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Abstract: To accurately extract cultivated land boundaries based on high-resolution remote sensing
imagery, an improved watershed segmentation algorithm was proposed herein based on a combi-
nation of pre- and post-improvement procedures. Image contrast enhancement was used as the
pre-improvement, while the color distance of the Commission Internationale de l´Eclairage (CIE)
color space, including the Lab and Luv, was used as the regional similarity measure for region merg-
ing as the post-improvement. Furthermore, the area relative error criterion (δA), the pixel quantity
error criterion (δP), and the consistency criterion (Khat) were used for evaluating the image segmenta-
tion accuracy. The region merging in Red–Green–Blue (RGB) color space was selected to compare
the proposed algorithm by extracting cultivated land boundaries. The validation experiments were
performed using a subset of Chinese Gaofen-2 (GF-2) remote sensing image with a coverage area of
0.12 km2. The results showed the following: (1) The contrast-enhanced image exhibited an obvious
gain in terms of improving the image segmentation effect and time efficiency using the improved
algorithm. The time efficiency increased by 10.31%, 60.00%, and 40.28%, respectively, in the RGB, Lab,
and Luv color spaces. (2) The optimal segmentation and merging scale parameters in the RGB, Lab,
and Luv color spaces were C for minimum areas of 2000, 1900, and 2000, and D for a color difference
of 1000, 40, and 40. (3) The algorithm improved the time efficiency of cultivated land boundary
extraction in the Lab and Luv color spaces by 35.16% and 29.58%, respectively, compared to the RGB
color space. The extraction accuracy was compared to the RGB color space using the δA, δP, and
Khat, that were improved by 76.92%, 62.01%, and 16.83%, respectively, in the Lab color space, while
they were 55.79%, 49.67%, and 13.42% in the Luv color space. (4) Through the visual comparison,
time efficiency, and segmentation accuracy, the comprehensive extraction effect using the proposed
algorithm was obviously better than that of RGB color-based space algorithm. The established
accuracy evaluation indicators were also proven to be consistent with the visual evaluation. (5) The
proposed method has a satisfying transferability by a wider test area with a coverage area of 1 km2.
In addition, the proposed method, based on the image contrast enhancement, was to perform the
region merging in the CIE color space according to the simulated immersion watershed segmentation
results. It is a useful attempt for the watershed segmentation algorithm to extract cultivated land
boundaries, which provides a reference for enhancing the watershed algorithm.

Keywords: cultivated land; watershed segmentation algorithm; image contrast enhancement; region
merging; CIE color space; Lab; Luv

1. Introduction

Sustainable agriculture is of paramount importance, since agriculture is the backbone
of many nations’ economic development [1]. Cultivated land is one of the most important
areas of concern for the agricultural sector, which is the basis for analyzing the utilization
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of land resources and the basis for human survival [2]. Rapid and accurate extraction of
cultivated land boundary information is of great technical significance for land resource
supervision, precision agriculture development, and strict observance of China’s cultivated
land red line [3]. The development of remote sensing technology provides a more rapid
means for the boundary extraction of cultivated land [4–7]. At present, there is much
research on cultivated land boundary extraction based on image classification [8–10]
and image segmentation methods [11–13]. However, the extraction of cultivated land
information by remote sensing imaging still requires manual visual interpretation based
on GIS software. This not only requires technicians to have rich geoscience knowledge and
interpretation experience, but also requires a large amount of manpower and high time
investment, resulting in low production efficiency and greater subjectivity in the extracted
farmland boundary.

In recent years, remote sensing technology has been well developed in the field of
intelligent agriculture [14–17]. Cultivated land extraction based on remote sensing visual
interpretation [18] has gradually developed to automatic extraction with image classifica-
tion technology at its core. For example, [19] used the SVM algorithm to classify satellite
remote sensing images of a prefecture-level city in Jiangsu province, as well as identified
and divided cultivated land, resulting in the classification accuracy of cultivated land
reaching over 90%. These studies are mainly classified as unsupervised classification [20],
supervised classification [21], decision tree supervised classification [22], and supervised
classification of support vector machines [19], while other methods have been used to
carry out research on cultivated land information extraction for technical purposes, or
have explored the promotion of automatic cultivated land extraction technology based on
remote sensing. However, these methods are mainly applied to the extraction of cultivated
land at the regional scale. Such studies mainly reflect the spatial distribution and evolution
characteristics of cultivated land, while the accuracy of the extraction results of cultivated
land boundaries is low.

More importantly, the resolution of remote sensing images has improved continuously,
and object-oriented classification for information extraction of high-resolution remote
sensing images has become mainstream technology [7,23]. Since then, some studies have
been carried out [12,24]. Automatic extraction of cultivated land boundaries based on
image segmentation technology has made rapid progress [25,26]. This research mainly
focuses on object-oriented classification technology, and eCognition software based on
multi-resolution segmentation has been used for experimental research [26], which has
gradually developed into random forest [27], neural networks [28], machine learning [29],
and deep learning [30,31]—making the technology of remote sensing information extraction
of cultivated land more accurate and rapid. However, most of these methods have complex
rules and processes, for which processed results already exist that require post-processing
techniques, such as the segmentation process. At the same time, machine learning and
deep learning require a large training sample. Thus, these methods are not conducive to
normal application.

The segmentation boundary of cultivated land images is required to be clear and
continuous. The watershed segmentation algorithm results in a closed and connected
region with a single pixel. At the same time, the contour line has a better fit with the
segmentation object and is introduced into the cultivated land information extraction
process [13,32]. This is beneficial for attempts to use watershed segmentation algorithm to
extract cultivated land information. Although the above achievements have been made,
these methods have certain applicability, and cannot completely solve the problem of
rapid automatic extraction of the cultivated land boundaries of high-resolution remote
sensing images [7,33]. Meanwhile, the characteristics of cultivated land images, such as
high homogeneity in cultivated land and high heterogeneity with neighboring features, are
very suitable for the extraction of watersheds. The improved regional merging watershed
algorithm can better solve the fragmentation of excessive segmentation and can realize
the integration of segmentation and post-processing [34,35]. This is a feasible method to



Remote Sens. 2021, 13, 939 3 of 19

simplify the process of remote sensing image-based cultivated land boundary extraction.
Therefore, an improved watershed segmentation algorithm was proposed based on a
combination of pre- and post-improvement procedures. A Gaofen-2 (GF-2) remote sensing
image was used to validate the algorithm. The pre-processing-based contrast-enhanced and
post-processing-based region merging methods were jointly used to improve traditional
simulated immersion watershed algorithm. Finally, the complete Commission Interna-
tionale de l´Eclairage (CIE) color space-based region merging watershed segmentation
(RMWS) (hereafter referred to as Lab-RMWS and Luv-RMWS) was developed to extract
cultivated land boundaries. The Red–Green–Blue (RGB) color space-based region merging
watershed segmentation (RGB-RMWS) was used to compare the proposed algorithm.

2. Study Area and Data Sources
2.1. Study Area

The study area is located in Taiyuan City, Shanxi Province, China, specifically includ-
ing Xiaodian District, Yingze District, Xinghualing District, Jiancaoping District, Wanbailin
District, and Jinyuan District, with a total area of 1416 km2 (Figure 1). It is the alluvial
plain formed by Fenhe River, with a wide and flat terrain. Surrounded by mountains in
the north, east, and west side, the elevation gradually decreases from north to south, with
an average altitude of 800 m. It belongs to the semi-arid continental climate in the warm
temperate zone, with the average annual temperature of 9.5 ◦C, the average annual wind
speed of 2.5 m/s, the average annual precipitation of 483.5 mm, and the average annual
evaporation of 1709.7 mm. A lot of cultivated lands are widely distributed in the study area.
Three adjacent cultivated lands in the piedmont plain area of Jinyuan District were selected
as the primary experimental area to extract cultivated land boundaries. Its geographical
coordinates are located between 112◦24′3.708′ ′E and 112◦24′20.198′ ′E, 37◦37′16.185′ ′N and
37◦37′25.723′ ′N, with a coverage area of 0.12 km2.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Geographical location of the study area. 

2.2. Data Sources 
A GF-2 remote sensing image was used as the experimental data (Table 1). It was 

obtained on 24 August 2015, with a spatial resolution of 1 m. A small subset of 400 × 300 
pixels was randomly selected to extract cultivated land boundaries (Figure 2a). The image 
contrast enhancement was performed to show the edges of cultivated lands more clearly 
(Figure 2b). A larger GF-2 image acquired on 16 June 2015, with a subset size of 1000 × 
1000 pixels, was used to validate the transferability of the proposed algorithm (Figure 2c). 
There were primary land cover types including cultivated land, village road, built-up 
area, and uncultivated land. The cultivated lands were fallow without the coverage of 
crops after harvesting the winter wheat. The data preprocessing procedures were first 
carried out including geometric correction, image fusion, and image cropping. 

 
Figure 2. A subset of Gaofen-2 (GF-2) remote sensing images: (a) Original small image, (b) contrast-enhanced small image, 
and (c) larger image. 

  

Figure 1. Geographical location of the study area.

2.2. Data Sources

A GF-2 remote sensing image was used as the experimental data (Table 1). It was
obtained on 24 August 2015, with a spatial resolution of 1 m. A small subset of 400 ×
300 pixels was randomly selected to extract cultivated land boundaries (Figure 2a). The
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image contrast enhancement was performed to show the edges of cultivated lands more
clearly (Figure 2b). A larger GF-2 image acquired on 16 June 2015, with a subset size
of 1000 × 1000 pixels, was used to validate the transferability of the proposed algorithm
(Figure 2c). There were primary land cover types including cultivated land, village road,
built-up area, and uncultivated land. The cultivated lands were fallow without the coverage
of crops after harvesting the winter wheat. The data preprocessing procedures were first
carried out including geometric correction, image fusion, and image cropping.

Table 1. Technical parameters of the GF-2 satellite.

Parameter 1 m Resolution Panchromatic/4 m Resolution Multispectral Camera

Spectral range

panchromatic 0.45–0.90 µm

multispectral

0.45–0.52 µm
0.52–0.59 µm
0.63–0.69 µm
0.77–0.89 µm

Spatial resolution panchromatic 1 m
multispectral 4 m

Width 45 km (Two cameras combined)

Revisit period 5 days
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3. Methodology
3.1. Technical Procedure

In comparison with RGB color space, the CIE color space is independent of the
device, which is a better improvement for the color distance measurement. At present,
some studies have adopted the Euclidean distance between two regions of CIE color
space as the color difference to measure the color similarity. Better segmentation results
are obtained by improving the regional similarity measure after finishing the watershed
segmentation [34,35].

The improved algorithm was compared with the RGB color space-based algorithm. It
involved in three major processes based on a combination of pre- and post-improvement
procedures (Figure 3): (1) Pre-processing improvement module, which is image contrast
enhancement; (2) post-processing improvement means that the color difference of CIE color
space is used as the evaluation criterion for region merging; (3) evaluating the segmentation
accuracy module, which include the δA, δP, and Khat.

The image segmentation and merging experiments were performed on the CIE color
space-based region merging watershed image segmentation system (hereafter referred
to as CIE-WS). The system was developed based on the VC++, including three methods
of RGB-RMWS, Lab-RMWS, and Luv-RMWS). The running time of image segmentation
and merging experiments were respectively recorded using the CIE-WS’s built-in timing
variable. All the experiments were operated by an Acer S40-51 computer with a 64-bit
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operating system, an Intel(R) Core(TM) i5-10210U CPU, a main frequency of 1.60 GHz, and
an 8.00 GB memory.
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3.2. Contrast Enhancement

Contrast enhancement is a kind of point operation on an image. The pixel value
of the input image is converted to a new value through mapping transformation. The
operation result will not change the spatial relationship between the pixels in the image,
but can increase the contrast of the image and highlight the cultivated land information,
which can improve the segmentation effect of the watershed algorithm based on spectral
differences [34,35].

Linear grayscale transformation is one of the methods for contrast enhancement. This
method assumes that the gray transformation range of the original image f (x, y) is [a, b],
and that the gray transformation range of the processed image g(x, y) is [c, d]. Linear
expansion is carried out for the lowest and highest intensity data in the input image data.
It can increase the dynamic range of the image, as well as can improve the image contrast
of the clarity and features [36].

The g(x, y) functions are shown in Equation (1):

g(x, y) =


d

d−c
b−a [ f (x, y)− a] + c

c

f (x, y) > b
a ≤ f (x, y) ≤ b

f (x, y) < a
(1)

where a and b represent the gray transformation range of original image; c and d represent
the gray transformation range of processed image.

After performing a set of trial-and-error experiments, [0.1, 0.9] is the optimal grayscale
range for original image. The default value [0, 1] was used for processed image.

3.3. CIE Color Space and Transformation
3.3.1. Conversion between RGB and XYZ

CIE1976 specifies the RGB color space can be converted to the XYZ color space, and
XYZ color space can be converted to the Lab or Luv color space. The color value of L, a,
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and b or L, u, and v can be obtained through the color space conversion from each channel
of the image [37].  X

Y
Z

 =

 0.430 0.342 0.178
0.222 0.707 0.071
0.020 0.130 0.939

 R
G
B

 (2)

L =

{
166 ∗ (Y/Yn)

1/3 − 16
903.3 ∗ (Y/Yn)

I f (Y/Yn) > 0.008856
I f (Y/Yn) ≤ 0.008856

(3)

where L is the brightness; Xn and Yn are the tristimulus values of standard light source
D65.

3.3.2. Color Space Conversion between XYZ and Lab

a = 500∗( f (X/Xn)− f (Y/Yn)) (4)

b = 200 ∗ ( f (Y/Yn)− f (Z/Zn)) (5)

where a and b represent the chromaticity coordinates; Zn is the tristimulus value of standard
light source D65. Xn = 95.04, Yn = 100.00, and Zn = 208.88 [34].

The f (t) functions in Equations (4) and (5) are shown in Equation (6):

f (t) =

{
t

1
3 I f t > 0.008856

7.787t + 16
116 I f t ≤ 0.008856

(6)

3.3.3. Color Space Conversion between XYZ and Luv{
u = 13L(u′ − un

′)
v = 13L(v′ − vn

′)
(7)

where u and v represent the chromaticity coordinates; un
′ and vn

′ are the coordinates of the
CIE standard light source and the tristimulus values given by [35]:

u′ = 4X/(X + 15Y + 3Z) (8)

v′ = 9Y/(X + 15Y + 3Z) (9)

un
′ = 4Xn/(Xn + 15Yn + 3Zn) (10)

vn
′ = 9Yn/(Xn + 15Yn + 3Zn) (11)

In the case of 2◦ observer and C light source, un
′ = 0.2009 and vn

′ = 0.4610 [35]. 2◦

observer is the spectral tristimulus set by the CIE in 1931, also known as 1931 Standard
Chroma Observer. CIE standard light sources include A, C, D50, D65, etc., and the C light
source represents average daylight.

3.4. Watershed Segmentation Algorithm Based on CIE Color Space Region Merging

At present, the most widely used watershed algorithm is the simulated immersion al-
gorithm, which was proposed by Vincent and Soille [38]. The steps of simulated immersion
watershed algorithm are shown as follows [34]:

(1) An image is converted from the color to corresponding grayscale.
(2) The gradient of each pixel in the image is calculated. To sort the gradient values from

smallest to largest, and the same gradient is located at the same gradient level.
(3) To process all the pixels of the first gradient level and check the neighborhoods of a

certain pixel. If the neighborhoods have already been identified as a certain area or
watershed, add the pixel to a first-in first-out (FIFO) queue.

(4) The first pixel would be picked up when the FIFO queue is not empty. To scan the pixel
neighborhoods, the identification of pixel is refreshed according to the neighborhood
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pixel, when the gradient of its neighboring pixels belongs to the same layer. The loop
will be continued just the same until the queue is empty.

(5) To scan the pixel of current gradient level again, it will be a new minimal area if there
are unidentified pixels. Continue to perform step (4) from this pixel until there is no
new minimal region.

(6) Return to step (3) to continue processing the next gradient level until all levels of
pixels have been processed.

Many scholars have proposed different improved watershed segmentation algorithms
according to their own research [34,35,39–41]. According to the watershed segmentation al-
gorithm, these improved algorithms can be summarized as pre- and post- improvement, as
well a combination of pre- and post-improvement for a traditional watershed segmentation
algorithm.

In this study, on the basis of a simulated immersion algorithm, a combination of pre-
and post-improvement procedures was used to improve the region merging watershed al-
gorithm in CIE color space. More specifically, the contrast enhancement by linear grayscale
transformation was used as the pre-improvement procedure, while the CIE color space
region merging was used as the post-improvement procedure. The specific flowchart of
the proposed algorithm can be found in Figure 4.
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3.4.1. Segmentation Scale Parameter

The segmentation scale parameter by the watershed segmentation algorithm is the
threshold value (Amin) of the minimal region. It is calculated by the following Equation [35]:

Amin = (M× N)/C (12)

where M is the row of image; N is the column of image; C is a given constant. If a region
is less than the Amin, it is a minimal region, otherwise it is not. The Amin depends on the
value of C. Therefore, C value can be represented the segmentation scale parameters.

3.4.2. Merging Scale Parameters

In region merging after the watershed segmentation, how to determine the color
similarity between two adjacent regions is the key problem. Here, the Euclidean distance
(di) of two regions in the CIE color space was used as the color difference to measure the
color similarity of two regions. It is calculated by the following Equation [35]:

di =

∣∣∣Ri

∣∣∣·∣∣∣Rj

∣∣∣∣∣∣Ri

∣∣∣+∣∣∣Rj

∣∣∣
√√√√√√ ∑

c = L, a, b
c = L, u, v

(Fc(Ri)− Fc(Rj))
2 i = 1, 2, 3 · ··, n; j = 1, 2, 3 · ··, n (13)

where |Ri| and |Rj| are the pixel numbers contained in the image areas Ri and Rj,
respectively; Fc(Ri) and Fc(Rj) are the average colors of image areas Ri and Rj; and n is the
number of adjacent areas.

Let the merging threshold be D where D = (di)
2. When di ≤

√
D, the regions are

merged; otherwise, the regions do not merge. Therefore, D can be used to represent the
merging scale parameters. A smaller D corresponds to greater similarity between the
colors, and vice versa.

As observed in Figure 4, the most critical technical problem of the watershed algorithm
for region merging is to determine the minimum region and to merge similar regions, which
are controlled by the segmentation threshold C values and the merging threshold D values,
respectively [35]. At present, it is difficult to adaptively determine the C and D values. The
trial-and-error procedure is usually used to conduct repetitive tests to find the optimal C
and D values of the image information extraction.

4. Accuracy Evaluation of Image Segmentation

The segmentation quality of remote sensing image is a guarantee of the reliability of
subsequent information analysis [42,43]. The way in which to evaluate the image segmen-
tation results objectively and quantitatively is an important part of the image segmentation
algorithm [44,45]. For the evaluation of image segmentation accuracy, many researchers
have carried out qualitative and quantitative methods from different perspectives [46–49],
and many evaluation methods and indicator systems have been proposed [50–58]. By com-
paring the evaluation, the segmentation accuracy of remote sensing images is indicated.
On the basis of previous studies [34,35], the area relative error criterion (δA), the pixel
quantity error criterion (δP), and the consistency criterion (Khat) were selected to evaluate
the segmentation accuracies. The reference data were obtained by visual interpretation or
land use maps, and the segmentation results were obtained by the proposed method.

4.1. Area Relative Error Criterion (δA)

δA is the area relative error accuracy indicator. A0 is the true area value of the tar-
get region in the benchmark image, and AS is the area value of the target region in the
segmentation result. It is calculated by the following equation [35]:

δA =
|As − A0|

A0
× 100% (14)
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A smaller δA corresponds to higher segmentation accuracy, and vice versa.

4.2. Pixel Quantity Error Criterion (δP)

δP is the pixel quantity error accuracy indicator. Let Pt is the correct number of pixels
of the target region in the segmentation result, and Pw is the incorrect number. δP is
calculated by the following equation [35]:

δP =
Pw

Pt + Pw
× 100% (15)

A smaller δP corresponds to higher segmentation accuracy, and vice versa.

4.3. Consistency Criterion (Khat)

Khat is mainly used for accuracy evaluation and image consistency judgment. In this
paper, Khat was selected as the accuracy evaluation criterion for the consistency between
the segmentation results and the benchmark data. Respectively, then, the Khat is given
by [59,60]:

Khat =
N∑r

i=1 xii −∑r
i=1 (xi+x+i)

N2 −∑r
i=1 (xi+x+i)

(16)

where r represents the total number of columns in the error matrix; Xii is the number
of pixels in the row i and column i in the error matrix; xi+ and x+i are the total number
of pixels in row i and column I, respectively; N is the total number of pixels used for
accuracy evaluation.

The higher segmentation accuracy is indicated by a higher Khat, and vice versa.

5. Results
5.1. Image Segmentation before and after Contrast Enhancement

The segmented images were, respectively, obtained based on the pre- and post-
contrast-enhanced image (Figure 5). To increase the comparability, the same C and D
values were adopted in the experiments. The statistical results of the comparative experi-
ments are provided in Table 2.
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As observed in Figure 5, the blue boxes showed that the middle road of the cul-
tivated land failed to maintain a continuous position in the segmentation results of
Figure 5(a0,b0,c0). The corresponding positions remained continuous in Figure 5a–c. Mean-
while, Table 2 shows that the number of image spots in the contrast-enhanced image after
segmentation and merging was higher than that in the original image. This can be also
found by comparing the improvement of the road segmentation results in Figure 5. The
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contrast-enhanced image effectively avoided under-segmentation of the original image
to the road. The results showed that contrast enhancement could improve the quality of
image segmentation.

Table 2. Statistical features derived from the three methods. RGB: Red–Green–Blue; RMWS: Region merging watershed
segmentation.

Method Experiment Image
Patch number of

Simulated Immersion
Algorithm

Time of
Watershed

Segmentation (s)

Number of
Patches after

Region Merging

Time of Area
Merging (s) C D

RGB-RMWS
Original 14,389 0.063 133 4.578 2000 1000

Contrast-enhanced 14,760 0.062 139 2.734 2000 1000

Lab-RMWS
Original 14,389 0.062 76 4.375 1900 40

Contrast-enhanced 14,760 0.063 92 1.750 1900 40

Luv-RMWS
Original 14,389 0.062 91 2.125 2000 40

Contrast-enhanced 14,760 0.063 117 1.906 2000 40

Table 2 shows that the initial image segmentation time was consistent. However, the
time of the region merging varied greatly. The region merging time of the three methods
was greatly reduced compared to that of the original image. The time efficiency of the
contrast-enhanced image segmentation and merging in the Lab-RMWS method was 60.00%
higher than that of original images. The Luv-RMWS and RGB-RMWS methods were
improved by 10.31% and 40.28%, respectively. Therefore, contrast enhancement could
improve the time efficiency of region merging watershed segmentation.

5.2. The Optimal Scale Parameters in the Three Methods

The optimal segmentation and merging scale parameters are the C and D values in
the three watershed segmentation methods. The trial-and-error multiscale segmentation
experiments were performed on the test contrast-enhanced images with the combinations
of different C and D values.

(1) Multiscale segmentation experiments of RGB-RMWS

The C and D values varied between 100 and 15,000 at intervals of 50. Some important
segmentation results are shown in Figure 6.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. Some important segmentation results of cultivated land boundaries using the RGB-
RMWS. 

(2) Multiscale segmentation experiments of Lab-RMWS 
The C value varied between 100 and 5000 at intervals of 50, and the D value varied 

between 10 and 500 at intervals of 10. Some important segmentation results are shown in 
Figure 7. 

 
Figure 7. Some important segmentation results of cultivated land boundaries using the Lab-
RMWS. 

(3) Multiscale segmentation experiments of Luv-RMWS 

Figure 6. Some important segmentation results of cultivated land boundaries using the RGB-RMWS.



Remote Sens. 2021, 13, 939 11 of 19

(2) Multiscale segmentation experiments of Lab-RMWS

The C value varied between 100 and 5000 at intervals of 50, and the D value varied
between 10 and 500 at intervals of 10. Some important segmentation results are shown in
Figure 7.
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(3) Multiscale segmentation experiments of Luv-RMWS

The C value varied between 100 and 5000 at intervals of 50, and the D value varied
between 10 and 500 at intervals of 10. Some important segmentation results are shown in
Figure 8.
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The statistical results of the combinations of different C and D values are provided in
Table 3.

Table 3. Statistical features derived from the combinations of different C and D values.

Experiment Image Method
Number of Sliver

Polygons
after Region Merging

C D

Contrast-enhanced

RGB-RMWS

38 100 100
3 100 15,000

2421 15,000 100
44 15,000 15,000

Lab-RMWS

20 100 10
4 100 500

524 5000 10
58 5000 500

Luv-RMWS

26 100 10
4 100 500

655 5000 10
56 5000 500

As observed from Figures 6–8 and Table 3, with the gradual increase in C values, the
number of sliver polygons in the image segmentation results increased, and the image
tended to be over-segmented. As the D values gradually increased, the number of sliver
polygons decreased and the image tended to be under-segmented. Thus, a bivariate
orthogonal scale parameter space was formed. The image to be segmented achieved
the optimal segmentation result when the C and D values obtained a certain scale. The
multiscale segmentation experiments show that the optimal C values are equal to 2000 and
the D values are equal to 1000 in the RGB-RMWS method, while the optimal C values are
equal to 1900 and the D values are equal to 40 in the Lab-RMWS method, and the optimal
C values are equal to 2000 and the D values are equal to 40 in the Luv-RMWS method.

5.3. Extraction of Cultivated Land Boundaries

The reference data of the cultivated land boundaries in the experimental area were
obtained by visual interpretation, and the optimal C and D values of the three methods
were obtained by experiment. The segmentation results were taken as the results of the
cultivated land boundary extraction. To compare the extraction effect derived from the
three methods, the optimal experimental results, benchmark data, and experimental images
are overlaid and displayed (Figure 9).
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As shown in Figure 9, there are some sliver polygons on the edge of and in the
cultivated lands, and they are 28, 9, and 14, respectively, for the three methods. Therefore,
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the Lab-RMWS method was the best of the three methods. Its cultivated land boundary
provided the best result. On the contrary, the RGB-RMWS method results were worst. It
is obvious that there were many sliver polygons in cultivated lands. The post-processing
was implemented by manual intervention. Some additional time was required to merge
them. It is observed from Figure 9b,c that the Lab-RMWS and Luv-RMWS methods
not only extract better cultivated land boundaries, but also merge sliver polygons in the
cultivated land. Both the cultivated land boundaries and road in the cultivated land are
continuous and complete. The extracted cultivated land boundaries are rarely affected
by vegetation, trees, roads, bare areas, and constructions. The segmentation results are
better than the RGB-RMWS method. However, as shown in Figure 9b,c, some over- and
under-segmentation phenomena still exist. There were still segmented patches all around
and inside the cultivated land, and the patches of trees along the middle road were attached
and mis-divided, affecting the overall extraction effect.

5.4. Running Time of Segmentation Experiments

To compare the running time of the three methods during segmentation experiments,
the statistical results are provided in Table 4.

Table 4. Comparison of the running time of the segmentation experiments.

Method Running Time (s) C D Note

RGB-RMWS 2.796 2000 1000 All the three methods can perform
automatic image

segmentation and merging.
Lab-RMWS 1.813 1900 40
Luv-RMWS 1.969 2000 40

Table 4 shows that the RGB-RMWS, Lab-RMWS, and Luv-RMWS methods all had
higher time efficiencies. Among them, the RGB-RMWS method used the most time of
2.796 s. Meanwhile, the Lab-RMWS and Luv-RMWS methods had similar time efficiencies,
which were 1.813 s and 1.969 s, respectively. These results are better than those of the RGB-
RMWS method without improving the color space. Meanwhile, the time efficiency of the
Lab-RMWS and Luv-RMWS methods were improved by 35.16% and 29.58%, respectively,
compared to the RGB-RMWS method.

5.5. Extraction Accuracy

The proposed method was compared with the RGB-RMWS. For fair comparison, the
same accuracy evaluation factors were adopted by all comparison methods. For each
method, the result of δA, δP, and Khat can be found in Table 5.

Table 5. Evaluation of the accuracy of the cultivated land extraction from the experimental images.

Criterion Indicator RGB-RMWS Lab-RMWS Luv-RMWS

Area relative error δA 10.27% 2.37% 4.54%
Pixel quantity error δP 9.16% 3.48% 4.61%

Consistency Khat 77.86% 90.96% 88.31%

Table 5 shows that both the Lab-RMWS and Luv-RMWS methods had higher image
segmentation precision. All the δA, δP, and Khat were superior to the RGB-RMWS method
without improving the color space. The δA, δP, and Khat of the Lab-RMWS method were
2.37%, 3.48%, and 90.96%, respectively, which are superior to those of the Luv-RMWS
method. The Lab-RMWS method was the most accurate segmentation method among the
three methods. The δA, δP, and Khat of the Lab-RMWS method were 76.92%, 62.01%, and
16.83%, respectively, higher than those of the RGB-RMWS method. The δA, δP, and Khat of
the Luv-RMWS method were 55.79%, 49.67%, and 13.42%, respectively, higher than those
of the RGB-RMWS method.
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5.6. Comparison Experiment with a Larger Image

To test the transferability of the proposed method to another type of parcel, a larger
image was used to perform the comparison experiment. To increase the comparability, the
same optimal C and D values were adopted in the experiments. The segmented images
were obtained based on the contrast-enhanced image of Figure 2c. The reference data
of cultivated land boundaries were derived from visual interpretation (Figure 10). The
statistics of the comparison experiments are provided in Table 6.
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RMWS with the reference data.

Table 6. Statistics of the comparison experiment derived from the three methods.

Method
Number of Sliver Polygons

Using the Simulated
Immersion Algorithm

Time of
Watershed

Segmentation (s)

Number of Sliver
Polygons after

Region Merging

Time of Region
Merging (s) C D

RGB-RMWS 53,710 0.687 318 14.961 2000 1000
Lab-RMWS 53,710 0.687 316 8.252 1900 40
Luv-RMWS 53,710 0.687 378 8.908 2000 40

It could be found that the segmentation results of 7, 8, 11, and 12 cultivated lands were
better, with higher integrity, continuous boundaries, and less silver polygons. Conversely,
they were bad for other cultivated lands with a lot of sliver polygons. In comparison
with Figure 2c, it can be seen that the internal homogeneity of 7, 8, 11, and 12 cultivated
lands are higher, while the internal heterogeneity of other cultivated lands is higher. It is
obvious that the segmentation effect is significantly affected by the internal homogeneity
and heterogeneity of cultivated lands. As shown in Figure 10 and Table 6, Lab-RMWS
had the best performance among the three methods. On the contrary, RGB-RMWS-based
segmentation results were the worst. There were some sliver polygons in cultivated lands
by the three methods to a certain degree. The post-processing was implemented by manual
intervention, so additional time was required to merge them.

For each method, the quantitative evaluation indicators could be found in Table 7. It
showed that both the Lab-RMWS and Luv-RMWS methods had higher image segmentation
precision, and all the δA, δP, and Khat were superior to the RGB-RMWS method. The
improved algorithm based on the Lab color space performed better than the improved
algorithm based on the Luv color space.



Remote Sens. 2021, 13, 939 15 of 19

Table 7. Evaluation of the accuracies using the three methods.

Criterion Indicator RGB-RMWS Lab-RMWS Luv-RMWS

Area relative error δA 14.09% 5.15% 7.55%
Pixel quantity error δP 9.71% 4.44% 6.20%

Consistency Khat 80.12% 90.62% 86.99%

6. Discussion
6.1. Analysis of the Contrast Enhancement Image Segmentation

As shown in Figure 5 and Table 2, contrast enhancement could improve the image
segmentation quality and the image segmentation time efficiency. It is an effective tech-
nique to improve the pre-processing of the watershed algorithm. At present, there are
many methods for image enhancement [61,62]. In the future, comparative experiments
on various image enhancement methods should be carried out. The best image enhance-
ment method should be selected to assist the improvement of the CIE color space region
merging watershed algorithm in order to improve the image segmentation quality and
time efficiency.

6.2. Analysis of the Optimal Scale Parameters

The optimal scale parameter selection of the region merging watershed algorithm
mainly refers to the selection of the C value and D value [35]. In this paper, a GF-2 remote
sensing image has been used to conduct the optimal scale parameter selection trial-and-
error experiment on the improved algorithm. The performed experiments showed that
the optimal C values of the RGB-RMWS, Lab-RMWS, and Luv-RMWS methods were 2000,
1900, and 2000, while the optimal D values were 1000, 40, and 40, respectively. However,
the optimal scale parameters of the three color space region merging watershed algorithms
obtained in this study were mainly based on the experiment to obtain the empirical optimal
values. It was subjective to a certain extent, and was greatly affected by the image texture,
tone, time phase, image contrast enhancement method, etc. Subsequent studies still need
to continue to explore the objective acquisition method of the optimal scale parameters.

6.3. Analysis of the Extraction Effect

Optimal segmentation results should satisfy the following conditions: (1) The culti-
vated land boundary is continuous and complete; (2) the road in the cultivated land is
continuous and complete; (3) the cultivated land map’s internal sliver polygons are as
little as possible. Nowadays, the subjective evaluation method is still the most commonly
used for evaluation of the segmentation effect [45]. Compared to the original RGB color
space, the improved CIE color space watershed algorithm obviously improved the visual
comparison of the segmentation results. At the same time, the cultivated land boundaries
were divided completely, and less sliver polygons remained in the cultivated land. The
basic principle of greater homogeneity in the image spot after segmentation was achieved.
A comparison of the accuracy evaluation showed that the improved watershed algorithm
of the CIE color space was more accurate than that of the RGB color space. At the same
time, Tables 5 and 7 shows that the evaluation indicators of δA, δP, and Khat had better con-
sistency in the accuracy evaluation of the three methods. These evaluation indicators are
an effective combination of precision evaluation indicators of the watershed segmentation
algorithm.

6.4. Analysis of the Proposed Method

At present, there is much research on extracting cultivated land boundaries based
on remote sensing images [7]. The types of data used for research are varied. The extrac-
tion method has gradually transformed from unsupervised [20] and supervised classifica-
tion [21] with poor effects to support vector machines [19], object-oriented classification [23],
random forests [27], neural networks [28], and deep learning [31] with good effects. How-
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ever, these methods, inevitably, have problems such as complex rules and inadequate
applicability. The principle of the watershed algorithm is simple, and the processing pro-
cess is highly automated, and some attempts have been made in the field of boundary
extraction [13,32]. Based on Lab, the Luv color space watershed algorithm is an improved
algorithm for region merging in the CIE color space. This improved algorithm has achieved
better results in slope hazard boundary extraction [34,35].

In this study, a GF-2 remote sensing image from China was selected. The pre-
processing was improved by the enhancement of linear gray scale transformation, while
the CIE color space region merging improved the post-processing. The simulated immer-
sion algorithm was improved by combining the "pre + post" improvements. Compared
to the original RGB color space region merging watershed algorithm, cultivated land
boundary extraction was studied and tested. The δA, δP, and Khat was used to construct
the segmentation accuracy evaluation indicators combined as evaluation indicators. The
comparison experiments showed that the improved algorithm in this study is superior to
the unimproved algorithm in terms of the visual comparison, time efficiency, and extraction
precision of cultivated land boundaries. The improved algorithm based on the Lab color
space performed better than the improved algorithm based on the Luv color space. At
the same time, the indicators of δA, δP, and Khat had high consistency in the accuracy
evaluation. The accuracy evaluation results were completely consistent with that of visual
results of accuracy evaluation. The study provides an objective and reliable combination of
indicators for improving the accuracy evaluation of the watershed segmentation algorithm.

7. Conclusions

An improved watershed algorithm system based on “pre + post” processing was
proposed for cultivated land boundary extraction. Its includes image contrast enhancement,
CIE color space region merging, and segmentation accuracy evaluation criteria based on
the area relative error criterion, the pixel quantity error criterion, and the consistency
criterion. The experimental results showed that the improved CIE color space region
merging watershed algorithm is superior to the unimproved RGB color space region
merging watershed algorithm in terms of visual effect, time efficiency, and extraction
accuracy. The time efficiency has been improved in the Lab and Luv color spaces by 35.16%
and 29.58%, respectively. The δA, δP, and Khat indicators were improved by 76.92%, 62.01%,
and 16.83% in the Lab color space, respectively, and 55.79%, 49.67%, and 13.42% in the
Luv color space. The evaluation results of the three accuracy indicators were consistent.
The comparison experiments based on a larger image are still consistent with the small
image, showing that the proposed method has satisfying segmentation performance and
transferability. The proposed method is easier to be understood than other methods, and
the image processing of segmentation and region merging is simple. Its time efficiency
and result accuracy perform well, and the degree of automation is higher. It has a certain
reference value for the selection of a cultivated land boundary extraction method of high-
resolution remote sensing images. Furthermore, it extends the application field of the
watershed segmentation algorithm.
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