [40,69]. The
population in Lusaka is largely characterized by the urban poor, who have continuously
demanded low-cost housing since independence [70]. The relatively slow expansion of
PMHDR and PIS areas in this study suggests that government efforts to respond to the
high demand for low-cost housing and subsequent public and social services have been
overtaken by the rapidly growing population. Consequently, informal settlements have
outpaced the expansion of all other urban-LUs in Lusaka.

Our results are consistent with the findings of [8,29]. Analogous to the observations
in this study, Chitonge and Mfune [65] reported that by 2010, 65% of the population in
Lusaka was distributed around 37 informal settlements. This situation is not unique to
Lusaka or Zambia; Laros and Jones [71] also reported that about 60% of all urban dwellers
in SSA reside in informal settlements or slums. Informal settlements in Lusaka and other
SSA cities have many problems, including high urban poverty levels, lack of access to
basic services (roads, clean water, reliable power, etc.), unemployment, and environmental
pollution resulting from unplanned waste disposal and sewer discharge, as reported by
several researchers [8,29,72–74].

The expansion of ULDR and PLDR areas was also relatively significant, contributing
about 17.37% and 20.60%, respectively, to the total urban-LU expansion from 2000 to 2015.
In the past, this has been attributed to intra-urban migration that led to an increase in the
urban population demanding better housing than that found in informal settlements [8,75].
The privatization of the mining and related industries in other major urban cities in Zambia
in the 1990s and 2000s has been the main driver for urban–urban migration [65]. The
expansion of ULDR areas has also resulted from the lack of proper urban planning and
development systems that have allowed the emergence of informal land markets and
corrupt forms of land acquisition [8,65]. ULDR areas signal a problematic future, as they



Remote Sens. 2021, 13, 942 19 of 25

also lack proper roads, experience flooding, have limited connection to municipal water
and sanitation services, and are reported to occupy the remaining ecologically valuable
lands in the periphery areas of the city [29].

On the other hand, the expansion of CMI areas accounted for about 18.52%, which also
indicated a relatively substantial contribution to the total urban-LU expansion during the
2000–2015 study period. Simwanda and Murayama [8] modeled the spatial dependency
of unplanned and planned intra-urban-LUs in Lusaka, and linked the growth of informal
settlements to CMI areas. Therefore, it is plausible that the expansion of CMI areas in
Lusaka, mainly comprising small and medium manufacturing enterprises and trading
markets, has been driven by the availability of a large but cheap labor force coming from the
informal settlements. Furthermore, many owners of commercial and industrial activities
have also taken advantage of the informal land markets to establish new developments [29].

4.2. Modeling and Validation

In this study, we applied the neural network–Markov model to simulate scenarios of
future intra-urban-LU expansion in Lusaka city, Zambia. Four urban-LU maps (2000, 2005,
2010, and 2015) and selected biophysical, neighborhood, social, and economic explanatory
variables were used to calibrate and validate the model (see Section 3). We used two indices
for model validation: the Kappa index (Kno, Klocation, and Kquantity) [55] and FoM [56].
The validation results showed Kappa index values greater than 80%, suggesting good
agreement between the observed and simulated intra-urban-LU maps. Other researchers
scaling down to intra-urban level have reported somewhat similar high Kappa values [20,22].
However, other scholars have criticized Kappa for giving high accuracy values in study
areas with few LUC changes, and vice versa [76,77]. Scaling down to intra-urban-LUs
reduces the quantity of LUC changes to each intra-urban-LU class, and may show high
Kappa values compared to one simple individual urban-LU class (i.e., built-up).

Therefore, to verify the simulation accuracy of the model, we employed the
FoM [20,22,45,46]. The FoM is a ratio metric that is unaffected by the quantity of LUC
changes [45]. We found FoM values of 51.14% and 72.76% for the first- and second-round
simulations of the 2010 and 2015 intra-urban-LU maps, respectively (see Section 3 and
Figure 2). The FoM values in the literature have generally ranged from 1% to 59% based on
varying study area spatial extents and imagery spatial resolutions, as well as the number of
land-use/land-cover classes [20,45,46,56]. Our results for the second-round simulation to
2015 were slightly higher than previous studies. Therefore, the simulation accuracy of the
neural networks Markov model in this study is acceptable. Thus, this study has proven that
the neural-network–Markov model can simulate the complex non-linear and unbalanced
mixed development of unplanned and planned intra-urban-LUs in SSA cities and other
regions with similar development patterns.

4.3. Scenario-Based Intra-Urban-LU Simulation

After model validation and establishing satisfactory reliability, the neural network–
Markov model was used to simulate urban-LU expansion for three scenarios (business as
usual/status quo, environmental conservation and protection, and strategic urban planning)
for the years 2020, 2025, and 2030. The results suggest that a business-as-usual scenario
(Scenario 1) is perilous. Without any policy interventions in the observed past (2000–2015)
and future (2020–2030) urban-LU expansion trends, the business-as-usual scenario signals
an escalating problem of unplanned development. The informal settlements or shanty com-
pounds (herein referred to as UHDR) and other unplanned residential extensions (herein
referred to as ULDR) are predicted to outpace all other urban-LUs by 2030. These unplanned
developments are predicted to largely occupy the remaining ecologically valuable lands
in the periphery areas of Lusaka. As a consequence, the already-impaired provision of
urban-ecosystem services will be lessened further. The expansion of unplanned areas will
also exacerbate environmental pollution as these areas are characterized by unsafe water ab-
straction and sanitation activities, indiscriminate waste disposal, and frequent flooding [78].
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It also means that, by 2030, Lusaka will have millions of more people living in these informal
settlements than the recently predicted 65% [65,69]. Thus, Scenario 1 is unsustainable.

By contrast, under the environmental conservation and protection scenario (Sce-
nario 2), the disturbance of the remaining green spaces and forests will be much less. This
fact will promote the restoration of the urban ecosystem. However, given that most of the
green spaces and forests have been depleted and are observed to exist mainly in the periph-
ery areas, achieving substantial urban ecosystem restoration is uncertain. This is evidenced
by the results of this study showing no significant differences between Scenarios 1 and
2. Although Scenario 2 shows that the expansion of unplanned low-density residential
shall be under control by 2030, the expansion of informal settlements will occur almost at
the same rate as in Scenario 1. The model predicts that the nongreen open spaces in the
periphery areas will still be potentially invaded by informal settlements. This means that
the pressures described in Scenario 1 above will still occur.

On the other hand, under the scenario of strategic urban planning (Scenario 3), it
was observed that unplanned expansion would be brought under control while protecting
the green spaces and forests at the same time. Therefore, Scenario 3 appears to be a more
desirable way forward, as it has the potential to achieve both environmental and urban
sustainability. However, while the unplanned expansion might be controlled under Scenario
3, we also observed that about 99% of intra-urban-LU expansion would be from CMI
and PLDR areas by the year 2030. The CMIs areas are predicted to occupy the remaining
unoccupied land both within and in the periphery areas of the city. The PLDR areas will
potentially become medium to high density, as there is an infill expansion predicted to
occupy the open green spaces (e.g., backyards and parks) within these areas. This may still
impede environmental and urban sustainability.

The observations from our scenario-based intra-urban-LU simulation are comparable
to other studies. Similar to our observations, previous scenario-based urban simulation
studies have stressed that the business-as-usual scenario is very unsustainable [11,17,60,79].
Unlike our study area, where the environmental-protection scenario (Scenario 2) alone was
proven insufficient for attaining urban sustainability, other studies (e.g., [11,60]) found this
same scenario to be attainable. The major difference was mainly because the other cities have
a substantial amount of green spaces, croplands, and forest areas that can be used for the
restoration of the urban areas, a situation which is not obtainable in Lusaka. The strategic-
planning scenario (Scenario 3) can be compared to the restrictive/simulative and punitive
scenarios presented in [17,61], respectively. These scenarios assume the adoption of policies
that prevent the growth of certain developments (e.g., informal settlements in this study)
in the undesired zones. Similar to this study, [17] and [61] discuss the implications (see
Section 4.4) of the proposed policies, and recommend strategic planning for the attainment
of their respective goals. The different scenarios offer guidance in taking strategic policy
directions and setting up a planning vision [17].

4.4. Implications for Sustainable Urban Landscape Planning and Development

Based on the scenarios presented in this study, attaining Scenario 3 seems desirable
for achieving sustainable future urban-development planning. Attaining Scenario 3 is
also in line with the UN’s Global SDGs, particularly SDG No. 11 (Sustainable Cities and
Communities), which aims to make cities and human settlements inclusive, safe, resilient,
and sustainable by 2030 [80]. Therefore, its implications should be considered.

Environmental sustainability is arguably attainable under Scenario 3. This can be
achieved by combining the assumed protection of existing green spaces and forests with
activities such as urban regreening and vegetation rehabilitation. This study also observed
that in the three scenarios, but especially in Scenario 3, the need for commercial and
industrial expansion (herein referred to as CMI) is predicted to be relatively significant up to
2030. Therefore, we suggest a deliberate policy to set up satellite economic zones around the
remaining available land in the periphery areas of the city as well as the adjacent districts,
which are predominantly rural. Satellite economic zones have the potential to decongest the
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city, which will provide an opportunity to redesign the city and restore urban-ecosystem
services, thereby promoting environmental sustainability. Urban ecosystem services can be
restored from a diverse set of habitats, including green spaces such as parks, cemeteries,
vacant lots, gardens and yards, campus areas, and blue spaces (mainly streams, ponds, and
dams) [81].

With that stated, it is irrefutable that environmental sustainability can only be achieved
if it goes hand-in-hand with the nexus of social and economic sustainability. In fact, ur-
ban sustainability is often recognized as a concept comprising environmental, social,
and economic elements [82,83]. Therefore, while the restriction of the expansion of un-
planned/informal settlements is crucial to achieving urban sustainability under Scenario 3,
the social and economic implications of this approach need consideration. Perhaps some
important questions will need to be answered if Scenario 3 or urban sustainability is to be
attained in Lusaka city. How will the city meet the high demand for housing, especially
for the urban poor? What strategies are required to avoid the re-emergence of unplanned
settlements? How will the influence of other forces (e.g., economic development and
political forces) be managed? Thus, the implementation of Scenario 3 should be more
strategic rather than completely restrictive. Kamete [84] warned that focusing on punitive
and rigid planning enforcement laws in Africa has proven to be ineffective and in some
cases counter-productive, particularly when dealing with informal settlements.

A concerted effort engaging key players including, but not limited to, urban planners
and policymakers, researchers, technocrats, local urban dwellers in Lusaka city, and players
in adjoining exurban areas that support urban sprawl is required. We acknowledge that
the answers to how urban sustainability can be achieved in Lusaka city are not easily
acquired. However, the questions raised above provide guidance and could stimulate
visionary debate and urban planning that can create a clear road map to sustainability, as is
the intention of the scenario analysis presented in this study.

5. Conclusions

In this study, we examined real (2000–2015) and simulated future (2020–2030) scenarios
of intra-urban-LU expansion in the rapidly urbanizing SSA city of Lusaka, Zambia. The
results revealed that Lusaka city has experienced rapid urban expansion dominated by
informal settlements and that rapid urbanization threatened urban sustainability in the city.

To support efforts aimed at attaining urban sustainability, this study developed a neural
network–Markov model to simulate three scenarios of future urban-LU expansion in Lusaka
(business as usual/status quo, environmental conservation and protection, and strategic
urban planning) up to 2030 in line with national and global sustainable development goals.
The results suggested that a business-as-usual setup is perilous, as it signals an escalating
problem of unplanned settlements. The environmental conservation and protection scenario
is insufficient to achieve urban sustainability, as most of the green spaces and forests
have been depleted. The strategic urban planning scenario has the potential for achieving
sustainable urban development, as it predicts sufficient control of unplanned settlement
expansion and protection of green spaces and forests.

Our study recommends several strategies, including the provision of planned high-
density housing for the urban poor to avoid re-emergence of informal settlements, im-
provement of land-tenure policies and delivery systems, the establishment of satellite
economic zones to decongest the city, investment in both green and blue infrastructure, and
timely policy reviews. In summary, this study provides guidance and attempts to stimulate
visionary debate and urban development planning that can create a clear road map to
sustainability. The study is a contribution to LUC change-modeling and simulation studies
that serve as early-warning tools. The information provided can also be beneficial to other
African cities and other developing regions experiencing similar urban-LU expansion,
especially in consideration of unplanned versus planned expansion.

For future research, the application of convolutional neural networks (CNNs) in place of
the MLP-NN is recommended. Unlike MLP-NN, CNNs can take into account neighborhood
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characteristics by exploiting the spatial or temporal correlation of pixels in the input intra-
urban-LU images. This will allow researchers to investigate, for example, the variations
of error across the study area or particular events in specific years (man-made or natural)
that could have influenced how the unplanned or planned areas expanded but could
not be predicted by the model. The study also considered the commercial and industrial
intra-urban-LUs as an individual intra-urban-LU class. Further studies should consider
separating the commercial and industrial intra-urban-LUs for better insights on their growth
and overall future urban planning.
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