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Abstract: This paper studied the method for converting the aerosol extinction to the mass concen-

tration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation 

of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-

axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 

121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The 

PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula 

showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 

0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Consid-

erable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and 

HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were 

nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest 

transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland 

to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service 

(CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its 

overestimation of near-surface gas volume mixing ratios.  
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1. Introduction 

Atmospheric aerosols play an important role in atmospheric physics and chemistry 

and affect the atmospheric radiation budget by absorbing and scattering radiation [1]. Ni-

trogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are important at-

mospheric trace gases (TGs) that play a major role in atmospheric chemical processes. The 
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observed high NO2 and volatile organic compounds (VOCs) reflect the anthropogenic 

emission sources, e.g., power plants, industry, and vehicle emissions [2]. SO2 contributes 

to the formation of sulfate aerosols and acid rain, both of which have negative effects on 

the climate and human health and lead to increasing acid corrosion [3]. The dominant 

anthropogenic emissions of SO2 are the burning of fossil fuels and oil refineries, whereas 

the discharge of active volcanoes is the major natural source. HCHO is mainly produced 

through the oxidation of VOCs, and the HCHO level and distribution can be used as an 

indicator of the photochemical turnover capacity in the atmosphere [4]. 

Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a passive re-

mote sensing technique that can provide column densities and vertical distribution infor-

mation about aerosol extinction and trace gas concentration in the troposphere by meas-

uring scattered sunlight at different elevations [5]. The MAX-DOAS technique is suitable 

for long-term observations of aerosols and trace gases with a relatively high time resolu-

tion (i.e., several minutes) because of its simple instrument concept and its low-cost and 

automatic operation. At present, many research institutions have carried out atmospheric 

aerosol and TGs observation research in the inner cities of China based on MAX-DOAS 

technology [6–10]. Xing, et al. [11] researched the wintertime sources of VOCsfrom MAX-

DOAS measured formaldehyde and glyoxal in Chongqing. Hendrick, et al. [12] suggested 

a stronger correlation of HONO with NO2 and a larger proportion of NO2 converted into 

HONO in Beijing city center than that in Xianghe. Ma, et al. [13] estimated the mixing 

ratios of NO2, SO2, and HCHO in the lower troposphere in the Tibetan Plateau. Hong, et 

al. [14] studied the vertical profiles of NO2, SO2, HCHO, and aerosols in Hefei and their 

relationship with emission sources and the effects of regional transport. 

In recent years, an increasing number of scientific studies have addressed aerosol 

levels, chemical compositions, and TG levels and sources in Chinese coastal regions. Most 

of these studies have focused on the cities of Dalian [15–17], Qingdao [18,19], Guangzhou 

[20], and Shanghai [21,22]. However, each of these studies was conducted in one city and 

analyzed the change characteristics of only a single pollutant. Few studies of the temporal 

and spatial changes of multiple pollutants have been done in the three coastal cities. 

This study used one year of ground-based MAX-DOAS observations to study the 

temporal and spatial variation characteristics and transport characteristics of aerosol, 

NO2, SO2, and HCHO in the three coastal cities of Dalian, Qingdao, and Shanghai. The 

remainder of this paper is organized as follows: In Section 2, the MAX-DOAS instrument, 

the retrieval method, and the flux calculation method of particulate matter are described. 

In Section 3, the seasonal variations and diurnal variations, weekly cycles, vertical distri-

bution, and seasonal flux variations of aerosol and trace gas are investigated, and a pollu-

tion process covering the three cities is analyzed. In Section 4, the comparisons between 

MAX-DOAS and Copernicus Atmosphere Monitoring Service (CAMS) data are discussed. 

In Section 5, conclusions are presented. 

2. MAX-DOAS Measurement 

2.1. Instrument 

The MAX-DOAS system includes a UV–visible band spectrometer, quartz optical fi-

ber, high-precision two-dimensional rotating platform, high-precision temperature con-

trol system, high-performance computer, etc. Scattered sunlight collected by the telescope 

is redirected by quartz fibers to the spectrometer for spectral analysis. The thin back-illu-

minated charge-coupled device (CCD) Avantes (http://www.avantes.com/) is then used 

to measure spectra in the UV wavelength with a spectral resolution of 0.50 nm (full width 

half maximum, FWHM). The bands of the three stations’ spectra are slightly different (Ta-

ble 1). The telescope collected the scattered sunlight spectrum at 11 elevation angles (1°, 

2°, 3°, 4°, 5°, 6°, 8°, 10°, 20°, 30°, and 90°), and the azimuth angle was oriented in the north-

ern direction [5,10,23,24]. The observation direction was not blocked and was not affected 
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by the topography. The single exposure time was under 300 ms, and the number of spec-

tral averaging was 100 times. The optical fiber was multimode quartz fiber with a length 

of 10 m and a diameter of 400 μm. By setting up a wireless routing module, unattended 

and remote data transmission can be achieved. 

The mercury lamp spectrum was collected, and the three peaks of 296.7, 302.15, and 

334.148 nm, along with the corresponding numbers of channels, were selected for calibra-

tion. The spectrometer without shutter was placed in a temperature control system, there-

fore, dark backgrounds and offsets were collected at night. When retrieving the spectrum, 

the dark background and offset of the night were deducted. The error of the motor rota-

tion was less than 0.06° (minimum possible step). An angle measuring instrument was 

then used to determine the horizontal inclination of the motor in the vertical scanning 

direction, and the horizontal inclination error in other directions was ±0.10°. 

2.2. Site 

Dalian, Qingdao, and Shanghai are located in eastern coastal China. Figure 1 shows 

the locations of the Dalian, Qingdao, and Shanghai monitoring stations. The climate of 

Dalian and Qingdao is typically a territorial monsoon system within a warm-temperate 

zone, and the climate of Shanghai is a subtropical monsoon climate. The main industries 

in Dalian are shipbuilding, chemical engineering, and locomotive building, and the main 

industries in Qingdao are electronics, petrochemicals, and textiles and clothing. In Dalian 

and Qingdao, coal gas is the primary fuel for household cooking, and coal is the main fuel 

used for central heating in winter [25]. The MAX-DOAS instrument in Shanghai is located 

in the Chongming Island, which is an alluvial island at the mouth of the Yangtze River. 

Table 1 shows the differences in the three monitoring stations, such as the site locations, 

site types, altitudes, spectral bands, and observation times.  

 

Figure 1. The locations of multi-axis differential optical absorption spectroscopy (MAX-DOAS) 

instruments. 

Table 1. The site differences between Dalian, Qingdao, and Shanghai. 

City Sites Location Sites Type Altitude Spectral Band 
Observation 

Time 

Dalian 

Dalian Maritime 

University 

(38.85°N, 121.36°E) 

Urban 60 m 293–459 nm 

November 

2019 to May 

2020 

Qingdao 
Aoshanwei 

(36.35°N, 120.69°E) 
Suburbs 50 m 285–453 nm 

March 2019 

to April 2020 
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Shanghai 

Dongtan Environ-

mental Protection 

Zone 

(31.60°N, 121.80°E) 

Environmental 

background 

station 

5 m 302–467 nm 
May 2019 to 

May 2020 

 

2.3. Spectral Analysis 

The spectra measured with MAX-DOAS were analyzed using the QDOAS software 

(version 3.2) [26]. The spectrum in the zenith direction of the current circle was used as 

the Fraunhofer reference spectrum (FRS) in a complete cycle, and the slanted column den-

sity (SCD) of O4, NO2, SO2, and HCHO was calculated. The TG cross sections, wavelength 

ranges, and additional properties of the DOAS analyses are provided in Table 2. Figure 2 

shows typical DOAS fit examples at Qingdao station. The bands absorbed by water 

vapor is mainly the infrared and the blue band while the O4 retrieve band is 337–

370 nm. Therefore, water vapor absorption interference is neglected in this study. 

The cloud effect was considered by screening the data with cloud affection. 

Table 2. QDOAS parameter settings. 

Parameter Data source 
Species 

O4 NO2 SO2 HCHO 

Wavelengh  
337–370 

nm 

337–370 

nm 

308–325 

nm 

336.5–359 

nm 

NO2 
 220 K, 294 K, Vandaele et 

al [27] 
√ √ 

√(only 294 

K) 

√(only 294 

K) 

O3 
223 and 243 K, Bogumil, et 

al. [28]  
√ √ 

√(only 223 

K) 
√ 

O4 
293 K, Thalman and 

Volkamer [29]  
√ √ √ √ 

HCHO 
293 K, Meller and Moortgat 

[30]  
√ √ √ √ 

BrO 
223 K, Fleischmann, et al. 

[31] 
√ √ √ √ 

SO2 293K, Bogumil et al. [28]   √ √ 

Ring calculated with DOASIS  √ √ √ √ 

Polynomial de-

gree 
 5 5 5 5 
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Figure 2. Examples of typical DOAS fits of O4 (a), NO2 (b) and SO2 (c) at 11:48 local time (LT) on 11 

December 2019 as well as HCHO (d) at 11:03 LT on 21 July 2019 at Qingdao station. The fitted dif-

ferential slanted column densities (dSCDs) of NO2, O4, SO2, and HCHO are given in the corre-

sponding subfigures. The black and red curves indicate the fitted absorption structures and the 

derived absorption structures from the measured spectra, respectively. 

2.4. Profile Retrieval 

We used the aerosol extinction and trace gas concentration PRofile Inversion Algo-

rithM (PriAM) [32–34], developed by the Anhui Institute of Optics and Fine Mechanics 

(AIOFM) of the Chinese Academy of Sciences and the Max Planck Institute of Chemistry 

(MPIC), combined with the multi-angle dSCD retrieval of aerosol and trace gas profile 

information. PriAM used a two-step inversion process. The first step was to retrieve the 

aerosol extinction profile from the O4 dSCD. Then, the vertical distribution of NO2 and 

SO2 and the HCHO volume mixing ratio (VMR) were retrieved from the corresponding 

dSCD. The Gauss–Newton numerical iteration program modified by Levenberg–Mar-

quardt solved the inversion problem, as shown in Equation (1): 

𝑥𝑖+1 = 𝑥𝑖 + [(1 + 𝛾𝑖)𝑆𝑎
−1 + 𝐾𝑖

𝑇 ∙ 𝑆𝜀
−1 ∙ 𝐾𝑖]

−1 ∙ [𝐾𝑖
𝑇 ∙ 𝑆𝜀

−1 ∙ (𝑦 − 𝑓(𝑥𝑖)) − 𝑆𝑎
−1(𝑥𝑖 − 𝑥𝑎)] (1) 

𝑥𝑖 is the state parameter, 𝑥𝑎 is the prior state parameter, Ki is the weight function, Sa 

is the covariance of the prior error, and S𝜀 is the covariance of the measurement error. 

The vertical distribution of the aerosol extinction coefficient and the gas volume mixing 

ratio were retrieved using the PriAM algorithm, PriAM used SCIATRAN radiative trans-

fer model (RTM). RTM parameters for SCIATRAN are listed in supplementary materials 

Table S1.  

2.5. Flux Calculation Method 

2.5.1. Method for Calculating Mass Concentration of Particulate Matter 

It is difficult to obtain the vertical distribution of particulate matter concentration, 

which is usually converted by the aerosol extinction coefficient via, e.g., lidar. However, 

lidar has a blind zone under 200 m [35]. MAX-DOAS, a technique to detect the vertical 

distribution of aerosols, can be used to obtain the vertical distribution of the aerosol from 

0.05 to 4 km with vertical resolution of 200 m [36]. The conversion methods for the aerosol 

extinction and particulate matter concentration were then studied [37,38]. 
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Firstly, the particulate matter (PM)2.5 data for the environmental monitoring station 

and the aerosol extinction over 50 m measured by MAX-DOAS were used to establish a 

conversion model. At present, the most commonly used models are the linear model and 

power function model. 

The Conversion Model of the Particle Mass Concentration and Extinction Coefficient 

(1) Linear model 

According to the basic theory of Mie scattering [39], the aerosol extinction coefficient 

α can be expressed as [40] 

α = ∫ πr2
∞

0

Qextn(r)dr (2) 

where r is the particle size radius, Qext is the extinction efficiency, and n (r) is the particle 

size distribution. The density of the aerosol is considered as ρ. The total mass concentra-

tion of the particulate matter (MTotal) can thus be expressed as 

MTotal = ∫
4

3
πr3ρ

∞

0
n(r)dr. (3) 

Then, the relationship between the aerosol extinction coefficient measured by MAX-

DOAS and the mass concentration of the total particulate matter is 

MTotal =
4ρreff

3Qext
α (4) 

where reff is the effective radius of the particle. 

The proportion of the mass concentration of fine particles (d ≤ 2.5 μm) 

(𝑀𝑃𝑀2.5
) among the total particles is η; then, the relationship between the mass concentra-

tion of fine particles and the extinction coefficient is 

MPM2.5
=

4ρreffη

3Qext
α = aα (5) 

where a is related to the particle size spectrum distribution, optical refraction, environ-

mental humidity, and other factors. When the humidity is greater than 80%, the hygro-

scopicity of the particles becomes obvious, and the extinction properties of the particles 

are enhanced [41]. To eliminate humidity, a stepwise conversion method for humidity is 

adopted. A detailed analysis and discussion will be given later. Under the assumption 

that the scale spectrum distribution of aerosol particles and the light refractive index are 

constant, the scale factor can be considered as a constant a that does not change with the 

height. 

Thus, the linear model is 

MPM2.5
= aα + b. (6) 

(2) Power function model 

The empirical formula is based on long-term data of the aerosol extinction coefficient 

and particle mass concentration: 

MPM2.5
= aαb + c (7) 

where a and b are model parameters related to aerosol morphology and meteorological 

conditions, and c is a constant related to factors such as aerosol composition. 

Conversion Formula  

The observation sites are all located along the coast, and the relative humidity is high, 

but the influence of humidity in different regions on the extinction characteristics of aer-

osols is different. This factor is related to the differences in the chemical composition of 

aerosols in different regions, especially the proportion of inorganic water-soluble ions, 

such as SO42-, NO3-, and NH4+. There is also influence from sea salt aerosol. The proportion 
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of inorganic water-soluble ions, Cl-, and Na+ to particulate matter in Dalian in the spring 

is 72.7–81.6%, 4.1–4.6%, and 2.4–2.7%, respectively, and that in autumn is 42.2–55.9%, 6.8–

9.1%, and 3.8–5.1%, respectively [42]. The contribution of the inorganic water-soluble ions 

SO42- (12%), NO3- (15%), and NH4+ (10%) to PM2.5 is 37% [18], and marine aerosols (Cl- and 

Na+) account for 1.3–2.5% of the aerosols in Qingdao [19]. The contribution rates of sulfate, 

nitrate, ammonium salt, Cl-, and Na+ to PM2.5 in Shanghai urban are 25.1 ± 8.1%, 18.5 ± 

8.3%, 13.3 ± 3.8%, 3.32%, and 0.76%, respectively [21]. The contribution rate of sulfate, 

nitrate, ammonium salt, Cl-, and Na+ to PM2.5 was 25.9%, 12.2%, 11.5%, 0.60%, and 0.87%, 

respectively, in Shanghai Chongming Island in June 2006 [43]. The proportion of marine 

aerosols in northern coastal cities was larger than that in southern coastal cities [42]. 

Figure 3 shows the influence of relative humidity (RH) on the aerosol extinction dur-

ing the observation period. In Dalian, when the RH is greater than 50%, the extinction 

coefficient begins to increase by 51.09%, and when the RH is greater than 70%, the extinc-

tion coefficient increases significantly by 78.75% (Figure 3a). The extinction coefficient of 

Qingdao increases by 48.26% when the RH is greater than 70% (Figure 3b). In Shanghai, 

the extinction coefficient begins to increase by 56.76% when the RH is greater than 50%. 

However, when the RH is greater than 80%, the extinction coefficient does not increase 

significantly (Figure 3c). This is related to the low water-soluble ions in the chemical com-

position of aerosols in Chongming, Shanghai. Therefore, the conversion method for par-

ticle mass concentration and the extinction coefficients at different RH levels was applied 

to different cities (Supplementary Materials Figure S1a–i). Table 3 shows the conversion 

formulas for the aerosol extinction coefficient and PM2.5 under different RHs in the three 

cities. The linear model and the power function model have the same effect. According to 

the conversion formulas, the PM2.5 measured by the in situ instrument and the PM2.5 sim-

ulated by the conversion formulas showed good correlation in whole observation period. 

The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai), re-

spectively (Figure 4). 

   

Figure 3. The relationship between the aerosol extinction and the relative humidity (RH) in Dalian (a), Qingdao (b) and 

Shanghai (c). 

Table 3. Conversion formulas for the aerosol extinction coefficient and the particulate matter 

(PM)2.5 under different RHs. 

City RH Conversion formula R 

Qingdao 

RH<70% 
y = (137.55 ± 5.23)x + (4 ± 1) 0.86 

y = (149.80 ± 5.97)x^(1.42 ± 0.09) + (15 ± 2) 0.86 

RH<80% 
y = (137.69 ± 5.62)x + (4 ± 2) 0.78 

y = (136.85 ± 5.59)x^(1.13 ± 0.11) + (9 ± 4) 0.78 

RH<100% 
y = (140.47 ± 5.04)x + (3 ± 2) 0.79 

y = (140.39 ± 5.11)x^(1.148 ± 0.10) + (9 ± 4) 0.80 

Dalian 

RH<50% 
y = (81.82 ± 2.59)x + (4 ± 1) 0.83 

y = (82.99 ± 2.79)x^(1.07 ± 0.06) + (5 ± 1) 0.83 

50%<RH<70% 
y = (63.00 ± 2.54)x + (9 ± 1) 0.78 

y = (59.14 ± 2.66)x^(1.27 ± 0.09) + (13 ± 2) 0.79 
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70%<RH<80% 
y = (56.77 ± 4.25)x + (14 ± 3) 0.73 

y = (58.07 ± 7.04)x^(0.96 ± 0.16) + (13 ± 5) 0.73 

80%<RH<100% 
y = (47.88 ± 2.99)x + (11 ± 3) 0.71 

y = (36.73 ± 5.80)x^(1.30 ± 0.17) + (19 ± 4) 0.72 

Shanghai 

0<RH<50% 
y = (71.81 ± 2.81)x + (11 ± 1) 0.81 

y = (70.78 ± 3.06)x^(1.07 ± 0.09) + (12 ± 2) 0.81 

50%<RH<100% 
y = (64.88 ± 2.48)x + (9 ± 1) 0.71 

y = (57.84 ± 2.32)x^(1.86 ± 0.12) + (20 ± 1) 0.74 

 

 

Figure 4. The correlation of the PM2.5 measured by the in situ instrument and the PM2.5 simulated by conversion formulas 

in Dalian (a), Qingdao (b), and Shanghai (c). 

2.5.2. Transport Flux Calculation 

The transport flux is defined as the product of wind speed and pollutant concentra-

tion at the corresponding layer using the flux calculation formula [44]: 

𝐹 = 𝐶 × 𝑊 (8) 

where C is PM2.5 or trace gas concentration of different height layers, and W is the wind 

filed. The wind field data and relative humidity data at different levels are derived from 

the Copernicus Climate Change Service (C3S) provided by the European Center for Me-

dium-Range Weather Forecasts (ECMWF) (https://cds.climate.coperni-

cus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form). We used the zonal 

(U) wind field to calculate the flux between inland and sea. The Wind field's horizontal 

resolution was 0.25°×0.25°, and wind field’s uncertainty was about 15% [45,46]. 

3. Results  

3.1. Seasonal Variation  

In Figure 5, an unpronounced and consistent aerosol optical depth (AOD) seasonal 

cycle is shown for three coastal cities. The AOD has high values (0.88 and 0.97 in Qingdao 

and Dalian, respectively) in winter. NO2 and SO2 have obvious seasonal characteristics. 

The seasonal cycles of NO2 and SO2 displayed minimum values（NO2 vertical column 

density (VCD) of 3.78 × 1015 and 3.39 × 1015 molec./cm2 in Qingdao and Shanghai, respec-

tively; SO2 VCD of 6.77 × 1015 and 4.70 × 1015 molec./cm2 in Qingdao and Shanghai, respec-

tively）in summer, and maximum values (NO2 VCD values of 1.37 × 1016, 7.04 × 1015, and 

6 Nov 2019 6 Jan 2020 6 Mar 2020 6 May 2020

0

50

100

150

200
 Measurement

 Simulation
(a) Dalian

P
M

2
.5

 (
μ

g
/m

3
)

Date

3 Mar 2019 3 Jul 2019 3 Nov 2019 3 Mar 2020

0

50

100

150

200
(b) Qingdao  Measurement

 Simulation

P
M

2
.5

 (
μ

g
/m

3
)

Date

6 May 2019 6 Sep 2019 6 Jan 2020 6 May 2020

0

50

100

150

200

(c) Shanghai  Measurement

 Simulation

P
M

2
.5

 (
μ

g
/m

3
)

Date

0 50 100 150 200

0

50

100

150

200
PM2.5dailyy=0.82x+6.51

R=0.93

Dalian

S
im

u
la

te
d
 P

M
2

.5
(μ

g
/m

3
)

Measured PM2.5(μg/m3)

0 50 100 150 200

0

50

100

150

200

PM2.5dailyy=0.84x+7.75

R=0.90

Qingdao

S
im

u
la

te
d
 P

M
2

.5
(μ

g
/m

3
)

Measured PM2.5(μg/m3)

0 40 80 120 160 200

0

40

80

120

160

200

PM
2.5

dailyy=0.79x+6.58

R=0.88

Shanghai

S
im

u
la

te
d

 P
M

2
.5
(μ

g
/m

3
)

Measured PM
2.5

(μg/m
3
)



Remote Sens. 2021, 13, 892 9 of 25 
 

 

1.63 × 1016 molec./cm2 in Qingdao, Shanghai, and Dalian, respectively; SO2 VCD values of 

1.05 × 1016, 5.96×1015 and 1.01 × 1016 molec./cm2 in Qingdao, Shanghai, and Dalian, respec-

tively) in winter. These characteristics are already well established for urban areas in the 

eastern region of China [12,47]. In contrast, HCHO shows the opposite seasonality trend 

to NO2 and SO2, which was related to the strengthening of photochemical reactions in 

summer. The HCHO VCD maximum values (1.01×1016 and 1.85 × 1016 molec./cm2 in Qing-

dao and Shanghai, respectively) were found in summer, and its minimum values (5.96 × 

1015, 5.40 × 1015, and 6.42 × 1015 molec./cm2 in Qingdao, Shanghai, and Dalian, respectively) 

in winter. A similar seasonality trend of HCHO in the eastern region of China has already been 

reported [48]. Since the observation data in Dalian are less than one year, the complete seasonal 
variation cannot be shown. 

  

Figure 5. Monthly average aerosol optical depth (AOD) (a) and vertical column densities (VCDs) 

for NO2 (b), SO2 (c) and HCHO (d) in Qingdao, Shanghai, and Dalian. 

Although the three MAX-DOAS sites are all located in coastal cities, their geographic 

locations are different (such as urban and rural and the north and south of China). There-

fore, the differences in aerosol and trace gas values between the stations were studied. 

The MAX-DOAS site in Shanghai is located at the atmospheric background station and 

can be used as a reference to study the impact of the city’s pollutant emissions. The site 

distribution of quantities of AOD, NO2, and SO2 manifest in the following order: Da-

lian>Qingdao>Shanghai. The average annual AOD value of the Shanghai site is 0.43, while 

the values of Dalian and Qingdao are 88.31% and 10.14% higher than Shanghai, respec-

tively. The annual average NO2 value of Shanghai is 5.81 × 1015 molec./cm2, while the val-

ues of Dalian and Qingdao are 110.21% and 31.99% higher than that of Shanghai, respec-

tively. Shanghai’s SO2 VCD is 5.55 × 1015 molec./cm2, while the values for Dalian and Qing-

dao are 62.70% and 45.71% higher than that of Shanghai, respectively, which is related to 

the coal-fired heating in winter in northern China. The Dalian site is located in an urban 

area and is affected by industrial and traffic emissions. Further, due to the lack of summer 

data for the Dalian site, the annual average values of AOD, NO2, and SO2 are larger, and 

HCHO is smaller in Dalian. However, the HCHO VCD is the largest in Shanghai, and the 

values for Dalian and Qingdao are similar. The annual average value of HCHO in Shang-

hai is 9.15 × 1015 molec./cm2, while the values for Dalian and Qingdao are 15.62% and 

Feb 2019 Jul 2019 Dec 2019 May 2020
0.0

0.3

0.6

0.9

1.2

A
O

D

Date

(a)

Feb 2019 Jul 2019 Dec 2019 May 2020
0.0

0.5

1.0

1.5

2.0

N
O

2
(1

0
1

6
m

o
le

c
u

le
/c

m
2
)

Date

 Qingdao  Shanghai  Dalian

(b)

 May 2019  Sep 2019  Jan 2020  May 2020
0.0

0.4

0.8

1.2

S
O

2
(1

0
1

6
m

o
le

c
u

le
/c

m
2
)

Date

(c)

 May 2019  Sep 2019  Jan 2020  May 2020
0.0

0.4

0.8

1.2

1.6
H

C
H

O
(1

0
1

6
m

o
le

c
u

le
/c

m
2
)

Date

(d)



Remote Sens. 2021, 13, 892 10 of 25 
 

 

14.35% lower than that of Shanghai, respectively. This is related to the longer light period 

in the south, and the stronger photochemical reactions. Urban emissions contribute sig-

nificantly to the concentration of NO2, SO2, and aerosols, but not HCHO. The secondary 

formation of HCHO is reportedly the largest ambient HCHO source in summer [49], with 

reduced photochemical reactions in winter. 

3.2. Diurnal Variation  

The AOD reaches its maximum value at 10:00 local time (LT) in the morning, and 

then rapidly decreases. The diurnal variation is the largest in spring, with a difference of 

0.8 in Dalian (Figure 6a). The AOD has no obvious daily change, but is slightly higher in 

the morning and evening in Shanghai. In winter, the AOD has high value in the morning 

and evening and a low value at noon, while other seasons show a decline starting in the 

morning in Qingdao. The NO2 VCD in Qingdao presents the characteristics of daily 

changes, with high values in the morning and evening and low values at noon, which 

similar to that of Dalian in autumn and spring. (Figure 6b). The lowest value is reached at 

1 p.m. throughout the day and the largest daily variation occurred in spring. This may be 

related to the peaks of traffic emissions in the morning and evening. The NO2 VCD in 

Shanghai has no obvious diurnal variation because it is far away from the urban area and 

has no traffic emissions. This is similar to the MAX-DOAS observation results at the Bei-

jing Shangdianzi Atmospheric Background Station [50]. The NO2 VCD at Dalian main-

tained a high level of concentration throughout the day in winter. This is similar to the 

MAX-DOAS observations in Beijing and Wuxi [6,51]. This phenomenon may be caused 

by complex chemical reactions and transportation, with generally higher emission rates, 

a longer NO2 lifetime, and less dispersion efficiency in winter. As shown in Figure 6c, the 

SO2 VCD has similar diurnal variation to NO2 in Qingdao. Further, the maximum daily 

change occurs in autumn. In contrast, the SO2 VCD reaches a high value at noon and then 

decreases rapidly in autumn and winter in Dalian, which is similar to the observation 

results for Wuxi [6]. As shown in Figure 6d, as the light intensity increases, the photo-

chemical reaction intensifies, and HCHO VCD rises, and reaches the peak value at 10:00–

14:00 LT. Then, with a further enhancement of light and the consumption of formaldehyde 

precursors, the growth rate of HCHO is lower than its consumption rate. Thus, HCHO 

VCD decreases. Our result is consistent with a ship-based MAX-DOAS observation in 

Jiangsu, China in terms of daily HCHO VCD variations [51]. In Shanghai, HCHO VCD 

has the highest concentration in summer, and HCHO VCD experiences the largest daily 

change in spring. 
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Figure 6. Seasonally averaged diurnal variations of AOD (a) and trace gas VCDs for NO2 (b), SO2 (c) and HCHO (d) in 

different seasons in Qingdao, Shanghai, and Dalian. 

3.3. Weekly Variation  

In urban areas, industrial and transportation emissions affect the level of pollutants, 

and human production activities have a certain periodicity. The traffic load on the roads 

on weekends and the slowdown of industrial activities produce lower pollutant emissions 

levels [52,53]. Previous studies have shown that there are no significant weekend effects 

in many major cities in China. NO2 and SO2 experience weekend effects, and HCHO VCD 

experiences few weekend changes, while aerosols have no weekend effects in Wuxi [6]. 

NO2 and HCHO VCD did not decrease over the weekend in Baoding and Beijing [12,54]. 

While SO2 and HCHO did not show a weekend decrease, with values similar to those of 

the weekdays, NO2 slightly decreased by 2.45% (Shanghai), 3.83% (Qingdao), and 3.20% 

(Dalian) on weekends (Figure 7b–d). However, AOD was 13.84% higher on weekends in 

Dalian (Figure 7a). Similarly, Xu, et al. reported that PM2.5 concentrations were, on aver-
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yuan, and Hefei) during 2013–2014, likely due to the additional traffic on weekends, alt-

hough heating and cooking might be contributing factors [55]. This may be related to Chi-

na's industrial production model of uninterrupted production. 
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Figure 7. Mean weekly cycles for (a) AOD in three sites, and NO2, SO2, and HCHO VCDs in (b) 

Qingdao, (c) Shanghai, (d) Dalian. 

3.4. Vertical Distribution  
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tributed with the upper layer in autumn. The NO2 profiles show exponential decay in all 

seasons at the three sites, indicating that NO2 is mainly concentrated near the ground, 

which is consistent with the MAX-DOAS observations in Wuxi [6] and similar to the ver-

tical distribution of NOx measured at the Yangtze River Delta [56]. The profile shape of 

NO2 is mainly attributed to near-surface emission sources and a short lifetime. The SO2 

seasonal profiles of Qingdao and Dalian decayed exponentially, indicating that local 
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Figure 8. Seasonal mean profile of Qingdao, Shanghai, and Dalian sites. 

3.5. Pollution Transport Between Inland and Sea  

We define the output flux with pollutant transport from inland to sea as positive and 

the input flux with pollutant transport from sea to inland as negative (see Figure 9). 
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reach 163.11 and 33.52 μg/m2/s, respectively (Figure 9e). In summer, the main transport 

heights are 0.2 to 0.6 km near the ground, and the maximum input fluxes of particulates 

and HCHO are 138.31 and 21.62 μg/m2/s, respectively (Figure 9f). In autumn and winter, 

the particle output flux has a high value at 2.8 km. The transportation height of trace gas 

is mainly concentrated at 0.2–0.8 km, and the maximum SO2 flux can reach 9.73 μg/m2/s. 

The HCHO input and output are equivalent, and the maximum output fluxes of NO2, SO2, 

and HCHO are 11.63, 17.81, and 9.69 μg/m2/s, respectively. The main transport height is 

0.2 to 1 km near the ground (Figure 9g–h). 

(3) Dalian 

In spring, the trace gas output flux is mainly HCHO flux with a maximum of 44.37 

μg/m2/s, and the input flux is mainly SO2 flux with a maximum of 38.99 μg/m2/s. Above 

0.6 km, the output flux of particles is greater than the input (Figure 9i). In autumn, a strong 

SO2 output flux (62.91 μg/m2/s) appears at 0.2 km near the ground. The NO2 input flux is 

mainly above 0.2 km, and the maximum value can reach 47.20 μg/m2/s. The output flux 

of particulate matter is slightly larger than the input in autumn (Figure 9j). The NO2 and 

SO2 input flux is greater than output flux in winter, showing an obvious stepped shape. 

For particulate matter, the input flux is greater than the output below 0.4 km, and the 

output flux is greater than the input above 0.4 km. The maximum input and output fluxes 

are 135.45 and 158.42 μg/m2/s, respectively (Figure 9k). 

 

Figure 9. The input and output flux of particulate mass, NO2, SO2, and HCHO at Qingdao (a–d), Shanghai (e–h), and 

Dalian (i–k) in different seasons. The output flux of pollutant transport from inland to the sea was defined as positive, and 

the input flux of pollutant transport from the sea to inland was defined as negative. 

3.6. Analysis of a Pollution Process 

Heavily pollution process mainly occurred in winter. From 6 to 11 December 2019, a 

strong pollution event occurred in Dalian, Qingdao, and Shanghai. According to the data 

displayed by the ground monitoring station (Figure 10), the PM2.5 concentration increased 

sharply from 33 to 123 μg/m3, and the growth rate was 45 μg/m3/h, while the wind direc-
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from 8:00 to 10:00 LT (T1) on 8 December in Dalian. However, the NO2 and SO2 concen-

trations did not change significantly. At 20:00 LT on the 10th (T2), the PM2.5 and NO2 con-

centrations reached maximum values (178 and 60 μg/m3, respectively). There was no ob-

vious time consistency observed between NO2 and PM2.5 concentration variations, which 

may be relate to the interference of local traffic emissions in low wind speed (WS>1.5 m/s). 

At 17:00 LT on the 6th (T3), both NO2 and PM2.5 increased slightly in Qingdao, the wind 

direction changed from north to south, and the temperature increased by 7 ℃, which in-

dicates warm air from the south. At 8:00 LT on the 9th (T4) and 18:00 LT on the 10th (T5), 

NO2 and PM2.5 increased while the wind direction changed from south to northwest, and 

wind speed was 4m/s, which indicate air pollution from northwest. While the humidity 

was greater than 80%, the PM2.5 and NO2 concentrations reached their maximum values 

(267 μg/m3 and 94 μg/m3, respectively). The variation in NO2 and particulates was syn-

chronized in Qingdao, and SO2 only slightly increased. At 22:00 LT on the 10th (T6), NO2 

reached a maximum of 153 μg/m3. Then, the maximum value of PM2.5 (185 μg/m3) ap-

peared with high RH at 12:00 on the 11th (T7). The accumulation of PM2.5 may be con-

verted to nitrate by gas reaction of NO2 [57]. During the pollution period, the ratios of 

PM2.5 and PM10 in Dalian, Qingdao, and Shanghai were 65.68%, 70.94%, and 85.67%, re-

spectively. Furthermore, the NO2 high value in Shanghai was nearly twice that of Qingdao 

and Dalian. The differences in the proportion of fine particles in the particulate matter and 

NO2 high value indicate that the pollution sources of the three regions may be different. 

The pollution event exhibited a significant relative humidity increase to nearly 80%–90%, 

indicating the contribution of water vapor transport. During the pollution process, the 

average temperature increased by 6.3 (Dalian), 7.2 (Qingdao), and 3.5 °C (Shanghai), 

which indicated that warm air was another meteorological feature of the pollution event 

[58]. 
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Figure 10. PM2.5, PM10, NO2, SO2, wind direction (WD), wind speed (WS), temperature (T) and relative humidity (RH) in 

Dalian (a), Qingdao (b), and Shanghai (c) from 6 December 2019 to 11 December 2019. 

In Figure 11, the vertical distribution characteristics of pollutant transport were ob-

served via MAX-DOAS during the pollution process. AOD reached its maximum values 

of 3.09 (Dalian), 2.71 (Qingdao), and 2.19 (Shanghai), and aerosols accumulated below 1.5 

km. Both Dalian and Qingdao evidenced the NO2 transportation process on 7 December. 

The transport height of NO2 was below 1 km in Dalian and Shanghai, but the vertical 

distribution of NO2 transportation experienced a clear increase and was lower in Qingdao. 

The transport height of NO2 rose from 0.8 to 1.5 km on the 7 December, accumulated near 

the surface on 9 December, and then dropped from 2 km to near the surface on the 11th 

in Qingdao. The transport flux profiles of PM2.5 and NO2 between land and sea for the 

pollution period are shown in Figure 12. There was mutual transportation between sea 

and land in Dalian and Qingdao, which may be related to the whirling airflow, while 

output transportation was mainly identified in Shanghai. The maximum output flux and 

input flux of PM2.5 were 1758.25 μg/m2/s (Dalian) and 591.44 μg/m2/s (Qingdao), respec-

tively. The maximum output flux and input flux of NO2 were 267.62 μg /m2/s (Dalian) and 

79.18 μg/m2/s (Qingdao), respectively. Based on the Hysplit model 

(http://www.ready.noaa.gov/hysplit/hysplit/), the 24 h backward trajectory of the wind 

field at 500 m during December 6th to 11th shown in Figure 13, the polluted air masses in 

Qingdao and Shanghai mainly come from North China, but the main source of pollution 

in Dalian is northwest and northern transmission. This may be the reason for the differ-

ences in the proportion of fine particles in different cities. 
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Figure 11. AOD and NO2 profiles in Dalian, Qingdao, and Shanghai from 6 December 2019 to 11 

December 2019. 
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Figure 12. PM2.5 and NO2 flux profiles in Dalian, Qingdao, and Shanghai from 6 December 2019 to 

11 December 2019. The red indicates output flux from inland to sea, and the blue indicates input 

flux from sea to inland. 

   

Figure 13. The 24 h backward trajectory of wind fields in Qingdao (a), Dalian (b) and Shanghai (c) 

from 6 December 2019 to 11 December 2019. 
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nm) and total column of NO2, SO2, and HCHO are available at 00:00 UTC (8:00 LT) and 

06:00 UTC (14:00 LT) over 0.125° × 0.125° lat.–long. grid. According to the Junge spectrum 

distribution of aerosol, the CAMS AOD (360 nm) was calculated from AODs at 550 nm 

and 469 nm [59]. The monthly average values of AOD and trace gas VCDs from MAX-

DOAS were compared with the CAMS data (Figure 14). The CAMS model overestimated 

AOD by 16–48%, NO2 VCD by 52–196%, and SO2 VCDs by 1.15–4.19 times compared to 

the MAX-DOAS measurements in three cities. K RENUKA et al. also found that the an-

nual mean SO2 mixing ratios were overestimated by a factor of 7.8 by CAMS [60], and they 

suggest this overestimation is possibly due to an incorrect vertical distribution of SO2 in 

the models. On the contrary, the CAMS model underestimated HCHO VCD by 23–37% 

compared to the MAX-DOAS measurements. This is similar to the CAMS model’s under-

estimation of HCHO VCD by about 24% in Beijing [61], which is related to the CAMS 

model’s underestimation of the local primary emissions of HCHO, however, the MAX-

DOAS measurements could effectively obtain the HCHO from both local primary emis-

sions and secondary generation. The correlation coefficients and linear regressions be-

tween the MAX-DOAS data and the model results are shown in Figure 15a–c. The corre-

lation coefficient R of AOD was above 0.80 in three cities. The correlation coefficient R of 

NO2 VCD was more than 0.81 in Qingdao and Dalian. However, the CAMS NO2 VCD and 

MAX-DOAS results did not significantly agree for Shanghai, and the R was only 0.64. 

These results related to the CAMS grid accuracy and traffic emission from urban area. The 

CAMS SO2 VCD and MAX-DOAS results showed no correlation. The seasonal variation 

in AOD, NO2 and HCHO VCD from the CAMS model and MAX-DOAS displayed con-

sistency. 

 

Figure 14. Monthly averaged AOD (a) and trace gas VCDs (b–d) derived from the coincident Co-

pernicus Atmosphere Monitoring Service (CAMS) model and MAX-DOAS observations in Qing-

dao, Shanghai, and Dalian from June 2019 to May 2020. 

 May 2019  September 2019  January 2020  May 2020
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
O

D

Date

(a)

 May 2019  September 2019  January 2020  May 2020
0

10

20

30

40

(b)

MAX-DOAS

N
O

2
 V

C
D

(1
0

1
5
m

o
le

cu
le

/c
m

2
)

Date

 Qingdao     Qingdao

 Shanghai   Shanghai

 Dalian        Dalian

CAMS

 May 2019  September 2019  January 2020  May 2020
0

10

20

30

40

50

60

(c)

S
O

2
 V

C
D

(1
0

1
5
m

o
le

cu
le

/c
m

2
)

Date

 May 2019  September 2019  January 2020  May 2020
0

5

10

15

20

(d)

H
C

H
O

 V
C

D
(1

0
1

5
m

o
le

cu
le

/c
m

2
)

Date



Remote Sens. 2021, 13, 892 20 of 25 
 

 

 

Figure 15. Correlation between AOD, NO2, and HCHO VCDs retrieved from the MAX-DOAS 

measurements and those obtained from the CAMS model (a−c), scatter plots and linear regression 

of NO2 and HCHO of RModel against RMAX-DOAS (d). 

In Section 3.2, the obvious daily variation of AOD, NO2, and HCHO VCDs for Qing-

dao and Dalian are shown. Due to the lack of the CAMS AOD at 14:00 LT, only the diurnal 

variation of the CAMS NO2 and HCHO VCDs were analyzed. R represents the ratio of 

trace gas VCDs in the morning (08:00 LT) and noon (14:00 LT). If RModel is close to RMAX-

DOAS, it indicates that the trend in diurnal variation of NO2 and HCHO from the model 

simulation and MAX-DOAS observation is consistent, suggesting that the model can rea-

sonably simulate the systematic diurnal variation of NO2 and HCHO. The consistency of 

RMAX-DOAS and RModel can be used to qualitative characterize the ability of the model to sim-
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line. Thus, the model can reasonably simulate the systematic diurnal variation in NO2 and 

HCHO. The weekend effect of AOD and NO2 are shown in Section 3.3. In Figure 16, the 

CAMS AOD increased by 3.57–16.22% in weekend in three cities, which are similar to 

MAX-DOAS results. The CAMS NO2 VCD decreased by 14.93% in Dalian in weekend, but 

slightly increased by 8.76% and 1.57% in Qingdao and Shanghai, respectively, which is 

different from the decreased weekend effect shown in the MAX-DOAS results. The model 

can reasonably simulate the systematic weekly variation in aerosol. 
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Figure 16. Mean weekly cycles for AOD and NO2 VCD derived from the CAMS model and MAX-

DOAS observations in Qingdao, Shanghai and Dalian. 

The NO2, SO2 and HCHO volume mixing ratios (VMR) are available as profiles over 

seven pressure levels from 700 to 1000 hPa and at 00:00 UTC (8:00 LT) and 06:00 UTC 

(14:00 LT), over a 0.125° × 0.125° lat.–long. grid in the CAMS model. The NO2, SO2 and 

HCHO profiles derived from the CAMS model and MAX-DOAS were shown in Figure 

17. The height of profiles is 0.2–2.8 km. The CAMS model overestimated the NO2 and SO2 

VMRs 5–10-fold compared with the MAX-DOAS results below 1 km, which is the reason 

for the CAMS model’s overestimation of NO2 and SO2 VCDs. The HCHO profiles from 

CAMS and MAX-DOAS were consistent, and CAMS underestimated HCHO VMR 30% 

compared MAX-DOAS results below 0.5 km in Qingdao. 

 

Figure 17. The NO2, SO2, and HCHO volume mixing ratios (VMR) derived from the CAMS model 

and MAX-DOAS observations in Qingdao, Shanghai, and Dalian. 
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5. Conclusions 

In this work, we presented MAX-DOAS measurements in Dalian, Qingdao, and 

Shanghai for around one year. A method of converting the aerosol extinction coefficient 

to the mass concentration of particulate matter was also introduced and applied. Due to 

the differences in the chemical compositions of aerosols at different sites, the conversion 

formulas were significantly different depending on the relative humidity of the three sites. 

The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion 

formula showed a good correlation. The correlation R coefficients were 0.93 (Dalian), 0.90 

(Qingdao), and 0.88 (Shanghai). The characteristics of monthly, diurnal, and weekly vari-

ations, vertical distributions, and fluxes of aerosol and trace gas VCDs of the three stations 

were also studied. 

In the eastern coastal areas, the diurnal variations of AOD, NO2, and SO2 VCDs 

mainly had high values in the morning and afternoon, with low values at noon, which 

contrasts with the values of HCHO VCD, but the greatest daily variations all occurred in 

spring. We studied the weekend effect of AOD and trace gas VCDs in three coastal cities. 

NO2 had slight decreases by 2.45 % (Shanghai), 3.83 % (Qingdao), and 3.20 % (Dalian) on 

weekends. However, the AOD was 13.84% higher on weekends in Dalian, and the week-

end AOD was also higher than the weekday AOD in some inland cities. The aerosol sea-

sonal profile shapes were mainly Gaussian. Aerosols mainly gathered below the surface 

of 200 m in winter and gathered from 200 to 800 m in other seasons. The vertical distribu-

tions of trace gas were nearly exponential in the three coastal cities, except for the vertical 

distributions of SO2 in Shanghai and HCHO in Qingdao, indicating that combustion heat-

ing and other local sources account for the greatest portion of NO2. The pollution trans-

mission of the surrounding provinces and cities also affected the SO2 concentration in 

Shanghai.  

The input and output fluxes of the three coastal stations were affected by meteoro-

logical factors such as wind fields, showing seasonal and regional difference. Particulate 

matter accounted for the largest proportion of transmission, followed by NO2 and SO2. 

The main transport flux was output flux in spring and winter, and the input flux was 

greater than the output flux in Shanghai in summer. The process of pollution from De-

cember 6th to 11th, 2019, was a pollution diffusion mainly from Northwest and North 

China to the eastern coast. The main pollutants were aerosol and NO2. There was mutual 

transportation between sea and land in Dalian and Qingdao. 

The seasonal variation of AOD, NO2, and HCHO of the CAMS model and MAX-

DOAS were consistent. The model can reasonably simulate the systematic diurnal varia-

tion in NO2 and HCHO, and simulate the systematic weekly variation in aerosol. The 

CAMS model overestimated AOD by 16–48%, NO2 VCD by 52–196%, SO2 VCDs 1.15–4.19 

fold, and underestimated HCHO VCD by 23–37%, compared to the MAX-DOAS meas-

urements in three cities. These results relate to the overestimation of NO2 and SO2 VMR 

below 1 km and underestimation of HCHO VMR below 0.5 km in model. We suggest that 

the parameters calculated the near-surface gas VMR in the CAMS model should be ad-

justed to fit coastal cities in China. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-

4292/13/5/892/s1. Table S1: RTM parameters, Figure S1: Scatter plot of PM2.5 mass concentration 

and the aerosol extinction coefficient under different RHs at two cities, (a) RH<50%, (b) 

50%<RH<70%, (c) 70%<RH<80%, (d) 80%<RH<100% at Dalian, (e) RH<70%, (f) RH<80%, (g) 

RH<100% at Qingdao, (h) RH<50%, (i) 50%<RH<100% at Shanghai. 
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