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Abstract: One of the best preconditions for the sufficient monitoring of peat bog ecosystems is the
collection, processing, and analysis of unique spatial data to understand peat bog dynamics. Over
two seasons, we sampled groundwater level (GWL) and soil moisture (SM) ground truth data at two
diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served
as reference data and were modeled with a suite of potential variables derived from digital surface
models (DSMs) and RGB, multispectral, and thermal orthoimages reflecting topomorphometry, vege-
tation, and surface temperature information generated from drone mapping. We used 34 predictors
to feed the random forest (RF) algorithm. The predictor selection, hyperparameter tuning, and
performance assessment were performed with the target-oriented leave-location-out (LLO) spatial
cross-validation (CV) strategy combined with forward feature selection (FFS) to avoid overfitting
and to predict on unknown locations. The spatial CV performance statistics showed low (R2 = 0.12)
to high (R2 = 0.78) model predictions. The predictor importance was used for model interpretation,
where temperature had strong impact on GWL and SM, and we found significant contributions of
other predictors, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference
Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf
Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue
Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topo-
graphic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated
the area of applicability (AOA) by presenting maps where the prediction model yielded high-quality
results and where predictions were highly uncertain because machine learning (ML) models make
predictions far beyond sampling locations without sampling data with no knowledge about these
environments. The AOA method is well suited and unique for planning and decision-making about
the best sampling strategy, most notably with limited data.

Keywords: peat bog; soil moisture; UAV; machine learning (ML); random forest (RF); modelling

1. Introduction

On a global scale, peatlands as a group of wetlands are essential for the landscape
and environment because they provide a wide range of critical ecosystem services [1],
water-quality improvement, flood abatement, and habitat functions. However, peatlands
are decreasing globally in terms of their condition and diversity through habitat loss,
climate change, and pollution [2]. Peat bogs, a subdivision of peatlands, in particular, are
significant water-logged reservoirs with a specific hydrological regime [3], representing
habitats dominated by sphagnum moss, stored organic matter, a high water table, and low
pH [4,5]. The Sumava Mountains (Sumava Mts., Bohemian Forest) feature the most exten-
sive peat bog complex in Central Europe due to their specific geology and morphology [6].
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Similar upland peat bogs occur in Canada, Scotland, and Scandinavia. However, Sumava’s
mountainous peat bog complexes have a specific regime concerning a humid climate and
optimal relief configuration [6] to study specific dynamics over time. Various human
activities have affected the peatlands in the Sumava Mts. in past decades [7]. Among these
human activities, artificial surface drainage is one of the most critical threats [8], affecting
approximately about 70% of the peat bogs in Sumava National Park (Sumava NP).

To understand the hydrological regime and the effects of human impacts on the
peatlands in Sumava NP, extensive research on hydrology [6,9–15], vegetation [16], soil [14],
restoration of mires [8,15], and soil water dynamics [17] have been conducted. All these
studies required invasive fieldwork or analysis, requiring demanding and recurrent field
monitoring and surveying campaigns. Peatland complexes represent the zone with the
highest status of nature protection with restricted access and limited invasive surveying
and monitoring activities. For such specific environments, there is the emerging importance
of novel monitoring approaches that minimize the impact on protected areas.

Recent advances in drones (a.k.a., unmanned aircraft systems, UASs, unmanned
aerial vehicles, UAVs, or remotely piloted aircraft systems, RPAS) and the miniaturization
of advanced sensors present new potential for noninvasive methods to monitor natural
processes, even in inaccessible or sensitive areas. Due to sensor miniaturization, it is now
possible to choose between different camera systems spanning from heavyweight LiDAR
(light detection and ranging) to lightweight RGB, multispectral, and thermal mapping
sensors [18], enabling unforeseen future research fields. These abilities make drones
particularly attractive for ultrahigh-resolution imagery and 3D point clouds, independent
of weather and cloud coverage to capture small-scale variabilities of the land surface
in high detail. Recent improvements in drone technology have provided exciting new
abilities for peatland observation, providing a noninvasive alternative to conventional
fieldwork. Earlier, these skills allowed the investigation of a high-resolution classification
of South Patagonian peat bogs and showed potential gaps in upscaled CH4 fluxes using
UAV system color-infrared (CIR) imagery [19]. Additionally, [20] examined Alberta’s water
table dynamics in Canada using drones and demonstrated the potential for measuring over
large areas using UAV technology, thus providing insights into the impacts of disturbances
on hydrology and related ecosystem functions. [21] used UAV remote sensing to map
water depth over large areas to show methane release in a treed bog ecosystem in northern
Alberta, Canada. A year later, [22] studied seismic lines generated by CH4 flux estimates
based on microtopography and depth to water features using photogrammetric inputs.
Additionally, [23] used thermal imagery equipped on a UAV to identify groundwater
discharges and the usefulness of thermal validation concerning process-based restoration
goals in Massachusetts, USA.

Further, [24] used UAV-based thermal infrared (TIR) imaging and color infrared
imaging, combining stable water isotope studies to identify treatments along a mining area
in Finland. Most studies practiced one or two sensors in studying peatland environments.
To overcome these issues, [25] used multiple sensor records with a fixed-wing UAV at two
rewetted fen sites in northern Germany (Mecklenburg Western Pomerania) and classified
spectrally similar vegetation. That study made satisfactory predictions of vegetation types
based on two multitemporal and multi-sensor datasets, via machine learning (ML).

Frequently, predictive modeling using ML has been used to show spatial and spa-
tiotemporal patterns and changes in the environment [26–30]. Additionally, predictive
modeling is commonly used with field data to train demographic models with spatial
continuous predictor variables obtained from remote sensing images [28,30]. Those models
can typically make predictions for an entire area of interest [30], even exceeding training
data locations without knowing about these environments, which is one of the drawbacks
of conventional ML methods, such as random forest (RF) [31]. Moreover, ML has been
criticized for overfitting [30,32]; for example, complex models with many parameters can
obtain both global trends and noise-generated intentions simultaneously. In this case,
the model can be outwitted into thinking that the noise encodes real information. This
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overfitting yields a steep decrease in predictive performance [32]. To guard against vague
predictions beyond sampling locations and overfitting, [33] proposed an improved model
that yielded better performance. Therefore, we took advantage of their ML prediction strat-
egy using forward feature selection (FFS) for optimal variable selection in conjunction with
the leave-location-out (LLO) cross-validation (CV) method to: (1) reduce the overfitting of
noisy variables; (2) not estimate model performances based on the random k-fold CV but
rather apply this target-oriented validation strategy in the context of unknown space; and
(3) estimate the area of applicability (AOA) to find the area where prediction is positively
specific or uncertain using the dissimilarity index (DI) [33].

Our research aimed to obtain information and predict the dynamic properties of
groundwater level (GWL) and top-layer soil moisture (SM) in 2 dimensions and time (2D +
T) based on data from digital surface models (DSMs), RGB, multispectral, and thermal data
from drone imagery. We used a CAST spatiotemporal prediction model based on an RF
algorithm and the FFS method in conjunction with target oriented LLO CV validation [32].
Compared to other models, the CAST model yields the advantage of dismissing unsuitable
predictors and estimating the AOA automatically.

The specific objectives of this study were to:

1. Collect UAV RGB, multispectral, and thermal imagery along with ground truth data
on GWL and SM over ten months;

2. Extract a suite of variables (microtopographic drivers, vegetational, and temperature
information) using a multi-sensor (RGB, multispectral, and thermal sensors) UAV
monitoring approach;

3. Spatiotemporally predict GWL and SM by the CAST ML model and assessing the
importance of selected drivers; and

4. Simulate prediction certainties across study areas, mimicking the environmental
reality.

2. Materials and Methods
2.1. Site Description and Climate

We conducted our study in the Rokytka Peat bog, one of the most extensive montane
raised ombrotrophic peat bog complexes (250 ha) within the Sumava Mts., Czechia. We
selected one of four large bog sites located along the Rokytka stream, a second-order
stream of a river that drains an area of 0.6 sq. km with an altitude range between 1100 and
1260 m a.s.l. [12], at two test sites (Figure 1). The Upper Part test site (UP, S-JTSK/Krovak
East North coordinates: −830762.40, −1149825.37, ~4.5 ha) is an open treeless site with
several pools and a complex system of hummocks and hollows with flat areas in between,
mostly covered by pine (Pinus mungo Turra), blueberry (Vaccinium myrtillus L.), and moss
(Sphagnum sp.) vegetation (Figure 1b). The Lower Part test site (LP, S-JTSK/Krovak East
North coordinates: −831134.77, −1150331.52, ~1,5 ha) is a flat zone consisting mainly of
moss and cotton grass (Eriophorum sp.) (Figure 1c). Both sites are surrounded by dead
spruce with healthy seedlings in the lower part and various dwarf communities. The
climate in this area is variable and subject to both oceanic and continental influences. Due
to the specific morphology and peat bog open space area, the Rokytka catchment is one
of the coldest places throughout the country in January or February (Figure 2). Freezing
temperatures can occur even during summer, and the average daily air temperature is
4.8 ◦C (Figure 2a). This locality also belongs to one of the Czech Republic’s wettest parts.
Humidity varies more during the day than during a year (Figure 2b), and solar radiation
shows regular annual behavior with highs in summer and lows in winter (Figure 2c).

All meteorological parameters except precipitation are measured in the experimen-
tal catchment with Fiedler devices without an external heating system during winter
(Figure 3a). Therefore, several wind speed data gaps occurred when a wind propeller
freezes (Figure 2d). Precipitation measured at nearby the Filipova Hut meteorological
station at a similar altitude equaled 1239 mm yr−1 (1981–2010) [34]. However, the last
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two years were dryer compared to the long-term average, with an annual precipitation of
1093 mm yr−1 (Figure 2e).

The experimental site contains a well-developed raised ombrogenous peat bog with
the dominant soil type being Histosol with a depth varying from 0.5 m (LP) to approxi-
mately 6 m (UP).

Organic matter in the soil is heterogeneous and can be found in different stages of
decomposition that vary throughout the peat bog. The storm hydrograph at the catchments
(0.65 sq. km) where the experimental peat bog is located is highly variable, with quickly
and steeply rising and falling limbs. The hydrological response to rainfall events was fast,
and the recession to antecedent base flow occurred rather quickly (Figure 2e). The mean
daily runoff equaled 3.4 mm per day (1297 mm y−1) at the outlet.

The UP is drained naturally into the local stream, and the vegetation of peat bogs
varies based on the water regime. Grass parts without trees where this experiment occurred
belong to areas where the groundwater table occurs near the surface. Soil is primarily
saturated with water during the year. The LP hydrological response is probably affected by
one drainage ditch. However, due to the high hydraulic conductivity of peat, the channel
drains only a small buffer [15]. In general, UP and LP did not differ in SM or GWL, which
can be proven by their similar vegetation cover (grass, moss).
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for gravimetric soil water content (GWC) estimation, (e) DJI Mavic with RGB and thermal camera, (f) Octo XL with white
target and GNSS, (g) black GCP target for thermal imagery, and (h) calibration targets for the multispectral camera.
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2.2. Ground Survey

Field surveys and airborne campaigns occurred between August and November 2018,
and between May and November 2019 for a total of 10 days of data collection (Figure 2;
represented by red dashed lines). For the GWL measurements, we installed 63 water tubes
around the study area, 43 at the UP (Figure 1d), and 20 at the LP (Figure 1d). For the wells,
we employed 1 m long and 2.5 cm diameter PVC pipes (Figure 3b) perforated through
nearly their entire length to allow water to infiltrate, and we manually installed them into
soft peat soil. We measured the GWL within the wells in Figure 3h for each UAV survey
using a blowpipe and a scale. We used the blowpipe to identify the tube’s water level and
a measuring tape to record the water ground-level depth, similar to [14]. Additionally, we
collected 63 samples of the topsoil next to the wells (Figure 3d) at both sites, which were
dried in the laboratory to obtain the gravimetric soil water content (GWC) of the surface
peat material taken from the samples to determine moisture content. GWC is the mass of
water per mass of dry soil in a given sample. The taken soil probe was first weighed and
then dried in an oven at 105 ◦C for at least three days, depending on the soil material. The
equation for GWC (θg) is:

θg = (Wet − Dry)/Dry (1)

where Wet is the weight of the soil sample from the field and Dry is the weight of the dry
soil sample. Further, we installed 12 Thermochron iButton (model DS1921G-F5#) loggers
(hereafter referred to as Tbuttons, Figure 3c), 8 in the UP and four in the LP, to validate the
topsoil surface temperature estimates during thermal imagery. In situ ground truthing is
required for UAV thermography radiometric calibration due to spatiotemporal variations
in air temperature, humidity, and atmospheric aerosol concentrations [34]. The Tbuttons
logged the temperature at half-hour intervals with an accuracy of ±1 ◦C, sampling 2048
temperature readings that allowed thermal imagery calibration later (Section 2.4). We
measured the exact position of the Tbuttons and wells with a Topcon HiPer SR geodetic
global navigation satellite system (GNSS) receiver with a horizontal accuracy of 1.8 cm and
a vertical accuracy of 2.5 cm using a real-time kinematic method with a virtual reference
station.

2.3. UAV Platforms and Cameras

UAV campaigns were conducted with ground surveys. We used two different UAV
platforms. For the first flight, a commercial Mavic Pro (DJI Co.) drone was used to acquire
nadir-viewing aerial imagery of the peat bog surface. We attached a second gimbal (MAPIR
Survey3 Mount) with a FLIR DUO R dual-sensor RGB/thermal camera on the drone to
capture thermal band (IR) imagery in the spectrum from 750 to 1350 nm set to an interval
of 1 sec (Figure 3e). The mount was at a fixed 17-degree tilt that oriented the camera nadir
during the maximum forward surveying flight speeds of approximately 8 m/s (https:
//www.mapir.camera/products/dji-mavic-pro-mapir-survey-3-single-camera-mount, ac-
cessed on 23 March 2020). The thermal data were saved in Radiometric JPEG format to
preserve the temperature values for every pixel. The resolution of the thermal lens is com-
paratively low (160 by 1220 pixels). The FLIR camera did not have a GPS sensor; thus, we
distributed black 0.5 m× 0.5 m targets as ground control points (GCPs) (Figure 3g). For the
second flight, we equipped the second drone, a MikroKopter ARF XL, with a miniaturized
camera (Tetracam µ-MCA Snap 6) to acquire near-infrared (NIR) images of 550 to 900 nm
every second in continuous mode (Figure 3f). We positioned five validation targets with
known reflectances in the field (Figure 3h). We used, white 0.5 m × 0.5 m targets as GCPs
for the multispectral overflights (Figure 3f) and conducted RGB and thermal overflights at
a height of 60 m to ensure visibility of the surface cover and the black targets visibility in
the thermal images. The multispectral overflights were taken at a height of 80 m due to the
narrow shooting angles of the Tetracam. We measured the GCPs with the GNSS receiver
Topcon (Section 2.2). Five permanent GCPs at the UP and three permanent GCPs at the LP
with additional temporary distributed GCPs each time during the field campaign served
as co-registration of all scenes taken by the different sensors (Figure 1d). All specifications

https://www.mapir.camera/products/dji-mavic-pro-mapir-survey-3-single-camera-mount
https://www.mapir.camera/products/dji-mavic-pro-mapir-survey-3-single-camera-mount
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of drones and sensors are shown in Table S1.

2.4. Data Processing
2.4.1. RGB Scenes

The two test sites (UP and LP) were flown across ten times over with nearly every
sensor (Table 1). Most flights were performed around solar noon or in the early afternoon
and under stable cloud cover (no clouds or sparse cloud cover). We processed all data
(RGB, multispectral, and thermal images) in Agisoft Metashape Professional 1.6.2 (https:
//www.agisoft.com, accessed on 19 January 2021) high accuracy settings and only generic
preselection. RGB dense clouds were generated using high settings and aggressive depth
filtering and then converted to orthomosaics (3 cm/pixel) based on the DSMs. Point clouds
were georeferenced to the EPSG:5514 coordinate system (S JTSK/Krovak East North) using
permanent GCPs (Figure 1d) to evaluate alignment accuracy. Black targets that were
visible by both the RGB and thermal sensors were positioned on the permanent markers
(Figure 3g). The GCPs were manually marked in three to four images for each GCP until
the algorithm picked up their correct locations across all images. This referencing also
optimized the sparse point cloud, thereby mitigating distortion effects [35]. The resulting
RGB orthomosaics were then used to calculate a suite of 22 vegetation spectral index
maps using the uavRst v0.5-4 [36] remote sensing toolbox in R (Table 1). We derived the
topomorphometric features listed in Table 1 using the SAGA GIS modules in QGIS [37].

2.4.2. Multispectral Scenes

Before loading the multispectral imagery into Agisoft, we performed radiometric
corrections (noise and vignetting reductions) following [38], using appropriate values taken
under controlled laboratory conditions. Band 4 was set as a master channel for processing
in Agisoft. We used very-high settings and aggressive depth filtering for multispectral
dense cloud generation. Before converting the imagery to orthomosaics (0.03 m/pixel), we
performed radiometric calibration using the values from the five reflectance targets based
on laboratory values and the empirical line method (Section 2.3, Figure 3h) according to the
method of [38]. This method yields better results than the rapid-based calibration correction
of images taken during the field campaign, as stated in [39]. In this study, white targets
were used for georeferencing the multispectral scenes (Figure 3f). From the multispectral
orthomosaics, the normalized difference vegetation index (NDVI) was calculated using the
raster calculator in Metashape.

Table 1. Peat bog data set spatiotemporal predictors and ground truth responsive variables.

Predictor Variables Definition Formula

RGB spectral indices (orthoimages)

RGI Red-green ratio index [40] (red/green)

VVI Visible vegetation index [41] (1 − (red − 30)/(red + 30)) * (1 − (green − 50)/(green +
50)) * (1 − (blue − 1)/(blue + 1))

VDVI Visible-band Difference Vegetation Index (2 * green − red − blue)/(2 * green + red + blue)

VARI Visible Atmospherically Resistant Index (green-red)/(green + red-blue)

TGI Triangular Greenness Index [42] −0.5[190(red670 − red550) − 120(red670 − red480)]

SI Spectral Slope Saturation Index (red-blue)/(red + blue)

SHP Shape index 2 * (red − green − blue)/(green − blue)

SCI Soil Colour Index (red-green)/(red + green)

SAT Overall Saturation Index max(red, green, blue) − min(red, green, blue))/max(red,
green, blue)

https://www.agisoft.com
https://www.agisoft.com
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Table 1. Cont.

Predictor Variables Definition Formula

NGRDI Normalized Green Red Difference Index [43] (green-red)/(green + (red))

NDTI Normalized Difference Turbidity Index Water
[44] (red-green)/(red + green)

NDI Normalized Difference Index (red-green)/(red + green)

HI Primary Colours Hue Index [45] (2 * red-green-blue)/(green-blue)

GRVI Green-Red Vegetation Index (green-red)/(green + red)

GLI Green Leaf Index [46] (2 * green − red − blue)/(2*green + red + blue)

GLAI Green Leaf Area Index (25 * (green − red)/(green + red − blue) + 1.25)

ExG Excess Green 2 * green-red-blue/red + green + blue

ERGBVE Enhanced Red-Green-Blue Vegetation Index 3.14159 * ((green2-(red * blue))/(green2+(red * blue)))

CI Coloration Index (red − blue)/red

BI Brightness Index sqrt((red2 + green2 + blue*2)/3

RI Redness Index red2/(blue*green3)

HUE Hue Overall Index atan(2 * (red − green − blue)/30.5 * (green − blue))

Vegetation index (Multispectral scenes)

NDVI Normalized Difference Vegetation Index [43] (NIR-red/NIR + red)

Topomorphometric indices (DSMs)

Slope Steepest Slope Angle [◦]

ProfCurv Profile Curvature [◦] Direction of the steepest slope. Affects the acceleration
or deceleration of water [47].

PlnCurv Plan Curvature [◦]
Horizontal curvature intersecting with the x–y surface
plane. Affects the convergence or divergence of water

[47].

WEI Wind Exposition Index Values below 1 indicate wind-shaded areas, whereas
values above 1 indicate areas exposed to the wind.

TRI (1, 4)* Terrain Ruggedness Index (1)* [m]

A measure of terrain complexity/heterogeneity. It
calculates the sum change in elevation between a grid

cell and its neighboring grid cells. The moving window
radius determines how many cells are used to calculate
the elevation change [48]. Value is always ≥ 0 m, where

0 represents the minimum roughness.

VRM (1, 4)* Vector Ruggedness Measure

A measure of terrain complexity/variance that captures
variability in slope and aspect in a single measure.

Ruggedness is measured as the dispersion of vectors
orthogonal to the surface within a specific neighborhood.

The radius of the moving window determines how
many cells are used to calculate the change in

ruggedness.

TPI Topographic Position Index

Difference between the elevation of the cell and the
mean of the elevation in surrounding cells [49]. Value is
positive when the point is higher than its surroundings,

zero when in a flat area or mid-slope, and negative
when lower than its surroundings.

TWI SAGA Wetness Index [37] Describes the tendency of an area to accumulate water.
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Table 1. Cont.

Predictor Variables Definition Formula

Thermal information (Thermal scenes)

Temperature Relative Surface Temperature [◦C]

Ground truth observation variables

GWL Groundwater Level [cm] Describes the source of soil water as well precipitation in
peatland ecosystems.

SM Gravimetric Water Content Controls soil respiration that is defined as a sum of
organic matter decomposition and root respiration.

* Topomorphometric variables calculated using variable radii. The lower radius indicates the immediate location conditions, whereas the
higher radius indicates broader microtopographic microclimate conditions.

2.4.3. Thermal Scenes

We saved the thermal data as radiometric JPGs and then converted them to 16-bit tiffs,
which are favorable for processing in Agisoft. Additionally, we used very high settings
and aggressive depth filtering for thermal dense cloud generation. Georeferencing was
performed using black GCP targets for the RGB scenes. From DSMs, thermal orthomosaics
were created to show a thermal signature in DN values ranging from 0 to 65535. Usually,
DN values can be converted to temperatures on the principle of the Stefan–Boltzmann
Law [50] as pixel DN values of the thermal band are proportional to the flux of infrared
radiation received by the thermal lens [51]. A simple solution is to apply the calibration
method reported in [51], the so-called pixel-by-pixel analysis, where all DN values in the
thermal band are converted to near-real temperatures. In this study, we used only Tbuttons
during the flights to measure ground objects temperature (Section 2.2, Figure 3c). In some
cases, the flights took longer than half an hour; thus, we used the mean value measured
by the Tbuttons. Concerning the thermal orthomosaics, we created a point shapefile with
Tbutton localities with a 1 m buffer centered on the object used to extract the mean DN of
the ground object. We performed linear regression between the sampled temperatures and
the corresponding DNs [52]. The regression equation was then used to convert the thermal
orthomosaics to the relative temperature maps that were used in the raster calculator in
Metashape.

2.4.4. Input Variables

This study’s final training dataset consists of GWL measurements from installing tubes
one meter deep at 63 locations distributed over two locations, where data was recorded
one day during each of ten months (10 days, Table 1). We also sampled the top-surface
soil moisture at the same 63 locations next to the tubes but only for seven months (7 days,
Table 1); three months are missing because the peat bog’s soil moisture does not change
much during the autumn months and was skipped.

A suite of several auxiliary potential predictor variables was used in this study to
predict GWL and SM. Several spatially continuous variables that describe the terrain and
can be geometrically characterized by DSMs and many other predictor variables were
defined as spatially constant but vary in time as temporal predictor variables. These
variables are represented by index maps from orthoimages. Orthoimages are prone to
creating many different ratio maps depending on the camera system. Thus, we used a
suite of potential vegetation indices based on the RGB scenes as spatial and temporal
indicators of GWL and SM (Table 1). Therefore, vegetation is responsive to water regime
(i.e., dry surfaces cause changes in the surface temperature), and we also extracted the
relative surface temperature from thermal scenes. TIR imaging is also used to estimate the
temperature of various surfaces, which allows mapping of temperature patterns providing
information on hydrological processes [24].

Additionally, the calculated NDVI data from multispectral orthoimages deliver valu-
able information with regard to land surface characteristics [53] and represent a key chal-
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lenge for understanding ecosystem respondents’ climate change [54]. Table 1 shows the full
list of predictors used in this study. The spatial resolution layer outputs from all predictors
were obtained at 0.03 m.

2.5. Model Description

Figure 4 shows a simplified flow chart of the methodological approach. After creating
all index maps for each month, we stacked each month’s layers to gather information on
environmental variables in space and time at the UP and LP based on limited field data for
that day within a given month. We cropped all layer stacks to a smaller extent, and certain
layer stacks contained 32, 33, or 34 layers (maximum number of rasters) due to missing
data (see Section 2.4.4). In R, we used an automated data value extraction script based
on a point shapefile (63 tube locations) to derive all values from each predictor variable
for the training samples (Figure 4). Each training sample contained extracted information
from all potential predictor variables (Table 1) and the GWL and SM information as much
as possible based on the reference points. Before making predictions, we eliminated
highly linear correlated predictors with absolute correlations above 0.75, zero- and near-
zero variance variables [55], and thus raster layers containing incomplete data to reduce
redundant data due to correlation, NANs, and near-zero (Figure 4) [32,56]. With this step,
we did the first preselection of our input variables without losing information; however, we
reduced the training time significantly during the model performance. Ideally, descriptors
should be uncorrelated, as an abundant number of correlated features can hinder the
model’s efficiency and accuracy. When this phenomenon occurs, different feature selection
is necessary to mitigate issues with dimensionality, simplify models, and improve their
interpretability and training efficiency [31]. Many other statistics can be used for variable
selection, e.g., T-test, F-test, or Mallows CP, whereby different criteria may lead to very
different preselection of variables [57]. Most analysis is based on the CAST [33] and caret
packages [58] in R (R Core Team, 2020), which provide a wrapper to the RF algorithm [31],
implementing functionality for data splitting and CV (Figure 4). Caret is needed for model
training. CAST supports the caret package to provide an accounting for spatiotemporal
dependencies during prediction, and CAST includes the “FFS” function for optimal variable
selection and the major functionality of the “aoa” function that is doing the distance-based
estimation of the AOA as we aimed to model GWL and SM far beyond the data loggers to
determine how well the model performs (Figure 4).
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In this study, we distributed the water wells at two locations to measure GWL and SM
by sampling them next to the wells (Figure 5), and the main aim was to predict GWL and
SM based on a set of potential spatial and temporal predictors (34 predictors), which are
terrain related, vegetation indices, or reflect surface thermal properties. Each of the wells
represented a “Tube ID” (Figure 5a,b; red crosses).
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Figure 5. (a) Distributed sampling locations (water tubes) of GWL and SM at the UP (red markers), (b) distributed sampling
locations of GWL and SM at the LP (red markers). The simulated prediction is based on sampled locations (in total, 63). (c)
Boxplot of monthly sampled GWLs at tube positions with the mean and median distribution for the UP, and boxplot of
monthly sampled SM at tube locations (d). (e,f) boxplots of sampled GWL and SM at tube locations for the LP. SM data are
missing for the months September, November 2018, and May 2019 because usually there are no changes visible in SM and
more or less comparable with September and October. In May, after the snow melts, the ground is saturated with water.

Among the validation strategies, k-fold CV is popular to estimate the model’s perfor-
mance because of data that have not been used for model training. During CV, models are
repeatedly trained (k models), and with each model run, the data of one-fold are put to the
side and are not used for model training but model validation. In this way, the performance
of the model can be estimated. Typically, a random k-fold is used, which means that each of
the folds contains the training data (i.e., to map GWL or SM) since we aimed to map GWL
and SM instead of performing a target-oriented validation that validated the model in
view to spatial mapping. We were not interested in the model performance given random
subsets of our data locations, but we needed to know how well the model can predict
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areas without data loggers. To find this out, we needed to repeatedly leave the complete
time series of one or more data locations and use them as test data during CV. To do this,
we needed to create meaningful folds by using CAST’s function “CreateSpaceTimeFolds,”
which is designed to provide index arguments used by caret’s trainControl, where the data
samplings’ location defines a location. The index defined which data points were used
for model training during each model run and reversely defined which data points were
hindered. Thus, using the index argument, we could account for the data’s dependencies
by leaving the complete data from one or more data locations out like in LLO CV. We
focused on LLO CV; therefore, we used the “Tube ID” to define the location of a data loca-
tion (water well) and split the data into five-folds; thus, five model runs were performed,
each leaving one-fifth of all data loggers out for validation. Furthermore, CAST’s FFS
variable selection was used to exclude counterproductive variables or will not improve
the LLO performance and thus excluded from the model by FFS [33,59]. In that way, FFS
selected variables led in combination with the highest LLO performance and the best
spatial model. Consequently, FFS trained all possible pairs of two predictor variables, and
the best predictor (hyperparameter settings) was used at the respective split to partition
the data (mtry); thus, the optimal models with the smallest values. Based on these optimal
models, predictor variables were iteratively increasing, and each of the remaining variables
was tested for its improvement, reaching the best model. The variable importance is based
on the out-of-bag MSE for an RF model [60]. The out-of-bag MSE is calculated for each tree
before and after permuting a variable. The differences are averaged and normalized by the
standard error. The importance scores were executed by the “varImp” function in R.

The LLO CV error must be deemed the final performance indicator of spatial and
spatiotemporal models [32]. Based on the trained model values extracted by point shapefile
at 63 tube locations, we made spatial predictions of GWL and SM on the raster stacks
containing all predictor variables’ spatial data for that day of fieldwork. Thus, the trained
model was used on these raster datasets, resulting in spatially comprehensive GWL and
SM maps (Figures 6 and 7). At first sight, the predictions maps look good, but how accurate
are they?

To analyze if the predicted models applied to the entire study area or if there were
locations that were different in their predictor properties, [33] developed an approach to
make predictions over an area of interest, determine the best model variables, and simulate
how accurately the prediction performs far beyond the sampling locations in the AOA.
We used that analysis for the proposed monthly models across the study area if there
are different locations in their predictor properties from what the model has learned. In
short, the proposed method implements a unitless measure for expressing how different
a new data point is from the training data set, the so-called DI, a measure of unknown
space, which proposes a threshold to define the AOA of a model. Consequently, the AOA
is calculated using the model validated by CV. Second, it takes the spatial clusters into
account and determines the threshold based on minimum distances to the nearest training
point not located in the same cluster. This is done in the AOA function, where the folds
used for CV are automatically extracted from the model. For example, we used a five-fold
CV for model validation. The training data were split into five-folds where one-fifth (one
fold) of the training data was left out during CV. Based on that one-fold held back during
CV, the DI is calculated to all the other training data samples that have not been located at
the same CV fold. In this way, the DI distribution can be seen within the training data and
taken as a threshold by assuming the CV error was based on these DIs in our training data.
Is DI smaller than the threshold, the predicted area is inside the AOA. Is the DI higher than
the threshold, the predicted area is outside the AOA.
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Thus, two data sets were used; the proposed training sampling locations, which were
already trained and made the first selection of the best variables by the FFS; and the second
dataset, which contained the raster stacks (32, 33, or 34 layers) with the new locations where
predictions were used. In the end, we obtained a raster showing us the AOA, the area for
which we expected the mode to make reliable predictions (Section 3.2). For more details,
see [33]. To determine if relationships between the predictive models and the ground truth
data existed, we plotted the GWL and SM variability (mean and median) (Figure 5c–f) at
both sites to assist the proposed interpretation.

3. Results
3.1. Predictive Outputs

Figures 6 and 7 show the individual simulated response predictions for GWL and SM’s
respective pixels for the entire UP and LP using the root-mean-square error (RMSE) as the
metric for the optimal variable selection using the smallest values. Despite the differences
in the final set of variables selected, the spatial predictions of the GWL and SM at both
sites led to different results. The RF regression models’ performance statistics, which only
include variables selected in the FFS selection process, are shown in Table 2. GWL spatial
predictions typically resulted in higher RMSE values but not necessarily in lower response
variable predictions, as shown by the R2 values (Table 2). The best fit model for GWL
prediction occurred in August 2019 (R2 = 0.43) at the UP and in August 2018 at the LP (R2

= 0.78). In comparison, SM spatial predictions resulted in lower RMSE values but showed
a lower prediction power at both sites. The best fit model of the simulated SM prediction
occurred in August 2019 (R2 = 0.41) at the UP and in September 2019 at the LP (R2 = 0.59).
The importance of the different predictors ranged from 0 to 8 (GWL at UP), 0 to 5 (SM at
UP), 0 to 3 (GWL at LP), and 0 to 5 (SM at LP) (Figures 8 and 9). These ranges represent the
baseline for the variable weighting used to estimate the DI. The essential relative variables
or feature importance ranking of RF for GWL predictions were temperature, RGB spectral
variables (BI, GLI, CI, RI, and HUE), and one topomorphometric feature (TWI) at the UP
(Figure 7). Conversely, the LP importance variables for GWL predictions were NDVI,
topomorphometric variables (PlnCurv, TWI, VRM1, and TPI), and, to a lower degree, RGB
spectral variables (HUE and NDI) (Figure 9). The importance of predictive variables for
the SM simulated prediction were mainly RGB spectral variables (BI, HI, ERGBVE, SHP,
and HUE), NDVI and temperature at the UP and temperature, NDVI, topomorphometric
predictor (VRM1), and RGB spectral variable (RI) at the LP (Figures 8 and 9).

3.2. AOA Calculations

The accuracies of model predictions were determined using AOA calculations. The
AOA areas for which we expected the model to make reliable predictions are shown in
Figures 9 and 10. AOA simulation models used the 95% quantile of the DI of all training
data as a threshold suggested by [33], where the DI of the training data is calculated
by considering the CV folds in the 5 fold case. Applying this threshold, the prediction
error (RMSE) inside the AOA should be comparable to the trained model’s CV RMSE.
Conversely, the CV error does not apply outside the AOA [33]. Most simulated predictions
showed reliable predictions (less of a gray area) except for a few (e.g., August 2018 and
November 2018 for GWL and September 2018 for the SM simulation at the UP; Figure 10),
where most areas were outside the AOA (gray area). Thus, predictions should not be
considered for these locations or in further analysis. Reliable predictions were also made
for the LP (Figure 11), except for October 2018 (GWL prediction) and for September 2019
(SM prediction), where the entire area is nearly gray. In future analysis, these two months
might not be counted. Typically, low applicability values at the UP site appeared at the
bush sites, over water surfaces, and at the corners and edges of the study area (Figure 10).
A LP site, low applicability values emerged between the high grass or the area edges
(Figure 11).
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Table 2. Statistical performance of the CAST models using cross-validation and a spatially constrained 5-fold based on the FFS method. Mtry value is the number of variables available for
splitting at each model tree node. Model performance was assessed through the Root-Mean-Square-Error (RMSE), the Coefficient of Determination (R2), Mean Absolute Error (MAE), and
their respective Standard Deviations (SD). Reference estimates were assessed through MEAN, MEDIAN, SD, and the average score (MEAN) for both GWL and SM models, and reference
data.

Date Location Variables mtry RMSE R2 MAE RMSE_SD R2_SD MAE_SD MEAN
(ref.)

MEDIAN
(ref.) SD (ref.)

August 2018 UP GWL 2 22.15 0.33 14.84 9.95 0.22 5.05 32.20 41.00 27.10

September 2018 UP GWL 2 8.66 0.33 7.11 1.62 0.21 1.34 18.40 18.70 10.10

October 2018 UP GWL 2 10.32 0.13 7.65 3.50 0.15 2.36 22.70 22.40 10.80

November 2018 UP GWL 2 7.52 0.18 5.79 1.07 0.18 0.92 8.99 8.70 7.82

May 2019 UP GWL 2 6.64 0.42 5.21 1.44 0.21 1.18 4.86 3.50 8.05

June 2019 UP GWL 2 1.96 0.32 1.59 0.67 0.12 0.55 4.50 4.84 2.31

July 2019 UP GWL 2 7.57 0.23 6.41 1.71 0.24 1.16 24.70 22.60 8.74

August 2019 UP GWL 3 7.65 0.43 5.72 1.85 0.20 1.44 4.16 4.00 9.64

September 2019 UP GWL 2 9.92 0.41 7.32 4.00 0.24 1.66 3.19 4.60 12.70

November 2019 UP GWL 2 6.05 0.36 4.97 0.79 0.33 0.54 5.51 6.00 7.27

Average score
(MEANGWL_UP) 8.84 0.31 6.66 2.66 0.21 1.62 12.92 13.63 10.45

August 2018 LP GWL 2 6.46 0.78 5.69 5.79 0.16 5.01 22.00 19.10 12.20

September 2018 LP GWL 2 5.36 0.46 4.79 3.92 0.45 3.61 0.31 −0.80 5.65

October 2018 LP GWL 2 5.44 0.46 4.12 2.05 0.44 1.45 14.40 14.70 5.83

November 2018 LP GWL 2 4.32 0.56 3.62 2.16 0.29 1.70 0.52 −1.15 5.28

May 2019 LP GWL 2 4.09 0.34 2.96 1.51 0.35 0.72 -3.35 −4.95 4.58

June 2019 LP GWL 2 6.03 0.47 4.71 2.24 0.49 1.40 9.32 9.20 6.85

July 2019 LP GWL 2 8.10 0.30 5.69 4.20 0.32 2.39 15.80 14.80 8.23

August 2019 LP GWL 2 4.05 0.73 3.40 3.21 0.26 2.41 -0.91 −3.05 6.02

September 2019 LP GWL 2 4.46 0.53 3.68 1.91 0.39 1.80 0.31 −0.80 5.65

November 2019 LP GWL 2 5.89 0.13 4.58 1.24 0.14 1.15 0.52 −1.15 5.28



Remote Sens. 2021, 13, 907 17 of 29

Table 2. Cont.

Date Location Variables mtry RMSE R2 MAE RMSE_SD R2_SD MAE_SD MEAN
(ref.)

MEDIAN
(ref.) SD (ref.)

Average score
(MEANGWL_LP) 5.42 0.48 4.32 2.82 0.33 2.16 5.89 4.59 6.56

August 2018 UP SM 2 2.60 0.12 2.09 0.46 0.10 0.27 6.27 6.18 27.10

September 2018 UP SM 2 3.24 0.28 2.71 0.58 0.22 0.29 7.10 6.67 10.10

June 2019 UP SM 2 2.83 0.12 2.34 0.91 0.12 0.56 3.61 3.09 2.31

July 2019 UP SM 2 1.73 0.29 1.48 0.53 0.22 0.39 3.99 4.18 8.74

August 2018 UP SM 2 2.85 0.41 2.30 0.61 0.38 0.48 6.17 6.09 9.64

September 2018 UP SM 2 2.82 0.22 2.31 0.42 0.17 0.39 6.92 7.06 12.70

November 2018 UP SM 2 3.35 0.33 2.56 0.91 0.17 0.80 7.38 7.61 7.27

Average score
(MEANSM_UP) 2.77 0.25 2.26 0.63 0.20 0.45 5.92 5.84 11.12

August 2018 LP SM 2 2.42 0.48 2.06 0.72 0.37 0.67 11.60 12.30 12.20

September 2018 LP SM 2 3.96 0.45 3.56 2.01 0.42 1.92 15.60 16.10 5.65

June 2019 LP SM 2 3.33 0.52 2.71 1.77 0.32 1.43 7.79 9.52 6.85

July 2019 LP SM 2 2.77 0.55 2.37 0.94 0.30 0.60 7.69 8.20 8.23

August 2018 LP SM 2 5.83 0.21 4.77 1.17 0.26 0.82 11.70 12.60 6.02

September 2018 LP SM 2 2.59 0.59 1.99 0.96 0.41 0.48 11.90 11.50 5.65

November 2018 LP SM 2 5.32 0.47 4.30 1.95 0.17 1.93 13.80 14.50 5.28

Average score
(MEANSM_LP) 3.75 0.47 3.11 1.36 0.32 1.12 11.44 12.10 7.13

Average score
(MEANall)

5.54 0.38 4.34 2.02 0.27 1.44 9.11 9.05 8.76
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predictions of the UP masked by the derived AOA where areas outside the AOA are exposed in gray. 
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predictions of the UP masked by the derived AOA where areas outside the AOA are exposed in gray.
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Figure 11. (a) GWL (August 2018-November 2019; blue-green) and (b) SM (August 2018-November 2019; orange-yellow) 
predictions of the LP masked by the derived AOA where areas outside the AOA are exposed in gray. 
Figure 11. (a) GWL (August 2018-November 2019; blue-green) and (b) SM (August 2018-November 2019; orange-yellow)
predictions of the LP masked by the derived AOA where areas outside the AOA are exposed in gray.
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As a real-world example, we could not analyze the AOA reliability with simulated
data [32,59,61–64], where the prediction error within the AOA can be compared to the
model error, assuming that the model error applies inside the AOA but not outside. There-
fore, a simulated area-wide response is not available in usual prediction tasks; therefore,
the AOAs estimation in the dataset used in this study had only point observations as a
reference. We plotted the relationship between the DI threshold derived by the 95 quantile
and the relative prediction performance measurements (Figure 12a,b).
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Figure 12. (a) Relationship between DIs and the absolute (RMSE) and the relative (R2) model performances of GWL and
SM of both sites. (b) Boxplots showing the DIs versus RMSE and R2 variations of all models individually. (c) Relationship
between the absolute performance of GWL RMSEs and the reference (ref.) GWL MEANs and the ref. GWL MEDIANs of
the sampling data. (d) Showing trend between the absolute performances of SM RMSEs and the ref. SM MEANS and ref.
SM MEDIANS of the sampling data.
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DI provides a basis to estimate the AOA that allows the area for which the CV is suited
accurately on average. Based on [33], if a location is similar to the training data properties,
it will have a low distance in the predictor variable space (DI towards 0), while locations
that are significantly different in their properties will have a high DI. DI threshold values
differed between the GWL and SM predictions (Figure 12a). The GWL DIs were lower
and more robust, ranging from 0.22 to 0.85, but were caused by higher predicted RMSE.
Conversely, SM DIs were more widespread (0.084–1.23) and probably more sensitive,
resulting in lower predicted RMSE values (Figure 12a). It was also optimistically approved
by R2 estimates, showing higher R2 for higher GWL DIs and vice versa (Figure 12a).
The R2 for SM estimates resulted in a slighter opposite trend showing higher SM DIs
by lower R2 estimates. Individually, as observed in the boxplots, the GWL prediction
models showed the highest absolute RMSE errors at lower DI thresholds at the UP, in
which the lowest RMSE performances were at moderate to high DIs for the SM models
at the UP and LP, respectively (Figure 12b). The best relative (R2) model performances
were made for the SM and GWL models at the LP with the highest DIs (Figure 12b) The
statistical relationship between field data and the absolute model performances indicated
a trend that by lower GWLs and higher surface water, the predicting models resulted
in better prediction performances at both sites (Figure 12c). A similar trend was seen
for the SM field data and their model performances, showing the models’ lower SM
better achievements (Figure 12d). The best model performances result in environmental
conditions with relatively low GWL and SM than those to higher GWL and SM events
(Figure 12c,d).

4. Discussion
4.1. Model Performance

Overall, using the CAST prediction method of implementing the FFS in conjunction
with target oriented LLO CV validation, modeling GWL and SM was probably not the
best way to provide highly accurate prediction maps with high R2 and low RMSEs. How-
ever, the proposed method preserved the modeling results with regard to overfitting and
objective error assessment, a common problem in ML [32,59]. Thus, we did not consider
longitude, latitude, and elevation as predictors that are typically responsible for overfitting
due to spatiotemporal autocorrelation patterns stated in [32] that would probably result
in better model performances. We only focused on the FFS’s environmental predictors to
minimize overfitting and retain the data’s real spatiotemporal independencies (nonlinear
and complex system), which is challenging to interpret physically by obtaining information
on a handful of environmental variables in space and time.

By evaluating all RF performances (highest R2, lowest RMSE), we achieved the best
results with the GWL and SM at the LP site, and the lowest variation in the predictions
were found at the UP site. As a potential reason, lower performance might be caused by
the test data, including, incomplete spatial coverage of the mapping area [65] and, more
likely, incomplete coverage of the UAV maps. UAV mapping of an entire study area cannot
be maintained constantly during field campaigns due to wind, battery, or camera failures,
particularly for the Tetracam camera, which is sensitive to operational conditions. From
the AOA predictions at the UP site, it is clear to move the sampling strategy from the bush
site only to the open sites with grass, moss, and bare peat patches. Additionally, surface
water is more easily viewed when the soil at the open sites is thoroughly saturated with
water directly after precipitation or after snowmelt (e.g., May 2019, June 2019, August 2019,
September 2019, November 2019), which is the primary source of extra inflow water to
the peat bog. The remaining months (e.g., August 2018, October 2018, September 2018,
July 2019) were less saturated, or the surface (bare peat patches) appeared to be nearly dry,
especially at the UP (Figure 4).

In comparison, the LP site seemed to provide better GWL prediction. Most likely
because the LP was saturated with water most of the time (Figure 4), the homogenous
cover acted like a sponge and retained daily rainfall. In general, the lower the GWL
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level of the peat bog area is, the higher the surface water saturation and vice versa. This
fact describes the dual-porosity organic soils [66,67]. Groundwater fluctuates in larger
peat pores filled with mobile water. Undecomposed tissues of organic materials contain
a nonnegligible volume of immobile water. Moreover, groundwater tables in tubes are
affected by gravity rather than capillary forces in small capillary pores. These forces oppose
each other, particularly during dry periods. However, this is not always the case due
to other impacts, such as runoff, evaporation [68], and physical soil properties, such as
peat volume change [69] or repellency [70]. Repellency can also affect the soil moisture
distribution even several cm below the soil surface. The UP’s surface runoff influences the
LP; thus, the LP site was frequently flooded by water, resulting in lower and more diverse
GWL measurements (Figure 4e), while the GWL in the UP was higher and relatively steady
(Figure 5c).

As mentioned above, SM predictions were marginally better at the LP than at the UP,
which might be caused by homogenous vegetation cover and the marginally higher SM
values measured at UP. Vegetation cover is known to play a vital role in the hydrometeo-
rological cycle and local climate conditions [71]. Wet conditions, such as those at the LP,
with high grass coverage and frequent saturated surface water along with heat energy are
required to increase the soil temperature because water has a higher specific heat capacity
than soil material, leading to an increase in SM and likely a better response to wetting and
drying cycles, improving SM prediction [72]. The high variety of the SM DIs, which ranged
widely, might be more sensitive to environmental factors than the GWL predictions, which
showed more robust DI distributions (Figure 12a). This hypothesis, however, is part of the
measurement in another experiment.

4.2. Interpretation of Model Predictions

Surface temperature is the most important predictor for the GWL and SM at both
the UP and LP with regard to model importance. Surface temperature influences water
movement in the soil: the higher the surface temperature is, the higher the evaporation
of soil water. Organic soils are more resistant to evaporation, which is primarily caused
by increasing temperature [73], for several reasons, including disconnection temperature
conductivity during the drying process. However, transpiration can substitute for the loss
of water from a peat bog. Hypothetically, a temperature rise in the future and water holding
(the GWL) might be affected by higher transpiration. The GWL is considerably dynamic,
and ombrotrophic bogs, such as the proposed experimental study area, are dependent
on precipitation, which typically describes the high variability of the GWL [15]. Ref. [10]
suggested that the GWL is specially controlled by the difference between precipitation and
evapotranspiration, as stated in [14,74]. The temperatures of the surface water and GWL
are affected by the amount of incoming solar radiation and the vegetation pattern. For
example, the exposed bare peat patches absorb more heat in the UP, resulting in a rapid
decrease in GWL and increased water temperature [15] when the peat is not dry with a
high-temperature conductivity. Spots with higher temperatures aid water tracking and
hydrograph separation. Beyond confirming the temperature–GWL–SM relationship, the
RF provided insight into the usefulness and the impact of NDVI, as well as RGB spectral
indices (BI, CI, GLI, RI, HUE, NDI, SHP, and ERGBVE), directly representing proxies for
the estimation of vegetation response towards changes in hydroclimatic conditions [53,
75,76]. Moreover, these predictors can be considered appropriate for assessing vegetation
conditions in peatlands to characterize temporal and spatial patterns and the degradation
process of a peat bog ecosystem [77], primarily NDVI, NDI, ERGBVE, SHP, and GLI.
Interestingly, the predictors BI, CI, RI, and HI are important; thus, there seems to be a
relationship between these factors, GWL and SM. Typically, these predictors are more prone
to bare soil (in this study, bare peat coverage) and may provide accessory information about
soil physical properties (e.g., about peat composition due to a lower water table during
dry periods) [78]. Because SM decreases on a typically decomposed peat surface, high soil
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water retention may develop and yield development that has already been observed at the
UP site. However, further investigations are required to clarify this specifically.

Further, the UP site contained the highest number of topomorphometric variables
(TWI, PlnCurv, TPI, and VRM1) for GWL predictions and twice the number for SM pre-
dictions (VRM1) at the LP. The TWI is a measure of subsurface lateral transmissivity and
has become a familiar and widely used method to gather information about the spatial
distribution of wetness conditions (e.g., the position of shallow groundwater tables and
soil moisture) [79]. PlnCurv, TPI, and VRM1 are topographic indices and thus play a
significant role in GWL predictions with regard to dominant controls on groundwater level
and runoff mechanisms [80]. Small local hydraulic gradients might control the downslope
drainage condition, which determines GWLs [80]. As reported in [81], the probability
of sphagnum decreases with increased ruggedness, elevation, and topographic position,
which provides information on exposed bare peat. As reported in [82], VRM1 contributes
to SM, particularly when using high-resolution DEMs; thus, VRM1 is a suitable proxy for
soils with different porosities in terms of high roughness, highlighting that stony soils
imply low soil moisture, and that low roughness describes developed soils that retain
more moisture, as in peat. VRM1 measures vector dispersion across the central pixel rather
than being a derivative of the slope, and is thus a much better proxy than others, such as
TRI [83].

The proposed predictive models identify a variety of RGB, multispectral, and thermal
maps as well as DSM-derived variables as suitable or complementary representatives
to in situ measurements for GWL and SM predictions. However, we recommend going
beyond their traditional use of, for example, elevation, slope, and aspect. Additionally,
these derived variables, such as the RGB spectral indices and DSM-derived ones, are easy
to compute proxies of environmental features that involve limited fieldwork and good
knowledge of the peat bog’s environmental peat bog status.

5. Conclusions

We tested how well the peat bog groundwater level (GWL) and soil moisture (SM) can
be predicted using multi-source and multitemporal ultrahigh-resolution UAV maps with
leave-location-out (LLO) cross-validation (CV) prediction models based on random forest
(RF) machine learning (ML) algorithm. Additionally, forward feature selection (FFS) was
used to prevent overfitting, and only the optimal predictor variables were used for spatial
and temporal model predictions. In this case study, the predicted GWL and SM maps used
34 possible candidate predictors to visualize and access knowledge about the dynamic
properties of two different peat bog locations in the Rokytka Moors within Sumava NP,
Czechia. As input data, we used RGB spectral indices (RGI, VVI, VDVI, VARI, TGI, SI,
SHP, SCI, SAT, NGRDI, NDTI, NDI, HI, GRVI, GLI, GLAI, ExG, ERGBVE, CI, BI, RI, and
HI) and NDVI from multispectral data to obtain the vegetation response to changes in
hydroclimatic conditions. We selected temperature soil information based on thermal data
to explore the thermal potential on GWL and SM and topomorphometric variables (Slope,
ProfCurv, PlnCurvc, WEI, TRI, VRM, TPI, and TWI) derived from DSMs to investigate
microtopomorphometric controls on GWL and SM patterns. The created maps had a spatial
resolution of 0.03 × 0.03 m. Predictions of the variable importance have proven the domi-
nant impact of temperature on GWL and SM and extremely significant contributions of
other predictors, such as NDVI, NDI, ERGBVE, SHP, GLI, BI, CI, RI, HI, TWI, PlnCurv, TPI,
and VRM1. The predictions resulted in low (lowest R2 = 0.12) to high (highest R2 = 0.78) CV
performances. We also mapped the area of applicability (AOA) of spatial prediction models
(i.e., the area in which a model could expect to make accurate predictions). Prediction
outside the AOA should be treated with caution. Most of the proposed predicted models
yielded acceptable models except for a few where the incomplete spatial coverage of UAV
maps was missing, and nearly all these areas were outside of the AOA. Primarily, ground
truth sampling can be avoided in bush areas. The results showed that the DSM, RGB, multi-
spectral, and thermal UAV imaging datasets were important in GWL and SM estimations to
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predict spatial distribution phenomena, especially the best model performances resulting in
environmental conditions with relatively low GWL and SM than those to higher GWL and
SM events. Thus, further research is needed both in sampling more ground measurements
and in using additional profound statistical procedures to understand the causal structure
of its underlying phenomena or interpretation of the ML models using UAV data. It is
advisable to combine UAV input data with many relevant environmental variables used in
this study when studying the dynamic mapping properties in spatially heterogeneous peat
bog landscapes.

Supplementary Materials: The code and example input data of the lower peat bog are available
online https://www.mdpi.com/2072-4292/13/5/907/s1. Table S1: Technical specification of drones
and sensors used in this study.
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