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Abstract: The subtropical vegetation plays an important role in maintaining the structure and func-
tion of global ecosystems, and its contribution to the global carbon balance are receiving increasing
attention. The fractional vegetation cover (FVC) as an important indicator for monitoring environ-
ment change, is widely used to analyze the spatiotemporal pattern of regional and even global
vegetation. China is an important distribution area of subtropical vegetation. Therefore, we first used
the dimidiate pixel model to extract the subtropical FVC of China during 2001–2018 based on MODIS
land surface reflectance data, and then used the linear regression analysis and the variation coefficient
to explore its spatiotemporal variations characteristics. Finally, the partial correlation analysis and
the partial derivative model were used to analyze the influences and contributions of climate factors
on FVC, respectively. The results showed that (1) the subtropical FVC had obvious spatiotemporal
heterogeneity; the FVC high-coverage and medium-coverage zones were concentratedly and their
combined area accounted for more than 70% of the total study area. (2) The interannual variation in
the average subtropical FVC from 2001 to 2018 showed a significant growth trend. (3) In 76.28% of the
study area, the regional FVC showed an increasing trend, and the remaining regional FVC showed
a decreasing trend. However, the overall fluctuations in the FVC (increasing or decreasing) in the
region were relatively stable. (4) The influences of climate factors to the FVC exhibited obvious spatial
differences. More than half of all pixels exhibited the influence of the average annual minimum
temperature and the annual precipitation had positive on FVC, while the average annual maximum
temperature had negative on FVC. (5) The contributions of climate changes to FVC had obvious
heterogeneity, and the average annual minimum temperature was the main contribution factor
affecting the dynamic variations of FVC.

Keywords: fractional vegetation cover; dimidiate pixel model; partial correlation analysis; subtropi-
cal; climate change

1. Introduction

The fractional vegetation cover (FVC) refers to the ratio of the vertical projection area
of vegetation (including leaves, stems and branches) on the ground to the entire study
area [1,2]; it is not only an important parameter reflecting the growth and distribution
characteristics of surface vegetation [3] but also an important basic data describing the
condition of the ecosystem [4]. As an important part of the ecosystem [1,5], vegetation plays
a crucial role in ecosystem energy and material exchange processes. Climate change, the
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main feature of which is global warming, has now become an internationally recognized
fact [6,7]. Climate change has triggered a series of global-scale environmental problems,
such as global warming, ecosystem degradation, and desertification, which have had a
great impact on the growth, distribution, and succession patterns of vegetation [8–10] and
are also a major challenge to global sustainable development [11,12]. The total amount of
net ecosystem productivity (NEP) in subtropical forests in the East Asian monsoon region is
approximately 720 million tons of carbon per year, accounting for approximately 8% of the
global NEP; this statistic challenges the traditional belief that temperate forests in Europe
and America are the main carbon sink functional areas in the past [13–15]. The total carbon
storage of forest vegetation in the subtropical evergreen broad-leaved forest and mixed
broadleaf-conifer forest operating areas in southern China is 2.527 billion tons, accounting
for approximately 30% of the total carbon storage of forest vegetation in the country. The
vegetation in the region plays an important role in maintaining the structure and function
of the regional ecosystem. Therefore, studying and analyzing the characteristics of the
temporal and spatial dynamic variations in FVC in this subtropical region and exploring
the correlations between FVC and climate factors are of great scientific significance for
revealing the temporal and spatial evolution patterns of subtropical vegetation in China
and evaluating the ability of vegetation to adapt and respond to climate change.

Remote sensing technology provides accurate real-time data, wide coverage, high
continuity, comprehensiveness, and other beneficial features. Based on remote sensing
technology to monitor spatiotemporal variations and phenological of vegetation in a large
area, as well as vegetation productivity estimation has now become the main trend in the
FVC research field [16]. Using vegetation index (VI), such as the normalized difference
vegetation index (NDVI), the enhanced vegetation index (EVI), the difference vegetation
index (DVI), the ratio vegetation index (RVI), etc., to estimate FVC is one of the more
practical methods among the many remote sensing estimation methods [17]. For example,
Zhao et al. [18] used NDVI to estimate the FVC of the Qinling Mountains from 2000 to 2016;
Zhang et al. [19] used EVI to obtain the FVC in the mountain area of Longnan from 2000 to
2010. NDVI proposed by Rouse et al. [20] is very sensitive to the growth state and spatial
distribution characteristics of vegetation [21], can to a great extent eliminate interference
from instruments, topography, atmosphere, etc., and has a significant linear correlation
with FVC [3,22–24]. NDVI has obvious advantages in large-scale vegetation dynamic
monitoring and other aspects [25], which is currently the most widely used VI [22,26–28].
The dimidiate pixel model based on NDVI is insensitive to the effects of image radiometric
correction, does not require actual FVC data modeling, requires only simple calculations
and is easy to interpret [4,29–31]. It is currently commonly used to effectively estimate
the FVC at large and even global scales. For example, Dong et al. [32] used the dimidiate
pixel model based on NDVI to calculate and analyze the FVC of the Hotan Oasis, as well
as its temporal and spatial variation characteristics. Li et al. [33] used Moderate Resolution
Imaging Spectroradiometer (MODIS)-NDVI remote sensing data in combination with the
dimidiate pixel model to calculate the FVC from 2001 to 2015 on the northern slope of
the Tianshan Mountains and analyzed its response to climatic drought at different scales.
Based on NDVI, Gan et al. [34] estimated the FVC of the Lian jiang River watershed over
the past 18 years by using the dimidiate pixel model and analyzed its relationship with
climate, geological structure, and other factors.

Climate factors are the dominant factors affecting surface vegetation coverage situa-
tion [35,36]; especially changes in temperature and precipitation [37–40] which will directly
affect vegetative photosynthesis, respiration and soil organic carbon decomposition etc.,
and then affect the growth distribution and evolution patterns of vegetation [41,42]. There
are currently many studies on the relationship between climate change and FVC; for exam-
ple, Sheng et al. [43] discussed the temporal and spatial variation patterns and correlations
of FVC under the influence of different climate factors and their mutations in the Wuyi
Mountains National Nature Reserve from 1975 to 2016; Zhang et al. [44] analyzed the
relationship between FVC and temperature and precipitation at different time scales by
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using regression analysis methods in Guangxi from 2006 to 2016; Zhou et al. [45] analyzed
the impact of climate factors on FVC in the Beijing–Tianjin–Hebei region from 2001 to 2011
and showed that precipitation had the greatest impact on FVC in the core area of Beijing–
Tianjin–Hebei. Previous studies have shown that there is a strong correlation between FVC
variation and climate factors, and the response of FVC variation to climate change has
obvious spatial differences. Precipitation is abundant in the subtropical region of China,
but the distribution of annual precipitation has obvious internal differences within the
region, and the annual precipitation decreases from the southeast coast to the northwest
inland. The annual temperature spatial difference in the subtropical region is large, and the
temperature rises from high latitude to low latitude. However, few studies have described
the mechanism by which climate change impacts FVC in the subtropical region.

The role of subtropical vegetation in regional ecosystems has been increasingly em-
phasized. The subtropical region of China has complex, diverse, and widely distributed
vegetation that grows year-round, and it is China’s main agricultural and forestry pro-
duction base. At the same time, there are also prominent problems in the region, such
as poor forest quality and low forest productivity and yield rates. Moreover, subtropical
forest vegetation and its ecological functions are very sensitive to global climate change.
Therefore, we first calculated the FVC in the subtropical region of China using the dimidiate
pixel model base on MODIS land surface reflectance data from 2001 to 2018, and then
the spatiotemporal evolution characteristics of FVC and the influence and contribution
of climate factors to the FVC were analyzed. The objectives of this study include (1) to
reveal the spatiotemporal variation characteristics of subtropical FVC in the past 20 years;
(2) to explore the driving influence and relative contribution of climate change on FVC in
the subtropical region. The results of this study will provide a theoretical and temporal
reference for the evaluation of ecological functions such as the sustainable management of
subtropical vegetation and productivity.

2. Materials and Methods
2.1. Study Area

The subtropical region of China is located between 25◦ N–35◦ N latitude and includes
a vast area that makes up approximately a quarter of the total area of China. The subtropical
region includes the large area south of the Qinling Mountains and the Huai River, north of
the Leizhou Peninsula and east of the Hengduan Mountains and includes 20 provinces and
cities (Figure 1). This region has rolling mountains and vertical and horizontal gullies. It is
part of the east coast humid monsoon area and experiences high temperatures and rain
in summer and low temperatures and little rain in winter. From 2001 to 2018, the average
annual maximum temperature (Tmax) was between 20.29 ◦C and 21.53 ◦C, and the average
annual minimum temperature (Tmin) was between 11.19 ◦C and 12.09 ◦C in the region;
in terms of spatial distribution the temperature in the southeast is higher than that in the
northwest (Figure 1B,C). The annual precipitation (Pre) in the subtropical region from
2001 to 2018 was in the range of 804.77 mm–1236.27 mm, with an average precipitation of
1015.47 mm, and showed an overall distribution pattern decreasing from the southeast to
the northwest (Figure 1D). Light, heat, and water resources are plentiful in the subtropical
region of China, which is rich in species and includes many diverse vegetation types [46],
and evergreen broad-leaved forests are the main body of forest biodiversity [47].
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Figure 1. Location of study area: (A) digital elevation model (DEM), the spatial distribution of (B) Tmax, (C) Tmin, and (D)
Pre in the subtropical region from 2001 to 2018.

2.2. Data Acquisition and Preprocessing

The 2001–2018 MODIS land surface reflectance data used in this study came from the
Terra satellite of the United States Earth Observation System (EOS) and have a temporal
resolution of 8 days and a spatial resolution of 500 m. Applied MODIS Reprojection Tools
(MRT) software was used to process the downloaded original MOD09A1 data products
through batch image stitching, projection transformation, data format conversion, and
other processes.

The near-infrared band (Band2) and visible light band (Band1) in the MODIS land
surface reflectance data were used to calculate the NDVI values in the subtropical region
for each year from 2001 to 2018. Because reflectance data are affected by the atmosphere,
ice/snow, the sensor and other factors, problems such as outliers in the NDVI time series
data are likely to occur [4]. Therefore, Savitzky-Golay (S-G) filtering method [4,48,49] was
adopted in this study to smooth the NDVI time series data and eliminate outliers in the
NDVI time series data. To more reasonably reflect the vegetation cover situation in the
subtropical region with in a year and to calculate the FVC, this study used maximum value
composites (MVC) to synthesize the NDVI at 46 temporal per year to further eliminate
interference from clouds, the atmosphere, the solar elevation angle, phenology, and other
factors [16,37,50].
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Meteorological data for the study area from 2001 to 2018, including the daily maxi-
mum temperature, daily minimum temperature and daily precipitation, were obtained
from the land surface daily meteorological data from relevant provinces and cities pro-
vided by the National Meteorological Center of the China Meteorological Administration
(http://data.cma.cn/ (accessed on 29 January 2021)). There are 824 meteorological sta-
tions in China (Figure 1). Firstly, we used the inverse distance weighted method with
a spatial resolution of 500 m × 500 m to interpolate these meteorological data among
the 824 meteorological stations, so as to match MODIS NDVI. Secondly, the temperature
was corrected using Digital Elevation Model (DEM) data and assumed to decrease at a
lapse rate of 6.5 ◦C km−1 [51]. Then, the values of the annual meteorological factors were
calculated based on the averages or sums of the daily meteorological data. Finally, the
spatial distribution of the meteorological data in the subtropical region was obtained by
clipping, as shown in Figure 1B–D.

2.3. FVC Estimation Method

In this study, the dimidiate pixel model was used to calculate the FVC in the study
area. The model assumes that the ground object information included in each mixed pixel
contains only vegetation information and soil information [52–54], and the NDVI value of
the j-th pixel in the i-th year is:

NDVIij = FVCij ∗ NDVIvegi +
(
1− FVCij

)
∗ NDVIsoili (1)

In Formula (1), i is the year, and j is the pixel; NDVIvegi is the NDVI value of only the
vegetation part of the mixed pixel in the i-th year, and NDVIsoili is the NDVI value of only
the soil part of the mixed pixel in the i-th year. From Formula (1), we can obtain the FVC
value of the j-th pixel in the i-th year:

FVCij =
(

NDVIij − NDVIsoili

)
/
(

NDVIvegi − NDVIsoili

)
(2)

Due to the influence of many factors, such as atmosphere, land surface, and vegetation
phenology, NDVIsoili and NDVIvegi are not theoretical fixed values of 0 and 1 [55–57].
Therefore, in this study, on the basis of the vegetation conditions in the subtropical region
and the quality of the remote sensing images, the upper and lower thresholds of NDVI
were calculated with 95% confidence intervals to approximate the values of NDVIvegi

and NDVIsoili in the study area, respectively. Through statistical analysis, we found that
the NDVI values of each year in the subtropical region approximately obeys the normal
distribution. Therefore, in the present study, we used the z-distribution for our test statistics,
the NDVIvegi and NDVIsoili were calculated as follows:

NDVIvegi = Avgi + Z0.025 ∗ Stdi (3)

NDVIsoili = Avgi − Z0.025 ∗ Stdi (4)

In Formulas (3) and (4), i is the year; Avgi and Stdi are the average value and the
standard deviation of NDVI in the i-th year, respectively; the value of Z0.025 is 1.96.

According to the “Standards for classification and gradation of soil erosion” promul-
gated by the Ministry of Water Resources in 2008, this study divided the subtropical FVC
into 5 levels: bare land (<10%), low coverage (10–30%), low-to-medium coverage (30–45%),
medium coverage (45–60%), and high coverage (>60%).

http://data.cma.cn/
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2.4. FVC Spatiotemporal Evolution Analysis Method
2.4.1. Determination of the FVC Evolution Trend and Analysis of Its Significance

Linear regression analysis was performed on the estimation results for the subtropical
FVC from 2001 to 2018 at the pixel scale to simulate the trend and characteristics of
subtropical FVC over time; the linear regression was performed as follows [4,58]:

θ =
n ∗∑n

i=1 i ∗ FVCi −∑n
i=1 i ∑n

i=1 FVCi

n ∗∑n
i=1 i2 − (∑n

i=1 i)2 (5)

In Formula (5), θ is the trend slope (when θ > 0 it means that FVC is increasing, and
when θ < 0 it means that FVC is decreasing); n is the number of monitoring years; i is the
year (i = 1, 2, . . . , n); and FVCi is the fractional vegetation cover in the i-th year.

To analyze whether the variation trend of FVC was significant, the F-test was further
used to test the significance of the variation trend of FVC in this study as follows:

F =
U ∗ (n− 2)

Q
(6)

In Formula (6), the sum of the squared errors is U = ∑n
i=1
( ˆFVCi − FVC

)2, the ex-

plained sum of squares is Q = ∑n
i=1
(

FVCi − ˆFVCi
)2, FVC and ˆFVCi are the average

value and regression value of FVC, respectively. n is the number of monitoring years, i
is the year (i = 1, 2, . . . , n). Based on the consideration of both the trend slope θ and the
F-test results, this study divided the significance of the FVC spatiotemporal evolution
into 5 levels: significantly reduced (θ < 0, P < 0.01), reduced (θ < 0, 0.01 < P < 0.05),
basically stable (P > 0.05), increased (θ > 0, 0.01 < P < 0.05) and significantly increased
(θ > 0, P < 0.01) [4,59].

2.4.2. FVC Spatial Fluctuation Characteristics

The ratio of the standard deviation to the average is called the variation coefficient
(Cv), and its value is often used to reflect the stability of a set of data. The lower the value
of Cv, the more stable the data are, and vice versa [16,60]. This study used the Cv of each
pixel to simulate and analyze the fluctuation characteristics of the subtropical FVC in the
past 20 years as follows:

Cv =

√
1

n−1 ∑n
i=1
(

FVCi − FVC
)2

FVC
(7)

In Formula (7), n is the number of monitoring years, i is the year (i = 1, 2, . . . , n);
FVCi is the fractional vegetation cover in the i-th year and FVC is the average value of
FVC. By performing Jenks natural breaks classification in ArcGIS software [29], the Cv
results obtained were divided into 5 levels: low fluctuation (Cv ≤ 0.144), lower fluctuation
(0.144 < Cv ≤ 0.297), medium fluctuation (0.297 < Cv ≤ 0.527), higher fluctuation
(0.527 < Cv ≤ 0.872), and high fluctuation (Cv > 0.872).

2.5. Analysis of Temporal and Spatial Responses of FVC to Climate Change

This study mainly analyzed the partial correlations between the three climatic variable
indicators, Tmax, Tmin, and Pre from 2001 to 2018, and the subtropical FVC; the t-test
was used to test the significance of the partial correlation analysis results [59] to reveal
the temporal and spatial response of FVC to climate change. The calculation of the partial
correlation coefficient (PCC) is shown in Formula (8):

Rab•cd =
Rab•d − Rac•d × Rbc•d√(
1− R2

ac•d
)
×
(
1− R2

bc•d
) (8)
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In Formula (8), Rab•cd is the PCC between variables a and b when variables c and
d are fixed; Rab, Rac, and Rbc represent the correlation coefficients between variables a
and b, variables a and c, and variables b and c, respectively. Compared with simple
linear correlation analysis, the partial correlation analysis can more accurately reflect the
correlation between two variables; the higher the PCC is, the greater the influence of the
variable on the FVC, and otherwise the lesser the influence of the variable on the FVC [60].

2.6. Analysis of the Contribution of Climate Factors to FVC Variations

In order to quantitatively analyze the contribution of each climate factor to FVC
variations, the partial derivative model was used to calculate the relative contributions of
Tmax, Tmin, and Pre to FVC in this study, and then analyze the main driving factors of
FVC variations. The relative contributions of the climate factors to FVC variations can be
expressed as [45]:

C( fi) = S fi
× K fi

(9)

S fi
=

∂FVC
∂ fi

(10)

Rc( fi) =
|C( fi)|

∑n
i=1|C( fi)|

× 100% (11)

In Formulas (9)–(11), n represents the number of climate factors (i = 1, 2, . . . , n). fi is
the i-th climate factor; C( fi) represents the contribution of the i-th climate factor to the FVC
variations; K fi

represents the interannual variation of the i-th climate factor; S fi
represents

the sensitivity of FVC to the i-th climate factor variation. Rc( fi) represents the relative
contribution of the i-th climate factor to FVC variation.

3. Results
3.1. Spatial Distribution Characteristics of the FVC

The temporal and spatial distribution of the FVC in the subtropical region from 2001
to 2018 is shown in Figure 2. There was obvious temporal and spatial heterogeneity in
the subtropical FVC from 2001 to 2018, and the vegetation coverage level in the eastern
region was higher than that in the western region in all 18 years. This is consistent with
the physical and geographical characteristics of the subtropical region (Figure 1A) and the
climatic conditions such as water and heat (Figure 1B–D).

The areal ratios of the FVC high-coverage zone, medium-coverage zone, low-to-
medium-coverage zone, low-coverage zone, and bare-land zone from 2001 to 2018 in the
subtropical region are shown in Figure 3; combining Figure 3 with Figure 2 highlights
that the temporal and spatial evolution characteristics of the FVC levels were significantly
different, as follows:

(1) The distributions of the FVC high-coverage zone and medium-coverage zone were
relatively concentrated and broad, and their combined area accounted for more than
70% of the study area. From 2001 to 2018, the overall area of the high-coverage zone
showed a significant upward trend, and its areal proportion reached a maximum in
2016 (45.07%). However, the area of the medium-coverage zone showed a significant
declining trend, with its areal proportion decreasing from 39.34% in 2001 to 31.28% in
2018 and reaching its minimum in 2016 (31.08%). The variation trends of the medium-
coverage zone and high-coverage zone exhibited a certain degree of symmetry. The
area of the medium-coverage zone was larger than that of the high-coverage zone
from 2001 to 2012, while the area of the high-coverage zone was larger than that of
the medium-coverage zone from 2013 to 2018.

(2) The area of the low-to-medium-coverage zone also showed a significant downward
trend during the study period, and its areal proportion decreased from 24.37% in
2001 to 14.28% in 2018. The low-to-medium-coverage zone was distributed in strips
and blocks around areas of human activity, such as eastern Sichuan Province, eastern
Hubei Province, northern and central Hunan Province, eastern Yunnan Province,
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and northern Jiangxi Province. In terms of the vegetation types in the region, a large
proportion of the low-to-medium-coverage zone was cultivated land.

(3) As a whole, the area of the low-coverage zone showed a slight downward trend, and
its areal proportion decreased from 10.39% in 2001 to 7.05% in 2018. This zone was
mainly distributed around coastal and water areas, unused lands, plateaus, cities
and towns with intense human activities and other areas, such as southern Jiangsu
Province, northeastern Shanghai, eastern Tibet Autonomous Region, western Sichuan
Province, the southeast coast, the Pearl River Delta, western Taiwan Province, and
other regions. Due to the strong influence of man-made and topographical factors
in this zone, the type, growth structure and characteristics of vegetation in the low-
coverage zone were highly variable, and dense vegetation areas tended not easy to
form. Therefore, the low-coverage areas within the whole study area were small
and dispersed.

(4) The bare-land zone was dispersed within the study area, and its area accounted for
only approximately 1.86% of the study area; this zone had the smallest distribution
area and no obvious variation trend.
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Figure 3. The variation trends of various FVC classes in the subtropical region from 2001 to 2018.

3.2. Temporal Variation Trend of the FVC

Based on the statistics shown in Figure 2, the overall variation trend of the average
annual FVC in the subtropical region from 2001 to 2018 was obtained, as shown in Figure 4.
Figure 4 shows that the interannual variation in the annual average subtropical FVC from
2001 to 2018 showed a significant growth trend, and FVC increased at an annual rate of
0.37%; FVC reached a maximum in 2018 (0.55), which was 12.24% higher than that in 2001
(0.49) FVC. This result indicates that the growth status of subtropical vegetation shows a
good development trend.
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3.3. Spatiotemporal Variability of FVC

The spatial distribution of the subtropical FVC trend slope θ from 2001 to 2018 is
shown in Figure 5B. Figure 5B shows that the regional FVC exhibited an increasing trend
(θ > 0) in 76.28% of the study area and that the areas of increase were widely distributed
in Gansu, Shaanxi, Hunan, Guangdong, Guangxi, Fujian and other regions. In addition,
the regional FVC showed a decreasing trend (θ < 0) in 23.72% of the study area; the areas
of decrease were mainly distributed in a few areas, such as Jiangsu, Shanghai, Sichuan,
and Tibet.
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Figure 5C shows the spatial distribution of the significance of FVC variation from 2001
to 2018. Figure 5C shows that (1) the areas where FVC was significantly reduced and re-
duced were very small, accounting for only 2.77% and 2.05% of the study area, respectively.
These areas were mainly distributed in the northeast of the subtropical region and in parts
of Sichuan Province. (2) The area of the basically stable zone accounted for approximately
57.97% of the study area. Its areal proportion was the largest of those of all significance
classes. In the subtropical region, various provinces and cities exhibited a certain area of
distribution of the basically stable zone, which was mainly concentrated in the western
and central parts of the subtropical region as well as in Taiwan Province. (3) The FVC in
the increased and significantly increased zones was mostly high coverage and medium
coverage (Figure 5A), and their areal proportions were 12.71% and 24.51%, respectively.
The significantly increased zone was widely distributed and relatively concentrated, mainly
concentrated in the northern and southern of the subtropical region. The increased zone
was relatively dispersed throughout the study area.

To further analyze the variations and fluctuations in FVC in the subtropical region
from 2001 to 2018, this study drew a spatial distribution diagram of the stability of FVC
based on the results of the Cv classification, as shown in Figure 5D. Figure 5D shows that
the FVC in the subtropical region from 2001 to 2018 was relatively stable overall. Except
for Gansu, Tibet, Jiangsu, Shanghai, Hubei, Guangdong, etc., where the FVC variations
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were medium- and high-fluctuation zones, the FVC in most other regions showed the low
fluctuation or lower fluctuation. Among them, (1) the low-fluctuation zone had the largest
coverage area, accounting for approximately 55% of the study area, and was distributed in
Shaanxi Province, western Hubei Province, Fujian Province, Taiwan Province and other
regions. The lower-fluctuation zone accounted for approximately 30% of the study area and
was mainly distributed in Guizhou Province, eastern Sichuan Province, Henan Province,
northern Anhui Province, and other regions. Comparing A and C in Figure 5 shows that
the low-fluctuation zone and the lower-fluctuation zone corresponded to the high-coverage
and medium-coverage zone, and the significance in these areas was expressed as increased
or significantly increased; these findings indicate that the higher the FVC in the area was,
the greater the stability of FVC. (2) The medium-, higher-, and high-fluctuation zones had
a certain spatial consistency with the reduced zone and the significantly reduced zone
(Figure 5C). The medium-, higher-, and high-fluctuation zones covered a small area, their
combined area accounting for only approximately 15% of the study area, and they were
mainly distributed in Tibet, Qinghai, etc., where there is less vegetation coverage, or in
Shanghai, Southern Jiangsu, etc., where human activity levels are high.

3.4. Analysis of Climate Drivers of FVC Spatiotemporal Evolution

From 2001 to 2018, there were significant differences in the spatial distribution pat-
terns of the partial correlations between the subtropical FVC and Tmax, Tmin, and Pre
(Figures 6 and 7).
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3.4.1. Partial Correlation between FVC and Temperature

Figure 6A shows the spatial distribution of the PCC between the subtropical FVC
and Tmax. From 2001 to 2018, the PCC between the subtropical FVC and Tmax ranged
mostly from −0.50 to 0.39, and the average PCC was −0.05; the overall relationship was
a nonsignificant negative correlation, which indicated that high temperature somewhat
inhibited the growth and development of vegetation in the subtropical region. The area
where the subtropical FVC was positively correlated with Tmax made up 41.88% of the
study area, while 58.12% of the FVC in the area showed a negative correlation with Tmax.
Areas of significant (P < 0.05) positive correlation and significant (P < 0.05) negative
correlation accounted for only 2.31% and 4.21% of the study area, respectively.

Figure 6A shows that the partial correlation between FVC and Tmax in the central
and eastern of the subtropical region was mostly negative, while the partial correlation
in the western region was mostly positive. The statistical analysis of the PCC between
the FVC and Tmax in 20 provinces and cities in the subtropical region showed that the
FVC in Guangdong, Guangxi, Hunan, Zhejiang, Shanghai, Guizhou, and other regions had
a high partial correlation with Tmax during the study period; among them, the FVC in
Anhui, Gansu, Sichuan, Tibet, and Yunnan generally showed a weak positive correlation
with Tmax, while the FVC in the rest of the subtropical region showed an overall negative
correlation with Tmax.

The spatial distribution of the PCC between the subtropical FVC and Tmin from 2001
to 2018 is shown in Figure 6B. Figure 6B shows that the PCC between the FVC and Tmin
was distributed mostly between -0.30 and 0.52, with an average PCC of 0.09. The proportion
of the study area with a positive correlation between the FVC and Tmin was 62.06%, the
proportion with a significant (P < 0.05) positive correlation was 8.46%; the proportion with
a negative correlation was 37.94%, and proportion with a significant (P < 0.05) negative
correlation was only 2.34%. This indicated that the influence of Tmin on the FVC in the
subtropical region was mainly a positive correlation; this is, an increase in Tmin promotes
vegetative growth and development in most areas of the subtropical region, resulting in an
increase in the FVC.
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Comparing and analyzing Figure 6A,B reveals that the partial correlations between
the subtropical FVC and Tmin and Tmax showed opposite spatial distribution patterns.
Among them, the partial correlation between the FVC and Tmin in the central and eastern
regions was greater than that in the western region, and the partial correlation in the central
and eastern regions was mostly positive. The area of negative correlation was mainly
distributed in Sichuan Province, northern Anhui Province, Tibet Autonomous Region,
Yunnan Province, and other regions. The statistical analysis of the PCC values in the
various provinces and cities showed that, except for the partial correlation of Anhui, Tibet,
and Sichuan, which was negative overall, the partial correlation between FVC and Tmin in
the rest of the subtropical provinces and cities was positive.

3.4.2. Partial Correlation between FVC and Precipitation

The spatial distribution of the PCC of the FVC and Pre is shown in Figure 7. Figure 7
shows that the PCC of the subtropical FVC and Pre from 2001 to 2018 was mostly in the
range of −0.37 to 0.44, and the average PCC was 0.04. The areas with positive correlations
and negative correlations accounted for 55.26% and 44.74% of the entire study area, re-
spectively, while the areas with significant (P < 0.05) positive correlations and significant
(P < 0.05) negative correlations accounted for 3.93% and 2.40%, respectively.

Figure 7 shows that the partial correlation between the subtropical FVC and Pre varied
within the study area and presented an overall spatial distribution pattern of "high in the
middle and low at both ends". The FVC in the central of the subtropical region was mostly
positively correlated with Pre, while negative correlation areas were mainly distributed in
the southeast of the subtropical region. According to the statistical results for the PCC in
various provinces and cities, the partial correlation between the FVC and Pre in Jiangsu,
Guangdong, Fujian, Jiangxi, and Shanghai was negative overall. Except for these five
regions, the FVC of other provinces and cities in the subtropical region was positively
correlated with Pre.

3.4.3. The Contributions of Climate Factors to the Subtropical FVC Variations

In order to further analyze the spatial differences in the contributions of climate factors
to FVC variations in subtropical regions, the relative contributions of climate factors (Tmax,
Tmin, and Pre) to FVC variations were calculated using the partial derivative model,
respectively, as shown in Figure 8A–C. The relative contributions of different climate
factors to FVC variations in various subtropical regions has significant differences. The
value of the relative contribution was linearly stretched to 0–255 based on Figure 8A–C,
and RGB synthesis was performed on the stretched the relative contribution values of
Tmax, Tmin, and Pre to FVC variations. In this way, the main climate contributing factor
of FVC variations in each subtropical region were obtained, as shown in Figure 8D. Pre
was the main contribution factor of FVC variation in Shanghai, northern Zhejiang, central
Anhui and eastern Sichuan; Tmax was the main contribution factor of FVC variation in
Guangdong, eastern Guangxi, northern Yunnan; Tmin was the main contribution factor of
FVC variation in the central, southeast and southwest of the subtropical region. In addition,
the variation of FVC in some regions was affected by the synthesis of multiple climate
factors. for example, the variation of FVC in Taiwan province was jointly affected by the
Tmax and Pre; FVC variation in southern Sichuan was affected comprehensively by Tmax,
Tmin, and Pre.
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The average relative contributions of climate factors to FVC variations were further
calculated based on Figure 8A–C, and the result was shown in Figure 9. Tmin had the
highest contribution to the subtropical FVC variations with 42.85%, while the average
relative contributions of Pre and Tmax were 31.85% and 24.38%, respectively. This indicated
that Tmin played a leading role in FVC variations of the subtropical region, which is also
consistent with the results of partial correlation analysis.
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4. Discussion

Used the dimidiate pixel model based on NDVI can simply and effectively estimate the
FVC in the subtropical region and realize the dynamic monitoring of FVC variations. In this
study, the interannual variation in the annual average subtropical FVC showed a significant
growth trend from 2001 to 2018. This growth is related to the forestry engineering initiatives
that were successively implemented in China at the beginning of this century, such as the
Natural Forest Protection Project, the Grain for Green Project, and Constructing Shelterbelt
System, etc. [61]. The implementation of relevant policies effectively protected forest
vegetation; shifted land use in the subtropical region to forestland, cultivated land and
grassland; and increased the area of forest vegetation [61–63], thus promoting the growth
of FVC in the subtropical region. Of course, as shown in Figure 4, there were also certain
fluctuations in the annual average FVC. The growth rate of the subtropical FVC from 2008
to 2012 was lower than the average level, which may be related to the natural large-scale
low-temperature, rain, snow, and ice disaster in southern China in January 2008. Extreme
climate change such as this low-temperature rain, snow, and ice disaster seriously affected
FVC in the subtropical region [64]. For example, accounted for 23.87% (0.0453 billion hm2)
of the total forestry area was affected in Hunan Province [65]; the forest coverage rate
decreased by 0.81% in Guizhou Province [66]; approximately 77.07% of bamboo forests
were damaged in Zhejiang Province; and more than 80% of moso bamboo and 70% of Pinus
elliottii were essentially destroyed in Jiangxi Province, which is consistent with reports by
our results.

In this study, the overall degree of FVC fluctuation in the subtropical region was
relatively stable in the past 20 years. On the one hand, this is because forestland and
cultivated land take up more area than the various other vegetation types in the subtropical
region. Of these, forestland mostly grow in mountainous and hilly areas with higher
elevations and less human disturbance, and the planting density and structure of cultivated
land are generally the same every year. Therefore, the interannual variation in subtropical
FVC from 2001 to 2018 exhibited small fluctuations, mostly low- and lower fluctuations. On
the other hand, the FVC in some regions, such as Qinghai, was so low that the variations
and fluctuations throughout the research period were not significant, and the overall
performance of FVC was relatively stable. The average value of FVC in Qinghai Province
was 0.38, and the areas of low- and lower fluctuations in the region made up more than
70% of the total area, while the area of high fluctuation accounted for only 2.57%.

So far, there have been several studies on quantitatively analyzing the influence of
climate factors on FVC based on the partial correlation analysis method and the partial
derivative model at the pixel scale [4,45,59], and their studies showed that variations of
FVC were affected by many factors (e.g. temperature, precipitation, vegetation species,
and urbanization, etc.). In our study, the influences and contributions of climate factors
(Tmax, Tmin, and Pre) on FVC in the subtropical region were quantitatively calculated, and
presented obvious spatial heterogeneity (Figures 6–8). There were differences in the impact
of Tmin on the FVC within the western of the subtropical region. Tmin had a positive effect
on FVC in Gansu and southwest Yunnan Province, while Tmin had a negative effect on FVC
in Tibet and west Sichuan Province (Figure 6B). Tmin and the altitude are lower and higher
in Tibet and west Sichuan Province than those in Gansu and southwest Yunnan Province,
respectively (Figure 1). Therefore, lower Tmin inhibits the growth and development of
vegetation in high altitude regions.

At the same time, the impact of Pre on the FVC within the eastern of the subtropical
region also exhibited significant differences. The economic development in the eastern
part of the subtropical region is strong, but the level of urbanization and industrialization
varies from region to region. Intense human activities trigger problems such as urban
micro-climates and land use changes etc. [67], which will cause an obvious difference in
the impact of FVC. In addition, the eastern coastal areas are affected by typhoons and
other natural disasters. For example, Shobairi et al. [68] found that the FVC in Guangdong
Province was negatively correlated with the annual precipitation from 2000 to 2010, and
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the research results of He et al. [69] showed that the FVC in Zhejiang Province was signif-
icantly positively correlated with precipitation, which was basically consistent with our
research results.

In this study, we analyzed only the influence of temperature and precipitation to
subtropical FVC variations but failed to consider the impact of human activities, topog-
raphy, social economy and other factors on FVC. In addition, vegetation type, soils and
other factors will also have an impact on the results of the partial correlation between the
FVC and temperature and precipitation [58,59,70]. The mechanisms by which the driving
factors influence FVC are complex, and FVC variation also exhibits a certain time-lag effect.
Therefore, we can combine more complete and detailed data to comprehensively analyze
the FVC response mechanism to each driving factor on a longer time scale, which makes
the results more practical and convincing in the future.

5. Conclusions

In this paper, the temporal and spatial variations of FVC were inverted in the sub-
tropical region of China from 2001 to 2018 based on MODIS land surface reflectance data,
and analyzed the influences and relative contributions of Tmax, Tmin, and Pre to FVC
variations. The study showed that the overall vegetation growth coverage in the subtrop-
ical region of China from 2001 to 2018 was relatively high. The FVC high-coverage and
medium-coverage zones had a wide distribution and their total area accounted for approxi-
mately 70% of the study area. The interannual variations and fluctuations in the subtropical
FVC were relatively small overall, and the FVC generally maintained a relatively stable
state and showed an obvious growth trend. Due to the influence of climate, topography,
economic development and other factors, there were regional differences in the level of
FVC as well as in its variation trend and fluctuation range. In some regions with greater
economic development and more human activity, the FVC showed a downward trend,
while the FVC in the rest of the region showed an increasing trend. The result also showed
that climate change was a driver of the temporal and spatial dynamic evolutions of FVC in
the subtropical region, and there were obvious regional differences in the driving effects.
62.06% and 55.26% of the region exhibited Tmin and Pre had positive effect on FVC, while
more than half of the areas (58.12%) presented Tmax had negative effect on FVC. The
contributions of climate changes to FVC had obvious heterogeneity, and Tmin played a
leading role in the dynamic variations of FVC, which is consistent with the results of partial
correlation analysis.

Therefore, the impacts of various driving factors on the growth and development of
vegetation in the various subtropical regions of China should be comprehensively con-
sidered in the future to reasonably plan urban development and land resource utilization
based on the local climate, topography, and economic development status, etc. At the
same time, the structure of forestry and agriculture in each region should be adjusted in
accordance with local conditions, and ecological environmental engineering should be
correctly carried out to promote sustainable development and productivity improvement
in the subtropical region and even global vegetation.
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