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Abstract: Advances in video capturing devices enable adaptive posture estimation (APE) and event
classification of multiple human-based videos for smart systems. Accurate event classification and
adaptive posture estimation are still challenging domains, although researchers work hard to find
solutions. In this research article, we propose a novel method to classify stochastic remote sensing
events and to perform adaptive posture estimation. We performed human silhouette extraction using
the Gaussian Mixture Model (GMM) and saliency map. After that, we performed human body part
detection and used a unified pseudo-2D stick model for adaptive posture estimation. Multifused
data that include energy, 3D Cartesian view, angular geometric, skeleton zigzag and moveable body
parts were applied. Using a charged system search, we optimized our feature vector and deep belief
network. We classified complex events, which were performed over sports videos in the wild (SVW),
Olympic sports, UCF aerial action dataset and UT-interaction datasets. The mean accuracy of human
body part detection was 83.57% over the UT-interaction, 83.00% for the Olympic sports and 83.78%
for the SVW dataset. The mean event classification accuracy was 91.67% over the UT-interaction,
92.50% for Olympic sports and 89.47% for SVW dataset. These results are superior compared to
existing state-of-the-art methods.

Keywords: deep belief network; event classification; human body part detection; multifused data;
pseudo-2D-stick model

1. Introduction

The digital era, data visualization and advancements in technology enable us to
analyze digital data, human-based images and videos and multimedia contents [1–3]. Due
to globalization and the convenience of data transmission, it is now possible and important
to examine multimedia data for surveillance; emergency services; educational institutions;
national institutions, such as law enforcement; and the activities of various people from
employees to criminals. National databases with records of citizens, hospitals, monitoring
systems, traffic control systems and factory observation systems are just a few examples
of multimedia-based contents [4–9]. The developments of Adaptive Posture Estimate
Systems (APES) and Event Classification Methods (ECM) are hot topics and challenging
domains in recent decades. A large amount of progress has been made by researchers
who are innovating advanced frameworks, but there remain many challenges [10–13].
Event classification and adaptive posture estimation are used in many applications, such as
airport security systems, railways, bus stations and seaports, where normal and abnormal
events can be detected in real-time [14–18]. Sports events can be classified using Adaptive
Posture Estimation Systems (APES) and Event Classification Methods (ECM) mechanisms
whether the events occur indoors or outdoors [19]. Adaptive Posture Estimation Systems
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(APES) and Event Classification Methods (ECM) open new doors in technology and applied
sciences domains to save manpower, time and costs, and to make prudent decisions at the
right times [20]. Adaptive Posture Estimation Systems (APES) and Event Classification
Methods (ECM) still need to be improved in order to accurately extract features from
videos and images, and to estimate and track human motion, human joints movement and
event classification.

In this paper, we propose a unified framework for stochastic remote sensing event
classification and adaptive posture estimation. A pseudo-2D stick mesh model is imple-
mented via a Multifused Data extraction approach. These features extract various optimal
values, including energy, skeleton zigzag, angular geometric, 3D Cartesian and moveable
body parts. For data optimization, we used the meta-heuristic charged system search (CSS)
algorithm, and event classification was performed by the deep belief network (DBN). The
main contributions of this research paper are as follows:

• We contribute a robust method for the detection of nineteen human body parts over
complex human movement; challenging events and human postures can be detected
and estimated more accurately.

• For more accurate results in adaptive posture estimation and classification, we de-
signed a skeletal pseudo-2D stick model that enables the detection of nineteen human
body parts.

• In the multifused data, we extracted sense-aware features which include energy,
moveable body parts, skeleton zigzag features, angular geometric features and 3D
Cartesian features. Using these extracted features, we can classify stochastic remote
sensing events in multiple human-based videos more accurately.

• For data optimization, a hierarchical optimization model is implemented to reduce
computational cost and to optimize data, and charged system search optimization is
implemented over-extracted features. A deep belief network is applied for multiple
human-based video stochastic remote sensing event classification.

The plan of this research article is as follows: Section 2 contains a detailed overview of
related works. In Section 3, the methodology of Adaptive Posture Estimation and Event
Classification (APEEC) is discussed. Section 4 describes the complete description of the
experimental setup and a comprehensive comparison of the proposed system with existing
state-of-the-art systems. In Section 5, future directions and conclusions are defined.

2. Related Work

Advances in camera technologies, video recording and body marker sensor-based
devices enable superior approaches to the farming and analysis of information for research
and development in this field. The research community has contributed many novel,
robust, and innovative methods to identify human events, actions, activities and postures.
Table 1 contains a detailed overview of the related work.

Table 1. Related work and main contributions.

Methods Main Contributions

Lee et al. [21]
They developed a state-of-the-art hierarchical method in which human body part identification is
used for critical silhouette monitoring. Additionally, they introduced region comparison features for
optimal data values and to obtain rich information.

Aggarwal et al. [22]
They designed a robust scheme, for human body part motion analysis, using multiple cameras that
track the human body parts, and for human identification. They also developed a 2D–3D projection
for human body joints.

Wang et al. [23] They explained a framework to analyze human behavior. For this, they used the identification of
humans, human activity identification and human tracking approaches.



Remote Sens. 2021, 13, 912 3 of 29

Table 1. Cont.

Methods Main Contributions

Liu, J et al. [24] They proposed a robust random forest based technique for human body part training, using temporal
features, static and motion features. They estimated various human actions in videos and images.

Khan and M. A [25]

They suggested an automated process using multiview features, vertical and horizontal gradient
features. They used Deep Neural Network (DNN) fusion to identify human actions. A pre-trained
Convolutional Neural Network CNN-VGG19 model is adopted to achieve DNN-based feature
techniques.

Zou and Shi [26]
They explained an automated system, Adaptation-Oriented Features (AOF), with one-shot action
identification for the estimation of human actions. The system pertains to every class, and for output,
they combine AOF parameters.

Franco and Magnani [27] They designed a multilayer structure for intensive human skeleton information, via RGB images.
They extracted Histogram of Oriented (HOG) descriptor features for human action recognition.

Ullah and Muhammad
[28]

They describe a unified Convolutional Neural Network (CNN)-based approach for real-time data
communication and data streams. For data extraction from non-monitoring devices, they used visual
sensors. To monitor the human action, temporal features along with deep autoencoder and deep
features are estimated via the Convolutional Neural Network (CNN) model.

Jalal, A et al. [29]
They proposed a novel technique to identify daily human activities in a smart home environment via
depth-based daily routine functionality. They also defined the AR method for the estimation of
human activities.

Jalal, A et al. [30]
They explained a robust system using a marker-based system in which many body markers are
attached to the human body at various strategic points. With the help of extracted synthetic contexts
and the multiactors platform, they identify human activity.

Kruk and Reijne [31]
They developed a unified model to estimate vibrant human motion in sports event via body marker
sensors. The main contribution is the estimation of the kinematics of human body joints, acceleration,
velocity and the reconstruction of the human pose to compute human events in sports datasets.

Wang and Mori [32] They proposed a novel technique for event recognition, via spatial relations and human body pose.
Tree-based features are described using the kinematics information of connected human body parts.

Amft and Troster [33] They developed a robust framework via a Hidden Markov approach. Time-continuous based
features using body marker sensors event recognition is achieved.

Wang et al. [34] They designed a new systematic approach to estimate the consistency of human motion with the help
of a human tracking approach. A Deep Neural Network (DNN) is used for event recognition.

Jaing et al. [35] They introduced a multilayered feature method for the estimation of human motion and movements.
For event recognition in dynamic scenes, they used a late average mixture algorithm.

Li, et al. [36]

They proposed an innovative method for event recognition via joint optimization, optical flow and a
histogram of the obtained optical flow. With the help of the norm optimization method, body joint
reconstruction and a Low-rank and Compact Coefficient Dictionary Learning (LRCCDL) approach,
they achieved accurate event identification.

Einfalt et al. [37]
They designed a unified method for the event recognition of an athlete in motion, using task
classification, extraction of chronological 2D posture features and a convolutional sequence network.
They recognized a sports event precisely.

Yu et al. [38]
They explain a heuristic framework that can detect events in a distinct interchange from soccer
competition videos. This is achieved with the help of the replay identification approac to discover
maximum context features for gratifying spectator requirements and constructing replay story clips.

Franklin et al. [39]
They proposed a robust deep learning mechanism for abnormal and normal event detection.
Segmentation, classification and graph-based approaches were used to obtain the results. Using deep
learning methods, they found normal and abnormal features for event interval utilization.

Lohithashva et al. [40]
They designed an innovative mixture features descriptor approach for intense event recognition via
the Gray Level Co-occurrence Matrix (GLCM) and the Local Binary Pattern (LBP). They used
extracted features with machine learning supervised classification systems for event identification.

Feng et al. [41]

They proposed a directed Long Short Term Memory (LSTM) method using a Convolutional Neural
Network (CCN)-based model to extract deep features’ temporal positions in composite videos. The
state-of-the-art YOLO v3 model is used for human identification and a guided Long Short Term
Memory (LSTM)-based framework is adopted for event recognition.
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Table 1. Cont.

Methods Main Contributions

Khan et al. [42]
They developed a body-marker sensor-based technique for home-based patient management.
Body-marker sensors utilizing a color indication scheme are attached to the joints of the human body
to record data of the patients.

Esfahani et al. [43]
For sports events, human motion observation body-marker instruments were used to develop a low
computational process-based Trunk Motion Method (TMM) with Body-worn Sensors (BWS). In this
approach, 12 removable sensors were utilized to calculate trunk 3D motions.

Golestani et al. [44]

They proposed a robust wireless framework to identify physical human actions. They tracked human
actions with a magnetic induction cable; body-marker sensors were associated with human body
joints. To achieve improved accuracy, the laboratory estimation function and Deep Recurrent Neural
Network (RNN) were used.

3. Proposed System Methodology

RGB video-based cameras are utilized to record video data as input of the proposed
system during preprocessing; frame conversion and noise removal are applied after which
human silhouette extraction, human detection and human body part identification via
the 2D stick model are performed. After this, the pseudo-2D stick model is evaluated for
human posture estimation, and multifused data are used for feature vector extraction. A
charged system search (CSS) [45] algorithm is used for optimization and event classification.
We used a machine learning model named the deep belief network (DBN) [46]. Figure 1
illustrates the proposed Adaptive Posture Estimation and stochastic remote sensing Event
Classification (APEEC) system architecture.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 29 
 

 

Figure 1 illustrates the proposed Adaptive Posture Estimation and stochastic remote sens-
ing Event Classification (APEEC) system architecture. 

 

 
Figure 1. The system architecture of the proposed Posture Estimation and Event Classification (APEEC) system. 

3.1. Preprocessing Stage 
Data preprocessing is among the main steps which is adopted to avoid extra data 

processing cost. In the preprocessing step, video to image conversion was performed; 
then, grayscale conversion, using Gaussian filter noise removal techniques were used to 
minimize superfluous information. After that, using the change detection technique and 
Gaussian Mixture Model (GMM) [47], we performed initial background subtraction for 
further processing. Then, to extract the human silhouette, the saliency map technique [48] 
was adopted in which saliency values were estimated. Saliency SV for the pixel (𝑖, 𝑗) was 
calculated as SV(𝑥, 𝑦) = ∑ 𝑑ሾ𝑉(𝑥, 𝑦), 𝑄(𝑚, 𝑛)ሿ(௠,௡)∈ே    (1)

where N is denoted as the region near to the saliency pixel at (𝑥, 𝑦) position and 𝑑 repre-
sents the locus difference among pixel vectors V and Q. After the estimation of saliency val-
ues for all the certain areas of the input image, a heuristic threshold technique was used to 
distinguish the foreground from the background. Figure 2 shows the results of the back-
ground subtraction, human silhouette extraction and the results of human detection. 

Figure 1. The system architecture of the proposed Posture Estimation and Event Classification (APEEC) system.



Remote Sens. 2021, 13, 912 5 of 29

3.1. Preprocessing Stage

Data preprocessing is among the main steps which is adopted to avoid extra data
processing cost. In the preprocessing step, video to image conversion was performed;
then, grayscale conversion, using Gaussian filter noise removal techniques were used to
minimize superfluous information. After that, using the change detection technique and
Gaussian Mixture Model (GMM) [47], we performed initial background subtraction for
further processing. Then, to extract the human silhouette, the saliency map technique [48]
was adopted in which saliency values were estimated. Saliency SV for the pixel (i, j) was
calculated as

SV(x, y) = ∑(m,n)∈N d[V(x, y), Q(m, n)] (1)

where N is denoted as the region near to the saliency pixel at (x, y) position and d represents
the locus difference among pixel vectors V and Q. After the estimation of saliency values
for all the certain areas of the input image, a heuristic threshold technique was used
to distinguish the foreground from the background. Figure 2 shows the results of the
background subtraction, human silhouette extraction and the results of human detection.
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Figure 3 shows the results of multiperson tracking and detection for the UCF aerial
action dataset.
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After successfully extracting the human silhouette, detection of human body parts
was performed.
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3.2. Posture Estimation: Body Part Detection

During human posture estimation and identification of human body points, the
estimation of detected human silhouette’s outer shape values Hpv was used to estimate
the center torso point. The recognition of the human torso point is expressed as

K f
Top ← K f−1

To + ∆K f−1
To (2)

where K f
Top denotes a human torso point position in any given frame f , which is the result

of computing by the frame variances. For the recognition of the human ankle position, we
considered the point 1/4 between the foot and the knee points. Equation (3) shows the
human ankle point

K f
SA = (K f

SF − K f
SK)/4 (3)

where K f
SA is the ankle position, K f

SF is the foot position and K f
SK represents the human

knee point. For wrist point estimation, we considered the point 1/4 of the value of the
distance between the hand and elbow points, which is represented in Equation (4) as

K f
SW = (K f

SHN − K f
SEL)/4 (4)

where K f
SW is the human wrist point, K f

SHN is the hand point and K f
SEL represents the elbow

point. Algorithm 1 shows the detailed description of human body part detection.

Algorithm 1. Human body key point detection.

Input: HES: Extracted full human silhouette
Output: 19 body parts as head, shoulders, neck, wrists, elbows, hands, torso, hips, ankle, knees
and foot. HFS = Full human silhouette, HSh = human shape, Hs = height, Ws = width, Ls = left,
Rs = right, Ish = head, Isn = neck

Repeat
For i = 1 to N do
Search (HFS)
Ish = Human_head;
S_Up = UpperPoint (Ish)
S_ehp = Human _End_Head_point (Ish)

S_Mp = mid (Hs,Ws)/2
S_Fp = Bottom(HFS)& search(Ls, Rs)

S_Knp = mid(S_Mp, S_ Fp)
S_Hnp = S_ehp & S_Up & search(Ls, Rs)
S_Shp = search(Ish, Ish) & search(Rs, Ls)
S_Elp = mid(S_Hnp, S_Shp)
S_Wrp = mid (S_Hnp, S_Elp)/2
S_Hip = S_Mp &search(Rs,Ls)
S_Anp = mid (S_Knp, S_Fp)/4

End
Until complete human silhouette searched.
return 19 body parts as head, shoulders, neck, wrists, elbows, hands, torso, hips, ankles, knees
and foot. HFS = Full human silhouette, HSh = human shape, Hs = height, Ws = width, Ls = left,
Rs = right, Ish = head, Isn = neck

In this segment, the human skeletonization over-extracted body points [48,49] are
denoted as a pre-pseudo-2D stick approach. Figure 4 shows the comprehensive overview of
the pre-pseudo-2D stick model that includes 19 human body points, which are considered
as three key skeleton fragments: human upper body segment (HUbs), human midpoint
segment (HMp) and human lower body segment (HLbs). HUbs is based on the linkage
of the head (Ish), neck (Isn), shoulders (S_Shp), elbow (S_Elp), wrist (S_Wrp) and hand
points (S_Hnp). HLbs is founded via the association of hips (S_Hip), knees (S_Hnp), ankle
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(S_Anp) and foot (S_Fp). Each body point takes a particular time t to accomplish a specific
action. Equations (5)–(7) show the mathematical relationships of the pre-pseudo-2D stick
model as

HUbs = Ish d|><|d Isn d|><|d S_Shp d|><|d S_Elp d|><|d S_Wrp d|><|d S_Hnp (5)

HMp= S_Mp d|><|d HUbs (6)

HLbs = S_Hip d|><|d S_Hnp d|><|d S_Anp d|><|d S_Fp d|><|d HMp (7)
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3.3. Posture Estimation: Pseudo-2D Stick Model

In this segment, we proposed a pseudo-2D stick approach that empowers an inde-
structible human skeleton throughout human motion [49]. To perform this, we identified
nineteen human body points, after which interconnection processing for every node was
performed using a self-connection technique [50]. Then, the 2D stick model (Section 3.2)
was applied based on the concept of fixed undirected skeleton mesh. For lower and upper
movements, we used stick scaling; 15 pixels is the threshold limit of stick scaling; if this
is exceeded, the fixed undirected skeleton mesh will not accomplish the required results.
Equation (8) represents the mathematical formulation of the human body stick scaling.

SmbS = Hps
{

1, i f Up || Sm ≤ 20
0, Up || Sm > 20

}
(8)
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where SmbS symbolizes as a human fixed 2D-stick mesh, Up denotes the upper limit, L is
for the lower limit of stick scaling and Hps denotes the human body part scaling. To track
the human body parts, we allowed the human skeleton to use kinematic and volumetric
data. The size of the human outer shape was used to calculate the lower and upper
distances of the human silhouette. After that, the measurement of the given frame was
estimated using the given frame size. Equation (9) calculates the procedure for identifying
the head location.

K f
Ish ← K f−1

Ish + ∆K f−1
Ish (9)

while K f
Ish represents the head location in any given frame. Human body movement

direction change recognition, which arose in frame 1 to the next frame, was used as the pre-
step of pseudo-2D. To perform the complete pseudo-2D stick model, the degree of freedom
and the edge information of the human body were used; global and local coordinate
methods were implemented, which helped us determine the angular movements of human
body parts. While the global and local coordinate methods were performed, to achieve
the final results of the pseudo-2D stick model, we implement the Cartesian product [21].
Figure 6 shows a few example results of the pseudo-2D stick model, and Algorithm 2
represents the complete overview of the pseudo-2D stick model.

Algorithm 2. Pseudo-2D stick model.

Input: Human body key point and 2D stick model
Output: Pseudo-2D stick graph (kp1, kp2, kp3, . . . , kpn)
Dkp = Detection of human body key points, Cdp = Connection of detected points, Ss = Sticks
scaling, Sg = 2D skeleton graph, Vi = Volumetric information, Kk = kinematic dependency and
key points tracing, Ei = edges information, Dof = Degree of freedom, GL = Global and local
coordinates, Sc = Skeleton Graph Cartesian product
% initiating Pseudo-2D Stick Graph %
Pseudo-2D Stick Graph← []
P2DSG_Size← Get P2DSG_Size ()
% loop on extracted human silhouettes%
For I = 1:K
P2DSG_interactions← GetP2DSG_interactions
%Extracting Dkp, Cdp, Ss, Sg, Vi, Kk, Ei, Dof, GL, Sc%
Detection of body key points← Dkp(P2DSG_interactions)
Connection of detected points← Cdp(P2DSG_interactions)
Sticks scaling← Ss(P2DSG_interactions)
2D skeleton graph← Sg(P2DSG_interactions)
Volumetric information← Vi(P2DSG_interactions)
Kinematics dependency← Kk(P2DSG_interactions)
Edges information← Ei(P2DSG_interactions)
Degree of freedom← Dof(P2DSG_interactions)
Global and Local coordinates← GL(P2DSG_interactions)
Skeleton Graph Cartesian product← Sc(P2DSG_interactions)
Pseudo-2D Stick Graph← Get P2DSG
Pseudo-2D Stick Graph.append (P2DSG)
End
Pseudo-2D Stick Graph← Normalize (Pseudo-2D Stick Graph)
return Pseudo-2D Stick Graph (kp1, kp2, kp3, . . . , kpn)
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3.4. Multifused Data

In this segment, we give a comprehensive overview of multifused data, including
skeleton zigzag, angular geometric, 3D Cartesian view, energy and moveable body part
features for APEEC. Algorithm 3 describes the formula for multifused data extraction.

3.4.1. Skeleton Zigzag Feature

In skeleton zigzag features, we defined human skeleton points as human outer body
parts. Initially, we calculated skeleton zigzag features via the Euclidean distance in-between
body parts of the first human silhouette and those of the second silhouette. This distance
vector helped us to find more accurate stochastic remote sensing event classification and
human posture estimation. Using Equation (10), we determined the outer distance between
two human silhouettes. Figure 7 represents the skeleton zigzag features results.

Sz f = h1_dis( f1. f2)↔ h2_dis( f1. f1) (10)

where Sz f is the skeleton zigzag features, h1_dis is the distance of the first human silhouette
and h2_dis is the distance of the second human silhouette.
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3.4.2. Angular Geometric Feature

In angular geometric features, we considered an orthogonal shape over human body
parts. We considered five basic body parts as edges of the orthogonal body in which



Remote Sens. 2021, 13, 912 10 of 29

head point, torso point and feet point were included. We drew an orthogonal shape and
computed the area using Equation (11) and put the results in the main features vector.

Ag f =

(
5
2

)
∗ s ∗ a (11)

where Ag f is the angular geometric feature vector, 5/2 is a constant, s is the side of a
pentagon and a denotes the apothem length. Figure 8 shows the results of the angular
geometric features.
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feature.

3.4.3. 3D Cartesian View Feature

From multifused data, we determined the smoothing gradient from the extracted
human silhouette and estimate the gradient indexes of the detected full human body
silhouette. After this, we obtained a 3D Cartesian product and a 3D Cartesian view of
the extracted smoothing gradient values. By this, we could obtain the 3D indexes. After
that, the difference between every two consecutive frames f and f − 1 of the human
silhouettes HFS was calculated. Equation (12) represents the mathematical formulation
for the estimated 3D Cartesian view. After estimating the 3D values, we placed them in a
trajectory and concatenated them with the central feature vector as

CVITSV( f ) =
∣∣∣HFS

f
TSV − HFS

f−1
TSV

∣∣∣ (12)

where CVI represents the 3D Cartesian view vector; TSV denotes the side, front and top
views of the extracted 3D Cartesian view. Figure 9 represents the results of the 3D Cartesian
view and the 2D representation.
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3.4.4. Energy Feature

In the energy feature, Egn(t) calculated the motion of the human body part in the
energy-based matrix, which holds a set of energy values [0–10,000] over the identified
human silhouette. After the circulation of energy value, we collected only the upper energy
value using the heuristic thresholding technique and placed all extracted values in a 1D
array. The mathematical representation of energy distribution is shown in Equation (13),
and example results of energy features are represented in Figure 10.

Egn(t) = ∑w
0 IamgR(i) (13)

where Egn(t) specifies the energy array vector, i expresses index values and IamgR repre-
sents the index value of certain RGB pixels.
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3.4.5. Moveable Body Parts Feature

In moveable body parts features, only relocated body parts of the human were con-
sidered. To identify these body parts features, we considered the moveable section of the
human body parts in the preceding frame as the main spot, to crop the given frame patch p
of size IxJ in the present frame and to estimate the output value as

Ŝ = f t−1(A
⊙

f t(nx̂p)) (14)

where f t−1 denotes the inverse Fourier transform,
⊙

denotes the matrix Hadamard prod-
uct, n is a correlation, x̂ is the output value of the marked shape in a certain image and Ŝ
shows the similarity among the candidate portion of the frame and the preceding region.
Thus, the present location of the moveable body parts can be identified by obtaining the
higher values of Ŝ as;

H = max( ˆ̂S) (15)

However, when the transformed regions were recognized, we increased the bonding
region across the moving body points, found the pixel’s location and traced additional
moveable body parts in the series of frames as

Mb = ∑Nk
0 MI(Nk) (16)

where Mb is the moving body parts vector, Nk is the integer index and MF denotes the
location of pixel values. Figure 11 describes the results of moveable body parts features.
Algorithm 3 shows the detailed procedures of the feature extraction framework.
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Algorithm 3. Multifused data.

Input: N: Extracted human silhouettes frames of RGB images
Output: sense –aware feature vectors(sf 1, sf 2, sf 3, . . . , sfn)
% initiating feature vector for stochastic remote sensing event classification %
sense-awarefeature_vectors← []
F_vectorsize← GetVectorsize ()
% loop on extracted human silhouettes frames %
For i = 1:K
F_vectors_ interactions← Get_F_vectors(interactions)
% extracting energy features, moveable human body parts, Smoothing gradient 3D Cartesian
view, key points angle features, human skeleton features%
Energy Features←ExtractEnergyFeatures(F_vectors_ interactions)
MoveableHumanBodyparts←ExtractMoveableHumanbodyparts(F_vectors_ interactions)
Smoothing Gradient 3D Cartesian View← ExtractSmoothingGradient3DCartesianView(F_vectors_
interactions)
Key point angle← ExtractKeyPointAngle(F_vectors_ interactions)
Human skeleton features← ExtractHumanSkeletonFeatures(F_vectors_ interactions)
Feature-vectors← GetFeaturevector
Context-aware Feature-vectors.append (F_vectors)
End
Sense-aware Feature-vectors← Normalize (sense-awarefeature_vectors)
return sense –aware feature vectors(sf 1,sf 2,sf 3, . . . ,sfn)
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3.5. Feature Optimization: Charged System Search Algorithm

For extracted features data optimization, we used a charged system search (CSS) [45]
algorithm which is based on some defined principles of applied sciences. Charged system
search (CSS) utilized the two laws from the applied sciences, namely, a Newtonian law
from mechanics and Coulomb’s law from physics, where Coulomb’s law defines the electric
force’s magnitude between two charged points. Equation (17) defines the mathematical
representation of Coulomb’s law as

Cij = ne
pi pj

a2
ij

(17)

where Cij denotes Coulomb’s equation, aij represents the distance between two charged
points and ne is Coulomb’s constant. Suppose a solid insulating sphere with a radius of r
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and holding a true positive charge pi, and fij as the outer side of the insulating sphere is
considered as an electric field, which is defined as:

fij = ne
pi
a2

ij
(18)

CSS utilizes the concept of charged particles (CP); every CP creates an electric field
using its magnitude property, which is denoted as pi. The magnitude of a CP is defined as:

pi =
f it(i)− f ittworst

f ittbest − f ittworst
, i = 1, 2 . . . . . . . . . , N, (19)

where f it(i) is defined as the objective function of CSS, N is the limits of CP, while f ittworst
and f ittbest are for worst fitness declaration for all participants and f ittbest for the best so
far. The distance between two charged points is defined as:

aij =
‖ Mi −Mj ‖

‖ Mi −Mj)/2−Mbest ‖ + E
(20)

where both Mi and Mj are the ith and jth location of the CPs, respectively; Mbest denotes
the CP’s best position; and E is used to avoid uniqueness. Figure 12 shows the flowchart
for the charged system search (CSS). Figure 13 represents a few results over three different
classes of the different datasets.
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3.6. Event Classification Engine: Deep Belief Network

In this section, we describe the machine learning-based deep belief network (DBN) [46],
which we used as an event classifier. We used DBN over three datasets: SVW, Olympic
Sports and UT-interaction. For the construction of DBN, the general building block is
Restricted Boltzmann Machine (RBN). A hidden and visible unit of layer RBN constitutes a
two-layer structure. The combined energy configuration of both units is defined as

Enr(VI, HI, θ) =−
D

∑
i = 1

bVivi −
F

∑
j = 1

aHjhj −
D

∑
i = 1

F

∑
j = 1

wjVIi HIj

= > −bTVI − aT HI −VITWHI

(21)

where θ =
{

bVi, aHj, weij
}

; weij denotes the weight among visible component i and
hidden component j; bVi and aHj present the bias condition of the hidden and visible
components, respectively. The combined unit’s configuration is defined as

Pr(VI, HI, θ) =
1

NC(θ)
exp(−Enr(VI, HI, θ)) (22)

NC(θ) = ∑VI ∑
HI

Enr(VI, HI, θ) (23)

where NC(θ) denotes a regularization constant. The energy function is used as a probability
distribution to the network; using Equation (21), the training vector can be adjusted. To
extract the features from the data, the individual hidden layer of RBN is not a wise approach.
The output of the first layer is used as the input of the second layer, and the output of the
second layer is the input of the third layer of RBN. This hierarchal layer-by-layer structure
of RBN develops the DBN; the deep feature extraction from the input dataset is more
effective using a hierarchal approach of DBN. Figure 14 represents the graphical model
and the general overview of DBN.
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4. Experimental Results

In this section, initially, we describe three different publicly available challenging
datasets. After the description of the three datasets, we represent three types of tentative
results. Exploration of the human body point recognition accuracies with distances to
their ground truth was considered in the first experiment. After that, the next experiment
was based on stochastic remote sensing event classification accuracies. Finally, in the
last experiment, we compared event classification accuracies as well as human body part
recognition accuracies with other well-known statistical state-of-the-art systems.

4.1. Datasets Description

The Olympic sports dataset [51] images for bowling, discus throw, diving_platform_10m,
hammer throw, javelin throw, long jump, pole vault, shot put, snatch, basketball lay-up,
triple jump and vault are event-based classes shot at a size of 720 × 480, 30 fps throughout
the video. Figure 15 shows some example images of the Olympic sports dataset.

The UT-interaction dataset includes videos of six classes of continuously executed
human–human encounters: shake-hands, point, embrace, drive, kick and strike. A sample
of 20 video streams with a duration of about 1 min was available. The increasing video
data involve at least another execution every encounter, giving us an average of eight
iterations of human interactions per video. Numerous respondents participate throughout
the video clips with even more than 15 distinct wardrobe situations. The images were shot
at a size of 720 × 480, 30 fps throughout the video. There are six different interaction classes:
handshaking, hugging, kicking pointing, punching and pushing. Figure 16 gives some
example images from the UT-interaction dataset.
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Figure 16. Some examples of UT-interaction dataset.

Sports Videos in the Wild (SVW) [52] 4200 were shot using the Coach’s Eye mobile app,
a pioneering sport development app produced by the TechSmith organization exclusively
for the smartphone. There are nineteen event-based classes of 19 different events, namely,
archery, baseball, basketball, BMX, bowling, boxing, cheerleading, football, golf, high jump,
hockey, hurdling, javelin, long jump, pole vault, rowing, shotput, skating, tennis, volleyball
and weight-lifting; the images were shot at a size of 720× 480, 30 fps throughout. Figure 17
shows some example images from the SVW dataset.



Remote Sens. 2021, 13, 912 17 of 29
Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 29 
 

 

 

Figure 17. A few samples of the SVW dataset. 

The UCF aerial action dataset is based on a remote sensing technique. For video col-
lection they used mini-drones from 400–450 feet. Five to six people are in the UCF aerial 
action dataset. They perform different events, such as walking, running and moving. Fig-
ure 18 shows some example images from the UCF aerial action dataset. 

 

Figure 18. A few samples of the UCF aerial action dataset. 

4.2. Experiment I: Body Part Detection Accuracies 
To compute the efficiency and accuracy of human body part recognition, we esti-

mated the distance [53,54] from the ground truth (GT) of the datasets using the following 
equation. 𝐷𝑖 =  ට∑ ቀூ೙ௌ೙ − ௃೙ௌ೙ቁଶ ே௡ ୀ ଵ   (24)

Here, 𝐽 is the GT of datasets and 𝐼 is the position of the identified human body part. 
The threshold of 15 was set to recognize the accuracy between the identified human body 
part information and the GT data. Using the following Equation (25), the ratio of the iden-
tified human body parts enclosed within the threshold value of the categorized dataset 
was identified as 𝐷𝐴 =  ଵ଴଴௡ ൤∑ ൜1 𝑖𝑓 𝐷 ≤ 15 0 𝑖𝑓 𝐷 > 15 ௄௡ ୀ ଵ ൨   (25)

In Table 2, columns 2, 4 and 6 present the distances from the dataset ground truth 
and columns 3, 5 and 7 show the human body part recognition accuracies over the UT-
interaction, Olympic sports and SVW datasets, respectively. 

  

Figure 17. A few samples of the SVW dataset.

The UCF aerial action dataset is based on a remote sensing technique. For video
collection they used mini-drones from 400–450 feet. Five to six people are in the UCF
aerial action dataset. They perform different events, such as walking, running and moving.
Figure 18 shows some example images from the UCF aerial action dataset.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 29 
 

 

 

Figure 17. A few samples of the SVW dataset. 

The UCF aerial action dataset is based on a remote sensing technique. For video col-
lection they used mini-drones from 400–450 feet. Five to six people are in the UCF aerial 
action dataset. They perform different events, such as walking, running and moving. Fig-
ure 18 shows some example images from the UCF aerial action dataset. 

 

Figure 18. A few samples of the UCF aerial action dataset. 

4.2. Experiment I: Body Part Detection Accuracies 
To compute the efficiency and accuracy of human body part recognition, we esti-

mated the distance [53,54] from the ground truth (GT) of the datasets using the following 
equation. 𝐷𝑖 =  ට∑ ቀூ೙ௌ೙ − ௃೙ௌ೙ቁଶ ே௡ ୀ ଵ   (24)

Here, 𝐽 is the GT of datasets and 𝐼 is the position of the identified human body part. 
The threshold of 15 was set to recognize the accuracy between the identified human body 
part information and the GT data. Using the following Equation (25), the ratio of the iden-
tified human body parts enclosed within the threshold value of the categorized dataset 
was identified as 𝐷𝐴 =  ଵ଴଴௡ ൤∑ ൜1 𝑖𝑓 𝐷 ≤ 15 0 𝑖𝑓 𝐷 > 15 ௄௡ ୀ ଵ ൨   (25)

In Table 2, columns 2, 4 and 6 present the distances from the dataset ground truth 
and columns 3, 5 and 7 show the human body part recognition accuracies over the UT-
interaction, Olympic sports and SVW datasets, respectively. 

  

Figure 18. A few samples of the UCF aerial action dataset.

4.2. Experiment I: Body Part Detection Accuracies

To compute the efficiency and accuracy of human body part recognition, we estimated
the distance [53,54] from the ground truth (GT) of the datasets using the following equation.

Di =

√
∑N

n = 1

(
In

Sn
− Jn

Sn

)2
(24)

Here, J is the GT of datasets and I is the position of the identified human body part.
The threshold of 15 was set to recognize the accuracy between the identified human body
part information and the GT data. Using the following Equation (25), the ratio of the
identified human body parts enclosed within the threshold value of the categorized dataset
was identified as

DA =
100
n

[
∑K

n = 1

{
1 i f D ≤ 15

0 i f D > 15

]
(25)

In Table 2, columns 2, 4 and 6 present the distances from the dataset ground truth
and columns 3, 5 and 7 show the human body part recognition accuracies over the UT-
interaction, Olympic sports and SVW datasets, respectively.
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Table 2. Human body key point detection accuracy.

Body Key
Points Distance UT (%) Distance Olympic

Sports (%) Distance SVW (%)

HP 10.2 90 10 87 9 89
NP 9.8 85 11 83 10.1 86
RSP 10.5 80 11.1 81 12.1 83
REP 10.1 82 10.7 81 12.9 84
RWP 8.3 77 10.5 80 13 79
RHP 11.8 83 12 79 11 81
LSP 12.1 81 12.9 78 12 83
LEP 11 79 11 80 10 75
LWP 12.1 76 10 81 13.1 80
LHP 10.4 81 13 80 12.8 79
MP 11.1 90 14 89 12.9 87

RHP 12.9 77 13.9 80 11.1 83
LHP 11.1 80 10.1 75 10.8 80
LKP 11.2 93 11.8 90 9.3 94
RKP 10.9 90 12.3 87 12.7 89
RAP 11.5 81 12.7 80 12.6 79
LAP 11.2 78 13.1 79 13 78
LFP 12.3 95 11 94 11.1 92
RFP 10.5 90 9.3 93 10.8 91

Mean Accuracy Rate 83.57 83.00 83.78
HP = Head point, NP = Neck point, RSP = Right shoulder point, REP = Right elbow point, RWP = Right wrist
point, RHP = Right hand point, LSP = Lift shoulder point, LEP = Left elbow point, LWP = Left wrist point,
LHP = Left hand point, MP = Mid-point, RHP = Right hip point, LHP = Left hip point, LKP = left knee point,
RKP = Right knee point, RAP = Right ankle point, LAP = Left ankle point, LFP = Left foot point, RFP = Right
foot point.

Table 3 shows the key body points results of multiperson tracking accuracy for the
UCF aerial action dataset. For detected parts, we used 3, and for failures we used 7.
We achieved accuracy for person1—73.1%, person2—73.6%, person3—073.7%, person4—
73.8%, person5—63.1%, and a mean accuracy of 71.41%.

Table 3. Human body key points results of multiperson tracking accuracy over UCF aerial ac-
tion dataset.

Body Parts Person1 Person2 Person3 Person4 Person5

HP 3 3 3 3 3

NP 3 3 3 3 3

RSP 3 7 3 7 7

REP 7 3 3 3 3

RWP 3 7 3 7 3

RHP 3 3 7 3 3

LSP 7 3 7 3 7

LEP 3 7 3 3 7

LWP 3 3 3 3 3

LHP 7 7 3 7 7

MP 3 3 3 3 3

RHP 3 3 7 7 3

LHP 3 3 3 3 7

LKP 7 3 3 7 3

RKP 3 7 7 3 7

RAP 3 3 3 3 3
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Table 3. Cont.

Body Parts Person1 Person2 Person3 Person4 Person5

LAP 7 3 7 3 7

LFP 3 3 3 3 3

RFP 3 3 3 3 3

Accuracy 73.1% 73.6% 73.7% 73.8% 63.1%

Mean accuracy = 71.41%
HP = Head point, NP = Neck point, RSP = Right shoulder point, REP = Right elbow point, RWP = Right wrist
point, RHP = Right hand point, LSP = Lift shoulder point, LEP = Left elbow point, LWP = Left wrist point,
LHP = Left hand point, MP = Mid-point, RHP = Right hip point, LHP = Left hip point, LKP = left knee point,
RKP = Right knee point, RAP = Right ankle point, LAP = Left ankle point, LFP = Left foot point, RFP = Right
foot point.

Table 4 shows the multiperson tracking accuracy over UCF aerial action dataset,
column 1 shows the number of sequences, and each sequence has 25 frames. Column 2
shows the actual people of the dataset, Column 3 shows the successfully detected by over
proposed system, column 4 shows the failure and finally, column 5 shows the accuracy and
the mean accuracy is 91.15%.

Table 4. Multiperson tracking accuracy for the UCF aerial action dataset.

Sequence No
(Frames = 25) Actual Track Successful Failure Accuracy

6 4 4 0 100
12 4 4 0 100
18 5 5 0 100
24 6 5 1 87.33
30 6 5 1 83.43

Mean Accuracy = 94.15

4.3. Experiment II: Event Classification Accuracies

For stochastic remote sensing event classification, we used a deep belief network as
an event classifier, and the proposed system was evaluated by the Leave One Subject Out
(LOSO) cross-validation technique. In Figure 19, the results over the UT-interaction dataset
show 91.67% event classification accuracy.

After this, we applied the deep belief network over the Olympic sports dataset and
found the stochastic remote sensing event classification results. Figure 20 shows the results
of the confusion matrix of event classification over the Olympic sports dataset with 92.50%
mean accuracy.

Finally, we applied a deep belief network over the SVW dataset, and we found 89.47%
mean accuracy for event classification. Figure 21 shows the confusion matrix of the SVW
dataset with 89.47% mean accuracy.
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BM = bmx, BW = bowling, CD = cheerleading, FB = football, GL = golf, HJ = highjump, HK = hockey, HR = hurdling,
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4.4. Experiment III: Comparison with Other Classification Algorithms

In this section, we compare the precision, recall and f-1 measure over the SVW dataset,
Olympic sports dataset and UT-interaction dataset. For the classification of stochastic
remote sensing events, we used an Artificial Neural Network and Adaboost, and we
compared the results with the deep belief network. Table 5 shows the results over the
UT-interaction dataset, Table 6 shows the results over the Olympic sports dataset and
Table 7 shows the results over the SVW dataset.

Table 5. Well-known classifiers comparison by considering precision, recall and F-1 measure over UT-interaction dataset.

Event
Classes Artificial Neural Network Adaboost Deep Belief Network

Events Precision Recall F-1
Measure Precision Recall F-1

Measure Precision Recall F-1
Measure

HS 0.727 0.800 0.762 0.778 0.875 0.824 0.833 1.000 0.909
HG 0.875 0.875 0.875 1.000 0.875 0.933 1.000 0.900 0.947
KI 0.889 0.727 0.800 0.889 0.889 0.889 1.000 1.000 1.000
PT 0.700 0.875 0.778 0.875 0.875 0.875 0.900 0.900 0.900
PN 0.700 0.778 0.737 0.875 0.778 0.824 0.900 0.900 0.900
PS 0.727 0.727 0.727 0.875 0.778 0.824 0.889 0.800 0.842

Mean 0.770 0.797 0.780 0.882 0.845 0.861 0.920 0.917 0.916

HS = hand shaking, HG = hugging, KI = kicking, PT = pointing, PN = punching, PS = pushing.
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Table 6. Well-known classifiers comparison by considering precision, recall and F-1 measure over Olympic sports dataset.

Event
Classes Artificial Neural Network Adaboost Deep Belief Network

Events Precision Recall F-1
Measure Precision Recall F-1

Measure Precision Recall F-1
Measure

BG 0.538 0.636 0.583 0.600 0.750 0.667 1.000 0.900 0.947
DW 0.692 0.750 0.720 0.636 0.636 0.636 0.889 0.800 0.842
DM 0.700 0.583 0.636 0.750 0.750 0.750 1.000 1.000 1.000
HW 0.636 0.636 0.636 0.636 0.636 0.636 0.900 0.900 0.900
JW 0.727 0.889 0.800 0.889 0.889 0.889 0.900 0.900 0.900
LP 0.778 0.636 0.700 0.800 0.667 0.727 0.909 1.000 0.952
PT 0.615 0.800 0.696 0.778 0.778 0.778 0.900 1.000 0.947
ST 0.563 0.750 0.643 0.563 0.750 0.643 1.000 0.800 0.889
SH 0.875 0.700 0.778 1.000 0.778 0.875 0.909 1.000 0.952
BR 0.583 0.700 0.636 0.778 0.778 0.778 0.909 1.000 0.952
TP 0.750 0.750 0.750 0.700 0.700 0.700 1.000 1.000 1.000
VT 0.750 0.667 0.706 0.733 0.636 0.681 1.000 1.000 1.000

Mean 0.684 0.708 0.690 0.739 0.729 0.730 0.943 0.942 0.940

BG = bowling, DW = discus throw, DM = diving_platform_10m, HW = hammer throw, JW = javelin throw, LP = long jump, PT = pole vault,
ST = shot put, SH = snatch, BR = basketball lay-up, TP = triple jump, VT = vault.

Table 7. Well-known classifiers comparison by considering precision, recall and F-1 measure over SVW dataset.

Event
Classes Artificial Neural Network Adaboost Deep Belief Network

Events Precision Recall F-1
Measure Precision Recall F-1

Measure Precision Recall F-1
Measure

AR 0.636 0.778 0.700 0.778 0.778 0.778 0.889 0.800 0.842
BB 0.667 0.727 0.696 0.700 0.700 0.700 0.900 0.900 0.900
Bt 0.667 0.727 0.696 0.615 0.727 0.667 0.900 0.900 0.900

BM 0.727 0.727 0.727 0.800 0.615 0.696 0.900 0.900 0.900
BW 0.692 0.750 0.720 0.750 0.750 0.750 0.909 1.000 0.952
CD 0.538 0.583 0.560 0.533 0.727 0.615 0.667 0.800 0.727
FB 0.700 0.700 0.700 0.750 0.692 0.720 0.889 0.800 0.842
GL 0.800 0.615 0.696 0.700 0.778 0.737 0.900 0.900 0.900
HJ 0.636 0.700 0.667 0.583 0.636 0.609 0.800 0.800 0.800
HK 0.800 0.889 0.842 0.889 0.889 0.889 1.000 1.000 1.000
HR 0.889 0.533 0.667 0.800 0.800 0.800 0.909 1.000 0.952
JV 0.800 0.727 0.762 1.000 0.727 0.842 1.000 1.000 1.000
LI 0.636 0.778 0.700 0.538 0.636 0.583 0.800 0.800 0.800
PT 0.875 0.700 0.778 0.875 0.700 0.778 0.889 0.800 0.842
RW 0.727 0.889 0.800 0.778 0.778 0.778 0.900 0.900 0.900
ST 0.778 0.700 0.737 0.778 0.700 0.737 0.900 0.900 0.900
SK 0.500 0.500 0.500 1.000 0.778 0.875 1.000 0.900 0.947
TN 0.615 0.615 0.615 0.600 0.818 0.692 0.909 1.000 0.952
VL 0.778 0.875 0.824 0.875 0.700 0.778 1.000 0.900 0.947

Mean 0.709 0.711 0.704 0.755 0.733 0.738 0.851 0.853 0.851

AR = archery, BB = baseball, BT = basketball, BM = bmx, BW = bowling, CD = cheerleading, FB = football, GL = golf, HJ = highjump,
HK = hockey, HR = hurdling, JV = javelin, LI = longjump, PT = polevault, RW = rowing, ST = shotput, SK = skating, TN = tennis,
VL = volleyball.

4.5. Experimentation IV: Qualitative Analysis and Comparison of our Proposed System with
State-of-the-Art Techniques

Table 8 represents the qualitative analysis and comparison with existing state-of-
the-art methods. Columns 1 and 2 show the comparison of human body part detection;
columns 3 and 4 show the comparison results of human posture estimation; columns 5
and 6 represent the comparisons for stochastic remote sensing event classification. Results
show a significant improvement in the proposed method.
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Table 8. Qualitative analysis and comparison of the state-of-the-art methods with the proposed APEEC method.

Proposed by
Body Part
Detection

Accuracy (%)
Proposed by

Human Posture
Estimation

Mean Accuracy
(%)

Proposed by

Event
Classification

Mean Accuracy
(%)

S. Hong, et al. [55] 76.60 Chen et al. [56] 95.0 Mahmood et al. [57] 83.50
C. Dorin et al. [58] 81.90 Zhang et al. [59] 96.0 Amer, M.R. et al. [60] 82.40

S. Gomathi et al. [61] 82.71 Li et al. [62] 98.0 Zhu, Y [63] 83.10

Proposed 83.78 Proposed 98.3 Proposed 92.50

4.6. Experimentation V: Comparison of our Proposed System with State-of-the-Art Techniques

In this section, we compare the proposed system with existing state-of-the-art methods,
and we check the mean accuracy of stochastic remote sensing event classification and
human body part detection. Table 6 shows the comparison results with existing state-of-
the-art methods. The results show the superior performance of our proposed Adaptive
Posture Estimation and Event Classification (APEEC) system. Because nineteen body
parts are considered, a pseudo-2D stick model, multifused data, data optimization via
CSS and event classification are evaluated using DBN. In [64], Rodriguez et al. present
a novel technique via the most sensible human movement in which they used vibrant
descriptions and tailored loss mechanisms to inspire a reproductive framework to find
precise future human movement estimates. Xing et al. [65] designed a fusion feature
extraction framework, in which they syndicate mutually stationary features and dynamic
features to cover additional action material from video data. In [66], Chiranjoy et al.
developed a supervised method for automatic identification the, key contribution being
the extraction of spatiotemporal features, and they spread the vectors of locally aggregated
descriptors (VLADs) as a dense video encoding demonstration. In [67], S. Sun et al.
proposed an approach for feature extraction in which they extract directed optical flow
along with a CNN-based model for human event identification and classification. In [68],
Reza. F et al. defined an approach to deal with event identification and classification with
the CNN and Network in Network architecture (NNA), which are the baseline of modern
CNN. The lightweight architecture of CNN, average, max and product functions are used
to identify human events. In [69], L. Zhang et al. [49] designed an innovative framework for
human-based video event identification and classification via binary-level neural network
learning. At the initialization stage, CNN is used to recognize the main video content.
Finally, they extract spatiotemporal features via Gated Recurrent Unit (GRU) and Long
Short Term Memory (LSTM)-based methods. Wang. H et al. [70] developed a human
movement approximation approach in which they improve dense features using a video-
based camera. For the multifused data, they consider optical flow and Speed-up Robust
features (SURF). A. Nadeem et al. [71] designed a novel framework for human posture
estimation via a multidimensional feature vector, human body point identification. For
recognition, they used the Markov entropy model, while Quadratic discriminant analysis
(QDA) was used for feature extraction from video data. Mahmood et al. [57] developed
a novel human activity, event and interaction detection model for human-based video
data. They applied the segmentation process to extract the human silhouette and multistep
human body parts, which are based on points to base distance features to recognize
the events. In [60], Amer, M.R. et al. proposed a unified approach for human activity
recognition using spatiotemporal-based data features. In [63], Kong, Y. et al. designed a
robust human event-based technique in which they used human local and global body
part multidata features to recognize human-based events and interactions. Table 9 shows
a comprehensive comparison of our proposed Adaptive Posture Estimation and Event
Classification (APEEC) method with state-of-the-art methods:
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Table 9. Comparison of the state-of-the-art methods with the proposed APEEC method.

Methods UT-Interaction
(%) Methods Olympic

Sports (%) Methods Sports Videos in
the Wild (%)

C. Rodriguez et al. [64] 71.80 Zhang.L et al. [69] 59.10 S. Sun et al. [67] 74.20
Xing et al. [65] 85.67 Sun. S et al. [67] 74.20 Reza. F et al. [68] 82.30

Chiranjoy. Cet et al. [66] 89.25 Wang. H et al. [70] 89.60 A. Nadeem et al. [71] 89.09
Wang. H et al. [70] 89.10 A. Nadeem et al. [71] 88.26 Zhu, Y [72] 83.10

Mahmood et al. [57] 83.50 E. Park et al. [73] 89.10 — —
Amer, M.R. et al. [60] 82.40 M. Jain et a [74] 83.20 — —

Kong, Y. et al. [63] 85.00 — — — —

Proposed method 91.67 92.50 89.47

5. Discussion

The proposed APEEC was designed to achieve Stochastic Remote Sensing Event
Classification over adaptive human posture estimation. In this approach, we extracted
multifused data from human-based video data; after that, layered data optimization via a
charged system search algorithm and event classification using a deep belief network were
conducted. The proposed method starts with input video data; for that, we used three
publicly available datasets in video format. A preprocessing step was performed to reduce
noise. First, we used adaptive filters, which have high computational complexity. To reduce
computational cost, we applied a Gaussian filter to reduce noise. Video to frame conversion
and resizing of the extracted frames also help to save time and memory. The next step is
human detection, which was performed by GMM and a Saliency map algorithm. After
successfully extracting human silhouettes, we found the human body key points that are
located on the upper and lower body. This is the baseline for adaptive human posture
estimation, which is based on the unbreakable pseudo-2D stick model.

The next step is multifused data; we extracted two types of features: first, full human
body features: conations energy, moveable body parts and 3D Cartesian view features, and
second, key point features: skeleton zigzag and geometric features. To overcome resource
costs, we adopted a data optimization technique in which we used the Met heuristic data
optimization charged system search algorithm. Finally, we applied a deep belief network
for stochastic remote sensing event classification.

We faced some limitations and problems in the APEEC system. We were not able to
find the hidden information for the human silhouette, and this is the reason for the low
accuracy of human posture analysis and stochastic remote sensing event classification.
Figure 22 shows some examples of problematic events. In the images, we can see the
skeleton and human body key point locations; however, the positions are not clear due to
complex data and occlusion of some points of the human body.

Here, we present results and analysis of the proposed APEEC. The mean accuracy for
human body part detection is 83.57% for the UT-interaction dataset, 83.00% for the Olympic
sports dataset and 83.78% for the SVW dataset. Mean event classification accuracy is 91.67%
over the UT-interaction dataset, 92.50% for the Olympic sports dataset and 89.47% for SVW
dataset. These results are superior in comparison with existing state-of-the-art methods.
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6. Conclusions

We contribute a robust method for the detection of nineteen human body parts during
complex human movement, challenging events and human postures, which can be detected
and estimated more accurately than other methods. To achieve more accurate results in
adaptive posture estimation and classification, we designed a skeletal pseudo-2D stick
model that enables the detection of nineteen human body parts. In the multifused data, we
extracted sense-aware features, which include energy, moveable body parts, skeleton zigzag
features, angular geometric features and 3D Cartesian features. Using these extracted
features, we can classify events into multiple human-based videos more accurately. For data
optimization, a hierarchical optimization model was implemented to reduce computational
cost and to optimize data. Charged system search optimization was implemented with
over-extracted features. A deep belief network was applied for multiple human-based
video event classification.

6.1. Theoretical Implications

The proposed APEEC system works in different and complex scenarios to classify
stochastic remote sensing events. APEEC works with multihuman-based datasets as well,
although there are theoretical implications to determining the more complex application
of the system in terms of event detection in videos, sports, medical, emergency services,
hospital management system and surveillance system; however, for these applications, we
can apply the proposed APEEC system in a real-time video data-capturing environment.

6.2. Research Limitations

The proposed APEEC system, the Sports Video in the Wild dataset, is a more complex
dataset compared to the Olympic sports dataset and the UT-interaction dataset. Due to
complex angle information and complex human information, we faced minor differences
in results. Figure 22 presents the results of human posture detection, while the dotted circle
highlights the occlusion and overlapping issues in a certain area. We faced difficulties
when dealing with these types of data and environments. In the future, we will work on
this problem by using a deep learning approach, and we will devise a new method to
obtain outstanding results.
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