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Abstract: In this paper, a spectral-spatial convolution neural network with Siamese architecture
(SSCNN-S) for hyperspectral image (HSI) change detection (CD) is proposed. First, tensors are
extracted in two HSIs recorded at different time points separately and tensor pairs are constructed.
The tensor pairs are then incorporated into the spectral-spatial network to obtain two spectral-spatial
vectors. Thereafter, the Euclidean distances of the two spectral-spatial vectors are calculated to
represent the similarity of the tensor pairs. We use a Siamese network based on contrastive loss to
train and optimize the network so that the Euclidean distance output by the network describes the
similarity of tensor pairs as accurately as possible. Finally, the values obtained by inputting all tensor
pairs into the trained model are used to judge whether a pixel belongs to the change area. SSCNN-S
aims to transform the problem of HSI CD into a problem of similarity measurement for tensor pairs by
introducing the Siamese network. The network used to extract tensor features in SSCNN-S combines
spectral and spatial information to reduce the impact of noise on CD. Additionally, a useful four-test
scoring method is proposed to improve the experimental efficiency instead of taking the mean value
from multiple measurements. Experiments on real data sets have demonstrated the validity of the
SSCNN-S method.

Keywords: spectral-spatial combination; hyperspectral image (HSI); change detection (CD); Siamese
network

1. Introduction

Due to the development of remote sensing technology it is possible to obtain hyper-
spectral images (HSIs) of the same area at different time points. Change detection (CD)
using multitemporal remote sensing data has an important application value in disaster
assessment [1], terrain change analysis [2], urban change analysis [3] and resource audit-
ing. The rich spectral and spatial information of HSIs, which contain hundreds of bands,
provides a more powerful data source for object observation. In [4], the author divides CD
into the following categories: anomaly detection [5–7], binary and multiclass CD [8–11]
and CD based on time series data [12,13].

Many researchers have studied the multispectral CD task with a low number of bands
and proposed a few CD algorithms. Change vector analysis (CVA) [14] is often combined
with other methods. By calculating the spectral change vector corresponding to a pixel,
the magnitude and angle of the spectral change of the pixel are analyzed. Multivariate
alteration detection (MAD) [15] and iteratively reweighted multivariate alteration detection
(IR-MAD) [16] are based on canonical correlation analysis (CCA) [17]. The change area is
determined by calculating the values and their weights of MAD variables. In addition, it is
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also a feasible strategy to classify HSIs at different times and to compare the classification
results to determine the change area. This strategy can introduce excellent algorithms in
the field of HSI classification into CD [18,19]. The aforementioned methods use algebraic
and statistical theories to extract the features of the spectral vector or spectral change vector
and have achieved good results with low-dimensional space.

However, the CD algorithm—which is suitable for low-dimensional space—does
not work well in the high-dimensional space of HSIs [20,21]. One important reason for
this is that the limited calculation accuracy of computers will cause certain calculation
errors. While these calculation errors have a limited impact on the final result in low-
dimensional space, a few vector and matrix operations performed in high-dimensional
space (e.g., solving the inverse matrix and eigenvectors of high-dimensional matrices) may
be greatly affected by calculation errors.

Additionally, due to the strong correlation between adjacent bands in HSIs, a large
amount of redundant information also increases the difficulty of feature extraction [22–24].
Therefore, reducing the dimension of the HSI is an important topic. The aforementioned
CCA algorithm achieves the goal of dimension reduction by finding two typical variables
of a lower dimension to represent the original vector (of a higher dimension). Principal
component analysis (PCA) [25] solves the eigenvalues and eigenvectors of the covariance
matrix and selects the eigenvectors corresponding to the largest k eigenvalues to form
a linear transformation matrix to map the original data to the specified dimension k.
Considering the high correlation between adjacent hyperspectral bands, it is also prudent to
select a certain number of bands from the original hyperspectral image for feature extraction.
Ma et al. [26] improved the effect of CD by selecting bands with more change information
and processing them to suppress noise. In addition to linear dimension reduction, manifold
learning as a non-linear dimension reduction method is also applied in hyperspectral
image processing. Yu et al. [27] improved the neighborhood rough set, proposed the local
neighborhood selection method combined with local linear embedding (INRSLLE) and
effectively reduced the dimension by using local manifold learning. With the development
of deep learning [28–30], it has been applied to reduce the dimension and extract the
features [31–33]. Chen et al. [34] constructed a 1D convolution network to extract the
features of the spectral vectors corresponding to a single pixel and achieved the effect of
hyperspectral dimension reduction. Lv et al. [35] suppressed noise in synthetic aperture
radar (SAR) images by stacking contractive autoencoder (sCAE) and extracting features to
improve the accuracy of CD.

Noise is unavoidable in hyperspectral images and originates from the internal noise
of the hyperspectral imager itself and external factors such as atmospheric scattering.
Li et al. [36] mentioned that CD algorithms that only extract the spectral information
of pixels will be affected by noise, thereby resulting in poor CD results. Therefore, it is
important to extract HSI features other than spectral features. Wang et al. [37] introduced
the endmember abundance information obtained by unmixing into an affinity matrix and
used a convolution neural network (CNN) for CD to achieve good results. Spatial informa-
tion is an important source of information for HSIs. Notably, a few advanced algorithms
have introduced the extraction of spatial features. Wang et al. [38] used 1D and 2D
convolution networks to extract the spectral and spatial features of HSIs, respectively.
Huang et al. [39] proposed the tensor-based hyperspectral remote sensing images under-
lying features change information model (TFS-Cube) for feature extraction, which also
included spatial information. Furthermore, Ran et al. [40] extracted neighborhood spatial
information using three different combinations of filters. Roy et al. [41] proposed a hy-
brid spectral CNN (HybridSN) to blend 2D convolution networks with 3D convolution
networks for more abstract spatial features.
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Tensor-based methods are widely used in HSI processing to extract spectral and
spatial information simultaneously. Similar to CVA, we can obtain the change tensor by
subtracting two tensors. However, this results in losing the original spatial information
of the HSI. While we can also classify the two tensors separately and determine whether
the pixel belongs to the change area based on the classification results, this requires prior
knowledge of which categories the tensor can be classified into.

Based on the face and action recognition task [42–46], we can segment the change area
using a Siamese network. A Siamese network measures the similarity of tensors and can
accept two inputs. The more similar the two inputs, the smaller the corresponding output
value and vice versa. A Siamese network can solve the aforementioned problems: it can not
only retain complete spatial information but also does not require any prior information
about categories.

Therefore, a spectral-spatial network with Siamese architecture (SSCNN-S) is proposed
to solve the problem of hyperspectral binary CD. First, for each pixel to be detected,
the spectral information of the pixel and its neighborhoods are extracted from the two
HSIs recorded at different time points to form a tensor pair as the input of the network.
The vectors in the tensor pair are then incorporated into a Siamese network composed of the
spectral module and the spatial module to obtain the corresponding spectral-spatial vectors.
The Euclidean distance of the two spectral-spatial vectors is used as the similarity of the
two tensors in the tensor pair. After obtaining the similarity for each pixel, the similarity is
binarized by the threshold method to generate the final CD result.

The method proposed in this paper uses the theory of deep learning to measure
the similarity of high-dimensional tensors and detect changes, which has the following
main advantages. Using the Siamese network, the problem of CD is transformed into a
problem of measuring the similarity of two tensors, which retains the complete spectral and
spatial information of HSIs compared with the differential method. Extracting the spectral
characteristics of the tensor through a 1D convolution network and reducing the dimensions
in the Siamese network can effectively reduce the parameters of the network and increase
the CD speed. Moreover, a 2D convolution network extracts spatial characteristics from
the reduced dimension tensor, which can reduce the impact of noise and improve the CD
accuracy. Experiments using three real data sets show that the SSCNN-S method proposed
in this paper shows good performance in solving the problem of CD in HSIs. The main
contributions of this work can be summarized as follows:

(1) 1D and 2D convolutional neural networks are used to extract spectral features and
spatial features while local tensors are converted into spectral-spatial vectors. In this
manner, the spectral and the spatial features are combined to increase detection speed.

(2) The introduction of the Siamese network helps to retain the original spatial features
and can introduce advanced hyperspectral classification methods [47] into CD without
the prior information of the number of categories and other processing methods [48].

(3) The four-test scoring method is proposed. This method is mainly used in parameter
selection experiments with uncertain results. For each set of parameters, the method
can give the final results based on the results of two to four independent experiments
as the basis for parameter selection.

The other parts of this paper are arranged as follows. The second part details the
proposed hyperspectral CD method (SSCNN-S) based on the Siamese network and the
spectral-spatial combination method. The third part describes the experiments performed
in this study by outlining the utilized data set and evaluation index as well as comparing
and analyzing existing algorithms. The final part summarizes this paper.
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2. Materials and Methods
2.1. Establishing the Sample Set

Let X(t) ∈ Rh×w×c represent the HSI at the tth time where h and w correspond to the
height and width of the hyperspectral spatial dimension, respectively, and c represents the
number of bands in the HSI t ∈ {1, 2}. Considering the ith pixel in X(1), to extract both the
spectral and spatial features of this pixel, we extract the spectral information of this pixel
and its neighborhood to form a hyperspectral tensor X(1)

i ∈ Rb×b×c where b represents
the spatial dimension of the hyperspectral tensor. The corresponding tensors from each
pixel in X(1) and X(2) are extracted to form a tensor set X (1) =

{
X(1)

1 , X(1)
2 , . . . , X(1)

hw

}
and

X (2) =
{

X(2)
1 , X(2)

2 , . . . , X(2)
hw

}
. To easily use the Siamese network to measure the similarity

between tensors, we need to pair the tensors corresponding to the same pixels in X (1) and
X (2) to form a tensor pair set X =

{(
X(1)

1 , X(2)
1

)
,
(

X(1)
2 , X(2)

2

)
, . . . ,

(
X(1)

hw , X(2)
hw

)}
. Label

Y = {Y1, Y2, . . . , Yhw} corresponds to X where:

Yi =

{
0 the ith pixel is unchanged
1 the ith pixel is changed

(1)

Thus, (X ,Y) can be considered as the sample set. The sample set is randomly divided into
the training set (Xtrain,Ytrain), validation set (Xval ,Yval) and test set (Xtest,Ytest).

2.2. Extract Spectral-Spatial Features of the Hyperspectral Tensor

Similar to a previous work [38], we extracted the spectral and spatial features of the
hyperspectral tensor X(t)

i using a 1D and 2D convolution neural network (Figure 1). Unlike
the classification task, the network does not output a specific category but a spectral-spatial
vector that combines spectral and spatial features. The network is divided into a spectral
module and a spatial module where the spectral module is used to extract the spectral
features of hyperspectral tensors while reducing the dimension of the tensors and the
spatial module is used to extract the spatial features of the reduced tensors.
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2.2.1. Spectral Module

HSIs have abundant spectral information. Most methods consider the extraction of
spectral features as an important research topic. A hyperspectral tensor X(t)

i ∈ Rb×b×c

contains b× b spectral vectors and each has a dimension of c. Therefore, a 1D convolutional
network can be used to extract the features of each spectral vector [34] and combine them
to obtain the spectral features of the tensor. Another important role of 1D convolution is
to reduce the spectral dimension of the tensor to k. In each convolution layer, different
convolution kernels correspond to different methods of dimension reduction and these
dimension reduction parameters can be automatically learned during network training.
This can reduce the number of model parameters, which save computing resources and
storage space while effectively improving the model training speed.

In network training, the overall distribution of the activation function value of the
hidden layer shifts greatly, which causes the gradient to disappear and the training speed
to decrease. To avoid this problem, we used batch normalization (BN) [49] in the spectral
module to force the overall distribution back to the standard normal distribution.

The activation function used in the spectral module is the parametric rectified linear
unit (PReLU) [50] whose function expression is as follows:

PReLU
(
xp
)
= max

{
0, xp

}
+ apmin

{
0, xp

}
(2)

where xp represents the input of the activation function for the pth channel and ap is a very
small positive number. While ap is not set artificially, it is updated during model training
as follows:

∆ap ← m∆ap + lr
∂loss
∂ap

(3)

where m represents momentum and lr represents the learning rate. HSIs contain values less
than 0. Compared with the rectified linear unit (ReLU) function [51], the PReLU function
does not set the activation values less than 0 directly to 0. Instead, it compresses them to a
close negative value of 0. Although a few parameters that require training are added, faster
model training is more advantageous.

2.2.2. Spatial Module

Although the spatial resolution of the HSI is not high, extracting the spatial features of
the HSI as an adjunct basis for CD can help reduce the interference of noise in the spectral
information. After dimension reduction, the hyperspectral tensor Xs(t)i ∈ Rb×b×k contains
k tensors of size b× b, each with a large amount of spatial information [52]. We extract
spatial information [34] using a 2D convolution network with a kernel size of n× n. In the
spatial module, we still use PReLU and BN after each convolution layer.

2.2.3. Achieve Spectral-Spatial Vector

After the spatial module, a hyperspectral tensor Xss(t)i ∈ Rb×b×k is obtained that

combines the spectral and spatial features. Xss(t)i is then transformed into a vector input
into the fully connected layer through pooling, flattening and dropout. The output vector
ssv(t)i ∈ Rk is used as the spectral-spatial vector of the input tensor.

2.3. Contrastive Loss in the Siamese Network

Consider the ith tensor group in tensor set
(

X(1)
i , X(2)

i

)
whose corresponding spectral-

spatial vectors are ssv(1)i and ssv(2)i (labeled Yi). To describe the similarity between ssv(1)i

and ssv(2)i , we calculate the Euclidean distance between them:

dist
(

ssv(1)i , ssv(2)i

)
= ‖ssv(1)i − ssv(2)i ‖2 (4)
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We want the dist
(

ssv(1)i , ssv(2)i

)
to be as large as possible when Yi = 1 and the dist

(
ssv(1)i , ssv(2)i

)
to be as small as possible when Yi = 0. Therefore, we use contrastive loss [51] as the loss
function for model optimization:

Loss =
1
N

N

∑
i=1

[
(1−Yi)dist

(
ssv(1)i , ssv(2)i

)
+ Yimax

{
m− dist

(
ssv(1)i , ssv(2)i

)
, 0
}]

(5)

where N is the number of training samples and m is a boundary value that is set ar-
tificially. When Yi = 0, the loss function becomes dist

(
ssv(1)i , ssv(2)i

)
. Only ssv(1)i and

ssv(2)i are close enough to decrease the loss. When Yi = 1, the loss function becomes

max
{

m− dist
(

ssv(1)i , ssv(2)i

)
, 0
}

. Only ssv(1)i and ssv(2)i are far enough to decrease the loss.

When the dist
(

ssv(1)i , ssv(2)i

)
> m, loss is regarded as 0, which limits the influence of the

tensor pair with too large a distance on overall loss.

2.4. Proposed SSCNN-S Method

The CD method of SSCNN-S is presented in Figure 2. SSCNN-S trains a Siamese
network using training sets (Xtrain,Ytrain). During training, the features of each tensor pair
in Xtrain are extracted through the feature extraction network to obtain the corresponding
spectral-spatial vector and the Euclidean distances of the two spectral-spatial vectors are
calculated as the output of the network.
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Figure 2. Overview of the spectral-spatial convolution neural network with Siamese architecture
(SSCNN-S).

To segment the change region, we also need to find a binarization method that converts
the output distance to 0 or 1. In SSCNN-S, we use a threshold-based binarization method;
that is, to find a threshold θ for each dist we use the binarization function:

Bin(dist, θ) =

{
0 dist ≤ θ

1 dist > θ
(6)

Notably, the threshold θ can be determined in several ways. In SSCNN-S, we select
the best threshold by traversing all possible thresholds in the validation set. This method is
chosen because neither the validation set nor the test set participate in model training while
the randomness of the validation set and test set generation allows them to be regarded as
having approximately the same distribution. After binarizing the distances for each pixel,
a CD result map can be obtained.

The detailed algorithm of SSCNN-S is shown in Algorithm 1.
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Algorithm 1: Algorithm of SSCNN-S for hyperspectral image (HSI) change detection (CD).

Input:
1. Two HSIs of the same region at different times with ground truthing.
2. The number of training pairs Nt and the number of validation pairs Nv.
Step 1: Construct the corresponding tensor sets X (1) and X (2) for two HSIs and pair them to
form a tensor pair X and generate the sample set (X ,Y) according to the change situation
reflected by the ground truthing.
Step 2: Randomly select Nt pairs in X as the training set Gtrain and randomly select Nv pairs in X
as the validation set Gvalidation.
Step 3: Input Gtrain and Gvalidation to the network.
Step 4: Train the model and obtain the optimal parameters.
Step 5: Traverse all possible thresholds in the validation set to select the optimal threshold θ.
Step 6: Calculate the distance for each pixel. If the distance is greater than θ, it is considered as a
changed pixel; otherwise, it is considered an unchanged pixel.
Output:
1. Change map.

3. Results

To verify the effect of SSCNN-S on CD, we first introduce three real hyperspectral data
sets used for experiments and then provide indexes for evaluating the effects of different
algorithms. Finally, we provide the experimental results and corresponding analyses on
each data set.

3.1. Data Sets

We selected three real hyperspectral data sets (Figure 3): Farmland [53], River [37] and
USA [54]. All three data sets were collected using Earth Observing-1 (EO-1) Hyperion data.
The EO-1 hyperspectral imager covers electromagnetic waves with wavelengths ranging
from 0.4 to 2.5 micrometers. EO-1 has a spectral resolution of 10 nm and a spatial resolution
of about 30 m, with a total of 242 different bands.Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 18 
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set on 3 May 2013. (d) River data set on 31 December 2013. (e) USA data set on 1 May 2004. (f) USA data set on 8 May 2007.

The first data set, Farmland, was selected from a farmland area in Yancheng, Jiangsu
Province, China. The data set primarily depicted changes in cultivated land. The time
points of the two hyperspectral images were 3 May 2006 and 23 April 2007. Their spatial
size was 450 × 140 pixels with 155 bands after removing low signal-noise-ratio (SNR)
bands. Referring to the number of samples set in [37], we randomly selected 13,200 pixels
as the training set of which 4400 were changed pixels and 8800 were unchanged pixels.
Additionally, 6600 pixels were randomly selected as the verification set.

The second data set, River, was selected from a river region in Jiangsu Province, China.
This data set mainly reflected material changes in the river. The selected time points were
3 May 2013 and 31 December 2013. The spatial size was 463× 241 pixels with 198 bands.
Referring also to the settings in [37], 3750 pixels were randomly selected as the training
set of which 1250 were changed pixels and 2500 were unchanged pixels. Additionally,
1875 pixels were randomly selected as the verification set.
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The third data set, USA, was from irrigated farmland in Hermiston, Umatilla County,
Oregon, USA. It covered soil, irrigation areas, rivers and other terrain. The spatial size of the
images was 307× 241 pixels with 154 bands. Referring to the settings in [54], we randomly
selected 7232 pixels as the training set of which 3313 were changed pixels and 3919 were
unchanged pixels. A total of 3616 pixels were used for the validation sets.

3.2. Evaluation Index

We evaluated the difference between the CD result of the algorithm and the ground
truth value to evaluate the results. For a binary CD problem, we supposed the total number
of pixels to be tested was T. There were only one of four possible scenarios for each pixel:
correctly classifying the changing pixels, whose number was denoted as TP; incorrectly
classifying the changing pixels, whose number was denoted as FP; correctly classifying the
changing pixels, whose number was denoted as TN; incorrectly classifying the changing
pixels, whose number was denoted as FN. Then we obtained:

T = TP + FP + TN + FN (7)

The first index introduced was overall accuracy (OA), which was calculated by:

OA =
TP + TN

T
(8)

The OA was used to measure the proportion of pixels correctly classified by the
algorithm. In this index, TP and TN had the same impact on the OA.

However, in the case of extremely unbalanced data sets, only using the OA as an
evaluation index was problematic. Taking the River data set as an example, it contained
111,583 pixels. According to the ground truth, the actual percentage of changed pixels was
not greater than 10%. This implied that if a model classified all of the pixels as unchanged,
then the OA would exceed 90%; however, this was not the model we required. Therefore,
we introduced a second evaluation index, a Kappa coefficient, which was calculated
as follows:

Kappa =
OA− pe

1− pe
(9)

where pe could be calculated by:

pe =
(TP + FP)(TP + FN)

T2 +
(TN + FP)(TN + FN)

T2 (10)

Effectively introducing the Kappa coefficient solved the problem of the consistency of
model predictions. The relatively small number of changed pixels in the three data sets
implied that the Kappa coefficient imposed greater penalties on the FP.

3.3. Experimental Results

All of the experiences in this paper were carried out on a personal computer that was
equipped with an Intel Core i7-9700K Central Processing Unit (CPU) and an independent
Graphics Processing Unit (GPU) of NVIDIA GeForce RTX 2080. We set the batch size
to 128. We chose the Adam optimizer and its parameters were the default parameters.
The boundary value m in contrastive loss was set to 1.5. Due to the randomness of SSCNN-
S, we ran it four times on each data set to calculate the mean and standard deviation of
each index as the final result. To analyze the effect of the spatial module in CD, the method
of extracting spectral features Xs(t)i obtained after dimension reduction for CD was also
included in the experiment, which was the spectral convolution neural network with
Siamese architecture (SCNN-S).

To evaluate the effectiveness of SSCNN-S, we selected several existing algorithms for
comparison: CVA [14], PCACVA [25], a support vector machine (SVM) [19,55], patch-based
CNN (PBCNN) [56], Hybrid Spectral CNN (HybridSN) [41] and GETNET [37], which used
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different remote sensing image CD strategies and techniques. Figures 4–6 intuitively show
the segmentation results of the different algorithms on the three sets of data sets. Table 1
quantitatively compares the effects of various algorithms using evaluation indexes. In order
to evaluate the time complexity of each algorithm, in Table 2, we provide the running time
of different algorithms on the three data sets for reference.
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Table 1. Experimental results of different algorithms on three data sets (the optimal results are
highlighted in bold).

Method Index
Experiment Data Sets

Farmland River USA

CVA [14]
OA 0.9523 0.9267 0.9200

Kappa 0.8855 0.6575 0.7410

PCACVA [25]
OA 0.9668 0.9516 0.9153

Kappa 0.9202 0.7477 0.7225

SVM [19]
OA 0.9376 0.9424 0.8810

Kappa 0.8483 0.7066 0.6848

PBCNN [56]
OA 0.9185 0.9139 0.8902

Kappa 0.7949 0.5585 0.6699
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Table 1. Cont.

Method Index
Experiment Data Sets

Farmland River USA

GETNET [37]
OA 0.9753 ± 0.0003 0.9499 ± 0.0054 0.9430 ± 0.0010

Kappa 0.9394 ± 0.0008 0.7472 ± 0.0215 0.8249 ± 0.0030

HybridSN [41] OA 0.9749 ± 0.0002 0.9614 ± 0.0019 0.9553 ± 0.0004
Kappa 0.9392 ± 0.0004 0.7371 ± 0.0100 0.8701 ± 0.0015

SCNN-S
OA 0.9777 ± 0.0004 0.9610 ± 0.0019 0.9631 ± 0.0020

Kappa 0.9445 ± 0.0012 0.7300 ± 0.0069 0.8848 ± 0.0059

SSCNN-S
OA 0.9774 ± 0.0003 0.9640 ± 0.0014 0.9651 ± 0.0010

Kappa 0.9440 ± 0.0004 0.7431 ± 0.0034 0.8918 ± 0.0022
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Table 2. Reference running time (in seconds) of different algorithms on three data sets.

Method
Experiment Data Sets

Farmland River USA

CVA [14] 29 62 34

PCACVA [25] 35 67 38

SVM [19] 359 86 207

PBCNN [56] 931 955 1061

GETNET [37] 515 704 568

HybridSN [41] 403 311 297

SCNN-S 615 288 432

SSCNN-S 925 328 579



Remote Sens. 2021, 13, 895 12 of 18

4. Discussion
4.1. Selecting Parameters
4.1.1. Parameters in the Spectral Module

In the spectral module of SSCNN-S, the spatial dimension b of X(t)
i and the dimension b

of ssv(t)i are two important parameters. Moreover, b and k should also be selected differently
for different data sets. We used SCNN-S to test different parameter combinations (b, k)
on each data sets and observed the Kappa coefficient of CD results to determine which
parameter combinations to use. In the parameter experiment, the value range of b was
{3, 5, 7, 9} and the value range of k was { k|k = 15 + 5p, p ∈ N}. Due to SCNN-S also being
random, in order to find a Kappa value to represent the CD effect of parameter combination
more accurately and quickly, we proposed a four-test scoring method that was analogous
to the subjective scoring system of the Chinese College Entrance Examination. For each
parameter combination, the four-test scoring method provided a comprehensive Kappa
value for that parameter combination after two to four experiments.

Algorithm 2: Four-test scoring method.

Input:
1. Error threshold ϑ ≥ 0.
Step 1: Perform the first experiment and obtain the result R1 ∈ R.
Step 2: Perform the second experiment and obtain the result R2 ∈ R.
Step 3: If |R1 − R2| ≤ ϑ, let the final result be FR = R1+R2

2 . The algorithm is aborted.
Step 4: Otherwise, perform the third experiment and obtain the result R3 ∈ R.
Step 5: If |R1 − R3| ≤ ϑ, let the final result be FR = R1+R3

2 . The algorithm is aborted.
Step 6: Otherwise, if |R2 − R3| ≤ ϑ, let the final result be FR = R2+R3

2 . The algorithm is aborted.
Step 7: Otherwise, perform the final experiment and obtain the result R4 ∈ R.
Step 8: Let the final result be FR = R1+R2+R3+R4

4 .
Output:
1. Final result FR.

In the parameter experiment of this paper, we set ϑ = 0.001.
The results of the Farmland parameter selection experiment using SCNN-S are shown

in Figure 7. Although the experimental results of different combinations were somewhat
different, they were generally close. Based on the experimental results, we chose a combi-
nation of b = 7, k = 75 for our experiments on the Farmland data set.
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The results of the River parameter selection experiment using SCNN-S are shown in
Figure 8. Based on the experimental results, we chose a combination of b = 3, k = 85 for
our experiments on the River data set.
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The results of the USA parameter selection experiment using SCNN-S are shown in
Figure 9. Based on the experimental results, we chose a combination of b = 5, k = 80 for
our experiments on the USA data set.
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4.1.2. Parameters in the Spatial Module

In the spatial module, the kernel size of 2D convolution was a parameter that had
a greater impact on CD. We conducted the parameter selection experiment of the spatial
module on the basis of the results of the parameter selection of the spectral module.
The range of the kernel size value n was {3, 5, 7, 9, 11}. As per the method in Section 4.1.1,
we used the four-test scoring method to measure the results of the different parameters.

The experiment results of the parameter selection for selecting the kernel size n of
the 2D convolution kernel on the Farmland data set are shown in Figure 10. Based on the
experimental results, we chose n = 9 for our experiments on the Farmland data set.
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The experiment results of the parameter selection for selecting the kernel size n of
the 2D convolution kernel on the River data set are shown in Figure 11. Based on the
experimental results, we chose n = 7 for our experiments on the River data set.
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The experiment results of the parameter selection for selecting the kernel size n of
the 2D convolution kernel on the USA data set are shown in Figure 12. Based on the
experimental results, we chose n = 9 for our experiments on the USA data set.
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4.2. Discussion on Farmland Experiment

The Farmland data set was a more standardized data set. The ratio of changed pixels
to unchanged pixels was balanced and the changed areas were relatively concentrated and
regular in shape. Moreover, there was not a large number of scatter areas. The spectral
information was rich and the influence of noise was small. Based on the experiment result,
all methods involved in the comparison achieved good results and the main change areas
were detected. The CVA, PCACVA, SVM and CNN were all more susceptible to noise,
which was evident from the CD results. The HybridSN, through the extracting of spatial
features, coped well with situations where different types of changes had similar spectral
features. The GETNET incorporated more sub-pixel information than a CNN. SCNN-S
and SSCNN-S extracted spectral features through a deep network that greatly reduced the
impact of noise and achieved excellent CD results.

4.3. Discussion on River Experiment

The River data set was very challenging. Based on the ground truth map, it was
evident that the River data set had a wide variety of variations, irregular areas of variation
and a large number of scatters. Additionally, the ratio of changing pixels to total pixels in the
River data set was less than 10%. This extremely unbalanced data set made classifying the
changed into the unchanged greatly affect the Kappa coefficients. Based on the experiment
results, SSCNN-S achieved the best accuracy and PCACVA achieved the best Kappa
coefficient, which was similar to the results of [26]. This result demonstrated that SSCNN-S
was more stringent in judging changed pixels while spatial information supplementation
effectively improved the accuracy and Kappa value compared with SCNN-S. Overall,
the Kappa coefficients for all methods were low, which demonstrated the high complexity
of this data set.

4.4. Discussion on USA Experiment

The USA data set was a more comprehensive data set that contained a lot of circu-
lar change areas and a few curve and scatter areas. Based on the experimental results,
the area of curve change representing the river boundary was a watershed that affected
the detection results of the different methods. Of all of the methods involved in the com-
parison, only SCNN-S and SSCNN-S depicted changes in the river boundary very well,
indicating that the spectral module could extract the spectral features of the tensor more
effectively. Compared with SCNN-S, SSCNN-S significantly improved the OA and Kappa
coefficients, indicating that the auxiliary features of the spatial module made up for the
noise interference of the spectral features.

5. Conclusions

In this paper, we proposed a spectral-spatial convolution neural network with Siamese
architecture (SSCNN-S) for CD. SSCNN-S extracted the spectral-spatial features of hyper-
spectral tensors through spectral and spatial modules and converted the hyperspectral
tensors into spectral-spatial vectors. SSCNN-S introduced contrastive loss into CD and
transformed the CD problem into a similarity measurement problem of spectral-spatial
vectors. The distance function was used to calculate the distance between two spectral-
spatial vectors to describe the similarity of two tensors and this was used as the basis of CD.
Considering the high spectral resolution and low spatial resolution of the HSIs, SSCNN-S
used a spectral-spatial combination method to extract features of the hyperspectral ten-
sor, which mainly relied on the spectral features and supplemented the spatial features.
Based on the full extraction of spectral features, the auxiliary spatial features weakened
the influence of noise on the spectral features. The introduction of the Siamese network
architecture into CD bridged a gap between hyperspectral classification and CD. A few
advanced hyperspectral classification techniques could be applied to CD based on this
architecture. From the experience, SCNN-S and SSCNN-S achieved good results on three
real data sets.
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In our future work, we will continue to explore the following two aspects. The first
aspect is the HSI. In addition to the real HSI, the use of synthetic data may bring further
discoveries. The second aspect is the further research on the spatial module. We tested the
effect of different sizes of 2D convolution kernels on the results in our experiments. In fact,
the spatial module can have more architectures to extract the spatial features of HSIs as
fully as possible.
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