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Abstract: The timely estimation of nitrogen (N) requirements is essential for managing N fertilizer
application in pear orchards. Visible/near infrared spectroscopy is a non-destructive and effective
technique for real-time assessment of leaf N concentration, but its utility for decisions about fertilizer
application in the pear orchards remains to be determined. In this study, we used leaf spectroscopy
to determine leaf N concentration, used this value to calculate the amounts of N required for
supplementary fertilization, and then evaluated the effects of the application. Over the two-year
study, Cuiguan pear trees were treated with N at the following rates: 0 (N0), 100 (N1), 200 (N2),
300 (N3), and 400 (N4) g N per tree, regarded as five “controlled” N application rates. Another
four “regulatory” treatments (Nr1-4) were fertilized as the “controlled” N application rates the first
year, then given adjusted N application by topdressing as calculated using the N concentrations
inferred from visible/near infrared spectroscopy data the second year. A model (R2 = 0.82) was
established the first year to relate leaf spectra and N concentration using a partial least squares
regression with full bands (350–2500 nm). The amount of N in the topdressing for the supplemental
treatments was determined using the predicted leaf N concentration and the topdressing calculation
method adapted from the N balance formula. Results showed that adjusted N applications of the
Nr1 and Nr2 increased yield by 26% and 23%, respectively, over the controlled treatments N1 and N2.
Although treatments Nr3 and Nr4 did not increase yield significantly over N3 and N4, the partial
factor productivity of nitrogen in Nr4 was higher than the N4. The transverse diameter of fruit
from Nr1 trees was significantly higher than from N1 trees, while the longitudinal diameter of fruit
from Nr1, Nr2, and Nr3 trees was significantly higher than from N1, N2 and N3 trees, suggesting
that fruit longitudinal growth and single-fruit weight is stimulated by adjusted N applications.
However, the soluble solids in fruit from trees receiving adjusted N were not significantly greater
than in fruit from non-supplemented trees. In conclusion, our results illustrate that regulatory N
management contributes to fruit yield and quality especially in the nitrogen deficiency condition and
improves the nitrogen use efficiency in nitrogen surplus. The N prediction model established using
the nondestructive visible/near infrared spectroscopy is convenient and economical.

Keywords: visible/near infrared spectroscopy; nitrogen dressing; pear orchards; partial least
squares regression

1. Introduction

Although pears (Pyrus L.) are cultivated throughout the world, China is the leading
producer of Asian pears [1], one of the most common fruits cultivated in both North and
South China [2]. Nitrogen (N) is critical for regulating vegetative growth, promoting flower
bud differentiation, and increasing fruit set [3]. N is therefore an important fertilizer input
in pear cultivation, and optimizing its application in pear orchards is also important for
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economic and environmental reasons. Conventional fertilizer application practices in China
overuse N and phosphorus, which leads to soil acidification, salinization, and impaired
water quality [4]. In Chinese pear orchards, average total N input is 544.3 kg·N·ha−1,
and N surplus is 333.3 kg·N·ha−1 [5], far higher than the world average. In contrast,
pears in Europe receive 40–50 kg·N·ha−1 to maintain good fruit quality and production;
amounts higher than 160 kg·N·ha−1 are rarely applied [6]. Excessive N application often
results in the stimulation of shoot growth and leads to the production of fruits with
undesirably high N concentrations, making them more prone to post-harvest physiological
and pathological disorders [7,8]. Nitrate pollution of surface and ground water is also
a concern when N fertilization exceeds tree requirements [9–11]. Management practices
that produce high yielding crops without wasted N are needed to achieve sustainable
agriculture in China [12,13].

Leaf analysis is increasingly used to guide fertilizer application, since the N status
of the leaf more accurately reflects the needs of the tree than does soil testing [14]. With
the rapid development and improvement of spectroscopic techniques, leaf reflectance
has emerged as a fast and cost-effective method for monitoring N [15–18]. Algorithms
for leaf N retrieval from hyperspectral data in the agricultural sector can be divided into
physically-based and empirically-based approaches [18]. In addition, both types of leaf N
retrieval methods expanded into subcategories and combinations thereof [17], which can be
classified in to five general methods (adapted from Berger et al., 2020). They are physically-
based model inversion methods (radiative transfer models, RTMs), parametric regression
methods (vegetation indices with narrow spectra), nonparametric regression methods
(including linear and nonlinear approaches), alternative data (sun induced fluorescence),
and mixed regression methods. Recent years, the N retrieval methods responding to the
physiological theory of leaf N allocation took advances. Wang et al. (2015) demonstrated
that it was more useful to estimate the area-based leaf N content (expressed by the unit of
g/cm2) than that of the mass-based leaf N content (expressed by the unit of mg/g), which
was not affected by the dilution phenomenon [19]. Some reports demonstrated that the
relationship between nitrogen and proteins was essential for identifying optimal spectral
regions, because proteins were the major nitrogen-containing biochemical constituents
of leaves [18,20–24]. Moreover, it was shown in our previous study that visible/near-
infrared spectral measurements in the field could be used to measure nitrogen in pear
leaves non-destructively, when interpreted using a partial least squares regression (PLSR)
model (one of the nonparametric regression methods). Leaf N concentration can be used
as a reliable predictor of required N and yield, based on measurements at 50 days after full
bloom (DAB) [25,26]. However, the N fertilizer recommendation by the predicted leaf N
concentration using the non-destructive model in pear orchards have not been applied.

To provide accurate and timely assessment of N status during the growing season,
analytic methods must be rapid, simple to use, inexpensive, and technically rigorous [27].
Precise N management composed by the sensor-based N monitoring can improve fruit
trees’ productivity and overcome adverse effects due to the misapplication of N [28,29]. Ap-
propriate levels of nitrogen (N) promote cell division and growth as well as the synthesis of
leaf protein [30]. Efficient use of nitrogen fertilizer, both in terms of timing and the amount
applied, is important for achieving high fruit yield and quality in pear orchards [6,30].
Nitrogen deficiency or excess causes pear trees to grow poorly and produce fruit with
sub-optimal yield and/or quality [31]. Recently, algorithms (such as the N balance formula
and the N nutrition index) have been developed that use leaf or canopy reflectance to
calculate N application levels for various crops [32]. Sensor-based N monitoring can be
interfaced with a physiological demand model to realize precision N fertilization [33].
Kitchen et al. (2010) conducted field experiments to test whether canopy reflectance could
be used to assess crop N and estimate requirements for N fertilization [34]. Their results
confirmed that crop-canopy reflectance sensing has potential to improve N management
by replacing wasteful conventional single-rate applications [35]. However, nutrient storage
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in woody perennials is not the same as in other plants [3,36]; the utility of spectroscopy for
precision management of N has not been tested in pear trees.

It is not yet known if data obtained from monitoring the nitrogen concentration in
leaves can be used to guide nitrogen application in the field and evaluate its effects. In order
to address these questions, we conducted a study with three basic aims: (1) to establish
a non-destructive model for monitoring leaf nitrogen concentration in pear orchards,
(2) to develop an algorithm to calculate an appropriate level of N topdressing using the
sensor-based leaf nitrogen monitoring, and (3) to evaluate the performance of algorithm by
assessing the effects of the recommended N applications on fruit quality.

2. Materials and Methods
2.1. Plant Material

The two-year field experiment was conducted in Tongzhu Village of Yixing City
(Jiangsu Province, China; 31.35N, 119.74E) from January 2015 to September 2016. The
annual mean temperature and precipitation were 15.7 ◦C and 1177 mm, respectively. The
soil of experimental site has a clay-loamy texture, contains 15.65 g·kg−1 organic matter,
and has a low N concentration of 0.8 g·kg−1. The available phosphate and potassium are
18.61 and 127.8 mg·kg−1 respectively, and the pH of the soil in water is 6.39. Five-year old
Cuiguan pear trees (Pyrus pyrifolia Nakai cv. Cuiguan) were used in the experiment. The
trees were cultivated in 4 × 3 m frames and bore fruit in 2016.

2.2. Leaf Spectra Collection and Leaf Nitrogen Concentration Measurement

To establish a diagnostic model for nitrogen concentration in pear leaves, we used
nondestructive evaluation by spectroscopy. Leaf spectra were collected in the field during
May and July 2015 (i.e., 50 DAB, and 80 DAB). The middle leaves of the year’s spring flush
were selected for spectral measurements from the external sides of the canopy (east, south,
west, and north). Leaf spectral measurements were made in the field using a FieldSpec 3
portable field spectrometer (Analytical Spectral Devices, Boulder, CO, USA) by a probe
with an internal light source and a clip to hold the leaf against a black background. The
plant probe and leaf-clip are commercial solutions because the accessories are sold with
the spectrometer. As demonstrated in our previous study, spectra collected against a
black background exhibit a higher signal-to-noise ratio than spectra collected on a white
background [25]. The photos which illustrated the measurement procedure revised from
our previous study were in the Figure S1. This spectrometer was assembly attached durable
battery and stable light source instead of the solar irradiation. The spectroradiometer had a
2 nm sampling interval and a spectral resolution of 3 nm from 350 to 1000 nm, and 10 nm
from 1000 to 2500 nm. To prevent outliers at the moment of the in-field measurements, the
spectrometer and the light source would be preheated half an hour in advance until getting
the condition to be homogeneous and stable. In addition, before leaf spectra measurement
of every treatment, the leaf-clip with Teflon white standard would be applied to adjust
the maximum reflectance (99.9%) conditions to avoid baseline drift, and then, the leaf-
clip with black background was used to collect the leaf spectra through the ratio of leaf
reflectance and the white standard reflectance. The adaxial leaf surface should be faced to
the plant probe. Two symmetrical points beside the leaf vein were designed to collected
five spectra with stable 5 s integration time each measured point. Final leaf spectra were
obtained by the average spectrum of the two points. In order to avoid the possible effect of
environmental conditions (including temperature and solar irradiation) on the leaf spectra
collection, all the leaf spectra measurement were completed in-field with 3.5 h in the early
morning (6:00 a.m. to 10:00 a.m. in the same temperature) including the calibration and
validation samples.

After the in-field leaf spectra measurement, leaf N concentration of dry mass was
determined by the Dumas method using an Elementar Vario Macro CHN analyzer (Ele-
mentar Analysensyteme GmbH, Hanau, Germany). The leaves with completed spectra
measurements were taken to the laboratory for analysis. The leaf samples were dried in
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oven firstly at 105 ◦C for 1 h to de-enzyme and then at 70 ◦C for 72 h to remove the water.
The main vein in the middle of the leaves had to be removed. The dried leaf samples were
finely ground, mixed, and weighted in the Tin boat for determination. At the same time,
the standard acetanilide and citrus leaf (GBW10020) samples were added every testing time
to reduce the system error in the lab-analysis. In the analysis of leaf nitrogen concentration
by Dumas method with the Elementar Vario Macro CHN analyzer, acetanilide was used to
check whether the equipment in normal condition, especially the instrument consumables,
was usable. In detail, if the equipment is in normal condition, the measured nitrogen
concentration of acetanilide is 10%. Similarly, the standard citrus leaf samples (GBW10020)
were added in the testing procedure to identify whether a system error appeared. The
referenced nitrogen concentration of the standard citrus leaf samples (GBW10020) was
2.47% ± 0.06%. If the measured standard samples were out of the referenced value, the
measured pear leaves in simultaneous procedure had to be redetermined.

2.3. Leaf Nitrogen Concentration Modeling

Before modeling, spectral principal component analysis (PCA) was be used to dis-
criminate the outliers throughout the calibration and validation samples (Figure 1). Then,
normalization and moving average smoothing pre-treatment in the Unscrambler X 10.3
(Camo Software AS, Oslo, Norway) was applied to deal with the raw spectral data for
improving the modeling accuracy [25,26]. As reported in our previous study, a partial least
square regression (PLSR) was used to create a diagnostic model for leaf nitrogen concentra-
tion by Unscrambler X 10.3. The accuracy and precision of PLSR models were evaluated
by coefficient of determination (R2) between predicted and chemical-determined N con-
centrations, the root mean square error during the calibration phase (RMSEC), and the
root mean square error during the validation phase (RMSEV). In the modeling procedure,
the leave-one-out cross validation was used to improve the coefficient of determination
as well as decrease the errors by adjusting the factor number (Figure 1). Following the
criteria of Saeys et al. (2005), a calibration model with an R2 value between 0.81 and 0.90
was considered good [37]. A small difference between the RMSEC and RMSEV values was
also important to avoid “over-fitting” during the calibration and validation phases [38].

2.4. Treatments and Topdressing Calculation

Based on the conventional N fertilization schedule for the locality (200 g N per tree),
five “controlled” N application rates were tested: 0 (N0), 100 (N1), 200 (N2), 300 (N3),
and 400 (N4) g N per tree. Four “regulatory” treatments were also tested (Nr1, Nr2, Nr3,
and Nr4). The complete design therefore involved 9 treatments (including the N0) and
9 groups of six trees each. In year 1, base fertilizer (60% of the total N) was applied (March
2015). These treatments were identical to the corresponding controlled treatments (i.e.,
Nr1 = N1). In year 2, topdressing (40% of the total N) was applied (May 2016). Four groups
again received N1-4, and 4 groups received Nr1-4 (but with amounts calculated using
the fertilization Formula (1) after leaf nitrogen status was determined by spectroscopy;
see Table 1). The block design of experiment was in a random arrangement in alternate
rows, with three replicates of two trees. Each experimental plot was isolated by inserting
40 × 120 cm baffles into the soil to a depth of 50 cm to minimize nitrogen exchange between
plots. Nitrogen fertilizer (urea) was applied using a fertilizer irrigation system. Standard
orchard practices adopted by local commercial pear producers, including winter pruning,
pest control in the spring and summer, and regular irrigation were employed. Trees were
not permitted to bear fruit in 2015. A uniform pruning was carried out in spring of 2016,
and the trees were left to bear fruit later that year.
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Table 1. Nitrogen application rates (g·plant−1) for different treatments.

Treatment Total N Rate Total Urea Base Urea Rate (60%) Topdressing Urea (40%)

N0 0 0 0 0

N1 100 218 131 87
Nr1 131 + X1 131 X1

N2 200 435 261 174
Nr2 261 + X2 261 X2

N3 300 518 311 207
Nr3 311 + X3 311 X3

N4 400 870 522 348
Nr4 522 + X4 522 X4

Note: X1-4 within the column represented the topdressing calculated by the revised N balance Formula (1).

The formula calculating N topdressing of Nr1-4 based on leaf nitrogen concentration
in 2016 were revised according to the N imbalance formula by Yin et al. (2010) [39]. Several
additional statistical parameters we required were investigated in the field, including
the suitable leaf nitrogen content in 50 DAB, average weight of 100 dry leaves, branch
numbers, average leaf number of one branch and the local N fertilizer use efficiency.
According to Buwalda et al. (1990) and Hou et al. (2012), the suitable leaf nitrogen content
in 50 DAB is 27 g·kg−1 [40,41]. Before treatments, all pear trees were pruned uniformly.
The number of fruits on each tree was counted during bagging at the maturity stage. The
investigated value of the average weight of 100 dry leaves and the local nitrogen use
efficiency by fertigation is 57 g (n = 500) and 30%, respectively. The fertilization formula
shown as follows:

X =

(
Nre f − Nr

)
× W(Lea f ) × Number(Lea f )

100 × 0.46 × NUE
(1)
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Nref: suitable leaf nitrogen content in 50 DAB;
Nr: predicted leaf nitrogen concentration by the model;
W(Leaf ): the average weight of 100 dry leaves;
Number(Leaf ) = branch number × average leaf number of one branch;
NUE: local nitrogen use efficiency.

2.5. Measurement of Fruit Yield and Quality and PFP-N Calculation

All fruit was collected from each tree and measured for weight and quality at maturity.
Fruit firmness was measured using the FT 327 firmness tester (BREUZZI, CO, Italy), which
fitted with a 5 mm diameter round stainless-steel probe with a flat end, in an equatorial
end area of the fruit. Results were expressed in Newtons (N) [42]. Soluble solids content
was measured using the PAL-1 electronic refractometer (ATAGO, CO, Japan). Transverse
and longitudinal fruit diameters were measured using a Vernier caliper. The partial factor
productivity of nitrogen (PFP-N) in each treatment were calculated as the ratio of fresh
pear yield to the nitrogen application rate. A high PFP-N is associated with less N use and
greater yield [43].

2.6. Statistical Analysis

Preprocessing and modeling of the spectral data was conducted using ViewSpec Pro
(Analytical Spectral Devices, Boulder, CO, USA) and Unscambler X 10.3 (Camo Software
AS, Oslo, Norway), respectively. Microsoft Excel 2010 was used to process data for leaf
nitrogen concentration, fruit yield, and quality. Statistically significant differences among
treatments were analyzed using the least significant difference (LSD) multiple range test
(p < 0.05) by SPSS17.0 (SPSS Inc., Chicago, IL, USA).

3. Result
3.1. Leaf N Concentration and Its Diagnosis Model by VIS-SWIR Spectroscopy

Although the pear trees did not bear fruit in 2015, leaf N concentrations from the
50 DAB to 80 DAB were decreasing with the vegetative growth (Figure 2). Leaf N concen-
tration of 80 DAB was significantly lower than that of 50 DAB for all treatments. Among
treatments, the leaf N concentrations were significantly different depending on N applica-
tion rates (N4 > N3 > N2 > N1 > N0).

The association between leaf nitrogen concentration and spectral measurements was
established using leaf samples collected in May and July (50 and 80 DAB) of 2015. The
modeling procedure as expressed in the materials and methods were conducted one by
one (Figure 1). Principal component analysis (PCA) was applied to raw spectral data
to discriminate the outliers throughout the calibration and validation samples. Before
modeling with all the samples, PCA was used to identify “outliers” in the software of
“Tasks- Analyze-Principal Component Analysis”. The outliers were automatically selected
by the bottom of “mark outliers” in the menu bar of the software (Figure S1). We have
retrospect the outliers (only two outliers in the whole samples) were samples numbered
“680 and 681”, which were sampled just before the spectral acquisition interruption because
of low battery warning. These outlier samples with lower reflectance in all bands for
the weakening incident ray (Figure S2) were removed. Then, area normalization and
moving average smoothing with 3 “segment size” in the Unscrambler X 10.3 (Camo
Software AS, Oslo, Norway) were applied to deal with the raw spectral data for improving
the modeling accuracy according to our previous study (Figure S3). The partial least
square regression (PLSR) was used to model the relationship between the leaf spectra
and the leaf nitrogen concentrations. Samples were randomly divided into a calibration
set (n = 780) and a validation set (n = 230) by the Kennard–Stone algorithm (Table 2). In
the modeling procedure, the leave-one-out cross-validation will be used to improve the
coefficient of determination as well as decrease the errors by adjusting the factor number
(initial maximum was 20). The Modeling scenarios with different steps (including modeling
with limited regions and preferred pretreatment methods) were shown in the Table 3. The
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R2 of calibration by wavelength subsets of visible and long-wave near infrared region,
and the short-wave near infrared region were 0.66 and 0.76, respectively. The final factor
number of the calibration with all bands pretreated by normalization was set as 14 by
the leave-one-out cross-validation, which had a good coefficient of determination for the
calibration of 0.83 (Figure 3A), and for the validation of 0.82. The mean relative error
was less than 5% (Figure 3B). The model therefore reliably predicts N levels based on
leaf reflectance.
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Figure 2. Nitrogen concentration in leaves from trees under different treatments. Measurements
were taken 50 days after bloom and 80 days after bloom in the first year of the experiment (2015).
Common letters indicate that data are not significantly different between treatments at p < 0.05.

Table 2. Statistical values of pear leaf N concentrations for modeling and validation.

Data Sets
Sample Number Min. Max. Average

g·kg−1

All 1010 18.38 42.41 29.31 ± 3.82
Calibration 780 20.96 42.41 29.67 ± 3.96
Validation 230 18.38 37.73 28.09 ± 3.00

Table 3. Modeling results of partial least squares regression with different regions, pretreatments.

Modeling Scenarios
Factor Number Calibration Leave-One-Out Validation

R2 RMSE R2 RMSE

350–1300 nm 11 0.66 0.22 0.64 0.23
1300–2500 nm 14 0.76 0.19 0.75 0.19

All bands 14 0.81 0.16 0.80 0.17
All bands with
Normalization 14 0.83 0.13 0.82 0.15

All bands with MAS 14 0.82 0.16 0.80 0.17

Note: R2, RMSE, MAS were represented coefficient of determination, root mean square error, and Moving average
smoothing, respectively.



Remote Sens. 2021, 13, 927 8 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

Table 3. Modeling results of partial least squares regression with different regions, pretreatments. 

Modeling 

Scenarios  

Factor Number Calibration Leave-One-Out Validation 

 R2 RMSE R2 RMSE 

350–1300 nm 11 0.66 0.22 0.64 0.23 

1300–2500 nm 14 0.76 0.19 0.75 0.19 

All bands 14 0.81 0.16 0.80 0.17 

All bands 

with Normali-

zation 

14 0.83 0.13 0.82 0.15 

All bands 

with MAS 
14 0.82 0.16 0.80 0.17 

Note: R2, RMSE, MAS were represented coefficient of determination, root mean square error, and 

Moving average smoothing, respectively. 

 

Figure 3. Measured vs. predicted N concentration. (A) calibration of model (n = 780). (B) valida-

tion of model (n = 230). The lines were defined using partial least squares (PLS) regression. 

3.2. Predicted Leaf Nitrogen Concentration and Calculation of Topdressing 

The average leaf nitrogen concentrations were shown for pear trees that received dif-

ferent controlled N application rates in the second year of the experiment (Figure 4). Meas-

urements were taken at the 50 days after bloom. As expected, leaf nitrogen concentration 

was higher in trees receiving greater amounts of N. However, all concentrations were less 

than 27 g·kg−1, which is the reference value in during the 50 and 80 days after bloom. To 

calculate the N fertilization rate based on leaf N concentration and the revised N balance 

formula, the additional statistical parameters were investigated and recorded in the field, 

including fruit and branch number in each treatment (Table 4). The fruit number of N0 

treatment was significantly lower than that of both controlled and regulatory treatments. 

Figure 4 also shows the N application rates for the regulatory treatments. The amounts 

were calculated using the fertilization formula and are listed in Table 5. The calculated 

regulatory applications are inversely proportional to leaf N concentration. It makes sense 

that pear trees with high leaf N concentrations should be applied less regulatory nitrogen, 

and trees with low leaf N concentrations should be applied more regulatory nitrogen. 

Table 4. Branches and fruit parameters of tested pear trees. 

 Treatments Fruit Number Branch Number 

Controlled treatments 

N0 9.2 ± 2.6 c 13.2 ± 3.1 b 

N1 10.3 ± 3.0 b 16.3 ± 3.5 ab 

N2 10.7 ± 2.5 b 15.1 ± 3.1 ab 

N3 13.3 ± 3.7 a 16.2 ± 3.4 ab 

Figure 3. Measured vs. predicted N concentration. (A) calibration of model (n = 780). (B) validation of model (n = 230). The
lines were defined using partial least squares (PLS) regression.

3.2. Predicted Leaf Nitrogen Concentration and Calculation of Topdressing

The average leaf nitrogen concentrations were shown for pear trees that received
different controlled N application rates in the second year of the experiment (Figure 4).
Measurements were taken at the 50 days after bloom. As expected, leaf nitrogen concentra-
tion was higher in trees receiving greater amounts of N. However, all concentrations were
less than 27 g·kg−1, which is the reference value in during the 50 and 80 days after bloom.
To calculate the N fertilization rate based on leaf N concentration and the revised N balance
formula, the additional statistical parameters were investigated and recorded in the field,
including fruit and branch number in each treatment (Table 4). The fruit number of N0
treatment was significantly lower than that of both controlled and regulatory treatments.
Figure 4 also shows the N application rates for the regulatory treatments. The amounts
were calculated using the fertilization formula and are listed in Table 5. The calculated
regulatory applications are inversely proportional to leaf N concentration. It makes sense
that pear trees with high leaf N concentrations should be applied less regulatory nitrogen,
and trees with low leaf N concentrations should be applied more regulatory nitrogen.

Table 4. Branches and fruit parameters of tested pear trees.

Treatments Fruit Number Branch Number

Controlled treatments

N0 9.2 ± 2.6 c 13.2 ± 3.1 b
N1 10.3 ± 3.0 b 16.3 ± 3.5 ab
N2 10.7 ± 2.5 b 15.1 ± 3.1 ab
N3 13.3 ± 3.7 a 16.2 ± 3.4 ab
N4 12.5 ± 3.5 a 17.6 ± 2.1 ab

Regulatory treatments

Nr1 12.3 ± 3.2 a 17.8 ± 2.0 ab
Nr2 11.8 ± 3.7 ab 14.8 ± 2.8 b
Nr3 11.7 ± 2.9 ab 18.0 ± 1.7 a
Nr4 10.8 ± 2.9 b 14.8 ± 2.8 b

Note: Data are expressed as means ± SE. Within columns, different letters indicate the analysis of significant
differences among different treatments at p < 0.05.
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Figure 4. Leaf nitrogen concentrations determined in 2016 from spectroscopic analysis of leaves from
trees receiving different controlling treatments. Points on the black line are the average leaf nitrogen
concentration of N0, N1, N2, N3, and N4 (21.2, 22.0, 22.6, 24.4 and 25.6 g·kg−1, respectively). The
green column were the urea topdressing rates calculated using the fertilizer formula.

Table 5. Details of nitrogen application rates for regulatory treatments.

Treatment Total N Rate Total Urea Base Urea Topdressing Urea Real Total Urea

g·plant−1

N0 0 0 0 0 0
Nr1 317 131 + X1 131 X1 689
Nr2 308 261 + X2 261 X2 670
Nr3 291 311 + X3 311 X3 633
Nr4 300 522 + X4 522 X4 652

Note: X1–X4 were applied as topdressings, calculated by the fertilizer Formula (1).

3.3. Leaf Nitrogen Concentration at Maturity

Two months after the application of the regulatory treatment (i.e., at fruit maturity),
leaf nitrogen concentrations were determined for trees receiving the controlled and regu-
latory treatments (Figure 5). For the controlled treatments, nitrogen concentration in the
leaves increases as the N application rate increases, and there are significant differences
in concentration amongst the treatments. In contrast, nitrogen concentrations in leaves
from trees receiving the regulatory treatments tended to be similar across treatments and
were 47% higher than for the N0 treatments. The results show that the low leaf nitrogen
concentrations conferred by the insufficient basal fertilizer treatments can be increased
significantly by applying an appropriate topdressing, as calculated using the predicted leaf
nitrogen concentration and the fertilization formula.



Remote Sens. 2021, 13, 927 10 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

concentrations conferred by the insufficient basal fertilizer treatments can be increased 

significantly by applying an appropriate topdressing, as calculated using the predicted 

leaf nitrogen concentration and the fertilization formula. 

 

Figure 5. Leaf nitrogen concentrations for trees receiving different treatment at fruit maturity in 

2016. For the controlled treatments, leaf N nitrogen concentrations increases as the N application 

rate increases, and there are significant differences in concentration amongst the treatments. In 

contrast, leaf N concentrations from trees receiving the regulatory treatments tended to be similar 

across treatments. 

3.4. Effects of Controlled and Regulatory N Application Rates on Fruit Weight and Yield 

Single fruit weight and yield both increased with higher N application rates, and both 

were significantly higher for trees receiving the regulatory treatments (Table 6). The fruit 

weight observed with regulatory treatment Nr1 was significantly higher than that for the 

controlled treatment of N1. However, there were no significant differences between Nr2, 

Nr3, Nr4, N2, N3, and N4. Compared with the controlled treatments of N1 and N2, Nr1 

and Nr2 yields increased significantly by 26% and 23%, respectively. There was no signif-

icant difference in yields for Nr3 and N3, while the Nr4 yield was significantly lower than 

for N4. The results of the partial factor productivity of nitrogen (PFP-N) in each treatment 

were shown in Table 5. Although the yield of Nr4 was significantly lower than that of N4, 

the PFP-N of Nr4 was higher than the N4. 

Table 6. Effects of different nitrogen application rates on single fruit weight, yields, and the nitro-

gen partial factor productivity (PFP-N). 

Treatments Single Fruit Weight (g) Yield (kg per tree) PFP-N (kg·kg−1) 

N0 160.64 ± 11.87 d 1.45 ± 0.11 d — 

N1 211.24 ± 12.16 c 2.20 ± 0.17 c 22 

N2 228.09 ± 7.76 b 2.28 ± 0.08 c 11.4 

N3 232.60 ± 4.50 b 3.02 ± 0.06 ab 10.1 

N4 257.07 ± 12.79 a 3.08 ± 0.15 a 7.7 

Nr1 231.24 ± 7.82 b 2.77 ± 0.09 b 8.7 

Nr2 233.25 ± 11.75 bc 2.80 ± 0.14 b 9.1 

Nr3 237.67 ± 12.45 ab 2.78 ± 0.28 b 9.5 

Nr4 238.60 ± 9.91 ab 2.62 ± 0.11 b 8.7 

Note: Data are expressed as means ± SE. Within columns, different letters indicate the analysis of 

significant differences among different treatments at p < 0.05. 

e e

b

d

b

c

b bb

a

0

5

10

15

20

25

30

35

Regulatory treatments Controlled treatments

L
ea

f 
n

it
ro

g
en

 c
o

n
ce

n
tr

a
ti

o
n

 (
g

 k
g

-1
)

N0 N1 N2 N3 N4

Figure 5. Leaf nitrogen concentrations for trees receiving different treatment at fruit maturity in
2016. For the controlled treatments, leaf N nitrogen concentrations increases as the N application
rate increases, and there are significant differences in concentration amongst the treatments. In
contrast, leaf N concentrations from trees receiving the regulatory treatments tended to be similar
across treatments.

3.4. Effects of Controlled and Regulatory N Application Rates on Fruit Weight and Yield

Single fruit weight and yield both increased with higher N application rates, and
both were significantly higher for trees receiving the regulatory treatments (Table 6). The
fruit weight observed with regulatory treatment Nr1 was significantly higher than that for
the controlled treatment of N1. However, there were no significant differences between
Nr2, Nr3, Nr4, N2, N3, and N4. Compared with the controlled treatments of N1 and N2,
Nr1 and Nr2 yields increased significantly by 26% and 23%, respectively. There was no
significant difference in yields for Nr3 and N3, while the Nr4 yield was significantly lower
than for N4. The results of the partial factor productivity of nitrogen (PFP-N) in each
treatment were shown in Table 5. Although the yield of Nr4 was significantly lower than
that of N4, the PFP-N of Nr4 was higher than the N4.

Table 6. Effects of different nitrogen application rates on single fruit weight, yields, and the nitrogen
partial factor productivity (PFP-N).

Treatments Single Fruit Weight (g) Yield (kg per tree) PFP-N (kg·kg−1)

N0 160.64 ± 11.87 d 1.45 ± 0.11 d —
N1 211.24 ± 12.16 c 2.20 ± 0.17 c 22
N2 228.09 ± 7.76 b 2.28 ± 0.08 c 11.4
N3 232.60 ± 4.50 b 3.02 ± 0.06 ab 10.1
N4 257.07 ± 12.79 a 3.08 ± 0.15 a 7.7
Nr1 231.24 ± 7.82 b 2.77 ± 0.09 b 8.7
Nr2 233.25 ± 11.75 bc 2.80 ± 0.14 b 9.1
Nr3 237.67 ± 12.45 ab 2.78 ± 0.28 b 9.5
Nr4 238.60 ± 9.91 ab 2.62 ± 0.11 b 8.7

Note: Data are expressed as means ± SE. Within columns, different letters indicate the analysis of significant
differences among different treatments at p < 0.05.

3.5. Effects of Controlled and Regulatory N Application Rates on Fruit Quality

Fruit firmness, under either the controlled or the regulatory treatments, was lower
than that of the N0 (Table 7). However, there was no significant difference in fruit firmness
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amongst the treatments. For trees receiving the regulatory treatments, soluble solids content
was significantly higher than for trees of controlled treatments, with the N3 treatment
exhibiting the maximum value. The transverse diameter of pear fruit with the Nr1 treatment
was significantly higher than for the N1 treatment. The vertical diameters of pear fruits
with regulatory treatments Nr1, Nr2, and Nr3 were significantly higher than diameters
observed with the controlled treatments N1, N2, and N3.

Table 7. Effects of different nitrogen application rates on fruit quality.

Treatments Firmness (N) TSS (%) TD (cm) VD (cm)

N0 21.81 ± 2.10 a 10.23 ± 0.06 d 6.68 ± 0.37 d 6.08 ± 0.21 d
N1 21.67 ± 0.67 a 10.87 ± 0.17 bc 7.45 ± 0.06 c 6.94 ± 0.11 c
N2 21.32 ± 1.96 a 11.99 ± 0.14 a 7.76 ± 0.06 ab 7.11 ± 0.18 c
N3 20.96 ± 0.62 a 12.32 ± 0.31 a 7.87 ± 0.14 ab 7.34 ± 0.16 ab
N4 20.34 ± 0.89 a 11.42 ± 0.13 b 8.17 ± 0.03 a 7.32 ± 0.04 ab
Nr1 19.90 ± 0.34 a 10.98 ± 0.25 c 7.84 ± 0.15 ab 7.23 ± 0.28 bc
Nr2 21.09 ± 0.36 a 11.42 ± 0.57 b 7.87 ± 0.21 ab 7.21 ± 0.24 bc
Nr3 21.63 ± 0.40 a 11.03 ± 0.33 bc 8.05 ± 0.10 ab 7.61 ± 0.08 a
Nr4 21.56 ± 0.36 a 11.31 ± 0.28 bc 7.79 ± 0.15 ab 7.27 ± 0.15 bc

Note: TSS, TD, and VD represented total soluble solid content, transverse diameter, and vertical diameter,
respectively. Data are expressed as means ± SE. Within columns, different letters indicate the analysis of
significant differences among different treatments at p < 0.05.

4. Discussion

Non-destructive monitoring of leaf nitrogen concentration, as well as the correspond-
ing ability to precisely manage N application, is likely to be essential for improving pear
production. In this report, we describe an experiment in which different amounts of N
were applied over a 2-year period in a pear orchard. Non-destructive measurements of
N, acquired using leaf reflectance, were used to determine N application amounts in the
second year. A partial least-squares regression was used to establish a model relating
leaf nitrogen concentration (LNC) to leaf reflectance with the wavelengths from 350 to
2500 nm. An algorithm that predicts leaf nitrogen concentration for a given fertilizer input
was used to calculate the amount of N that was applied in the second year. In this study,
the R2 of calibration by wavelength subsets of visible and long-wave near infrared region
(VIS-NIR) and the short-wave near infrared region (SWIR) were 0.66 and 0.76, respectively.
The SWIR was more sensitive to leaf N concentrations than that of VIS-NIR, due to the
physiological link of N with proteins (Feret et al., 2021), which show better retrieval in this
wavelength domain [24]. The PLSR is modeled with a parameter named “Factor” (also
called the “Latent Variables”), which describes variance in both the independent Y and
dependent variables X composed of different X loadings (including all bands), to maximize
the covariance described by the model. The modeling accuracy by the PLSR method will
be cumulated by the increment of factor number and stopped with the stable platform
(Figure S4). An appropriate model should select the proper “Factor number” with higher
R2 and lower RMSE, and the leave-one-out cross-validation [25]. PLS regression with all
bands (R2 = 0.81) was better than the limited regions (R2 = 0.66–0.76). The coefficients
weights for models (X loadings) including both the VIS-NIR and the SWIR wavelengths
(Figure S5). This result was consistent with our previous study. PLSR model with the
wavelengths from 350 to 2500 nm for the LNC determination were proven to be better
than the vegetation indices (R2 = 0.4) calculated by two bands, the stepwise multiple
linear regression (R2 = 0.75) calculated by several sensitive bands [25]. The R2 of cross
validation by PLSR with several sensitive ranges ranged from 0.83–0.93 versus the R2 of
cross validation with all bands was 0.95 [26]. Raw spectral data can also be applied directly
in the software to modeling the leaf nitrogen concentrations. However, as reported by the
previous study, the modeling accuracy using raw spectra pretreated by normalization is
higher than the only raw spectra data [25,26]. In this study, the modeling accuracy using
raw spectra pretreated by normalization (R2 = 0.83) was higher than the only raw spectra
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data (R2 = 0.80). In this case, the pretreatment named “normalization” is a requirement
for this kind of application. In addition, the tested pear trees were 5-year-old which were
sensitive to the nitrogen application both in vegetative and reproductive growth. Therefore,
the accuracy of predicted LNC is critical in this experiment, in which we tried our best to
improve the modeling accuracy by all bands and better pretreatments selection. As for
the scenario that managers only have a spectrometer with limited bands, we recommend
getting the balance between the accuracy of predicted LNC and the required accuracy LNC
for topdressing calculated. If the required accuracy of topdressing calculation is not that
critical, the less accuracy of LNC determined by limited wavelengths or raw spectra can
be acceptable. Compared to the vegetation index and other empirical methods, the PLSR
performed well in modeling and easy to be realized in the user-friendly software. Recent
years, the physical-based method such as radiation transfer model have developed their
own operation interface systems on the Matlab, which can be easily utilized by the users
without code written [44]. The modeling performances in the determination of pear leaf
nitrogen concentration should be further tried [45].

The regulatory treatments that were defined using the algorithm were particularly
effective for low amounts of N. Compared with the controlled applications N1 and N2,
Nr1 and Nr2 significantly increased yield by 26% and 23%, respectively. No significant
difference in yield was observed between Nr3 and N3, while Nr4 produced a lower yield
than N4. The partial factor productivity of nitrogen in Nr4 was higher than the N4. Fruit
firmness was lower under both the controlled and regulatory treatments than under the
N0. However, there were no significant differences in fruit firmness across treatments. The
soluble solids content under the regulatory treatments was significantly higher than under
the N0. The soluble solids content of the controlled treatments was found increase with the
increase of N application rate first then reduction with the increase of N application rate,
the maximum value was found in the N3 treatment. Compared with N0, the transverse
and longitudinal diameter of pear fruits were significantly increased by both regulatory
treatments and controlled treatments. Controlled under nitrogen treatment, the highest N3
treatment of mature fruit soluble solids, high nitrogen treatment quality is slightly lower,
which is consistent with a report by Chen et al. (2010) that a proper quantity of nitrogen
fertilizer can increase fruit soluble solid content in Housui pears [30]. In contrast, a lower
content of total soluble sugar, due to a decrease in fructose and glucose, was observed
when nitrogen was excessive [31,46]. Compared with the controlled treatments, regulatory
nitrogen fertilization did not appear to affect soluble solids. The amount of potassium
may need to be adjusted along with the amounts of nitrogen applied in each regulatory
treatment. When leaf nitrogen is low, the amount of regulatory nitrogen applied is relatively
high, and potassium should be increased in proportion to the increase in N fertilizer [47].

5. Conclusions

In conclusion, proper application of topdressing as calculated by visible/near infrared
spectroscopy can reduce the negative effects caused by N imbalance on yield and fruit
quality, especially under conditions of nitrogen deficiency, and improves the nitrogen use
efficiency in nitrogen surplus. In addition, judicious N management that the N prediction
model established using the nondestructive visible/near infrared spectroscopy can timely
reduce the N fertilizer application and be environmentally friendly under conditions of
nitrogen surplus.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/5/927/s1. Figure S1 the schematic diagram of spectral acquisition by the plant probe and leaf
clip (picture was adapt from Wang et al., 2017). Figure S2 outliers were automatically by the button
of “mark outliers” in the menu bar of the software (a). We have retrospect the outliers named “680
and 681” in the notebook and compared the reflectance with the same leaf nitrogen concentration.
Sample “680 and 681” were measured just before the spectral acquisition interruption because of
low battery warning. These outlier samples with lower reflectance in all bands for the weakening
incident ray (b) were not easy perceptible. Figure S3 raw spectral data (a) versus the normalized data
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(b). Figure S4 PLSR modelling accuracy cumulated by the increment of factor number and stopped
with the stable platform. Figure S5 X-loading weights of the PLSR model (the factor number was 14)
calculated by all bands and normalization pretreatments.
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