
remote sensing  

Article

Sea Surface Salinity Estimation and Spatial-Temporal
Heterogeneity Analysis in the Gulf of Mexico

Zhiyi Fu 1, Fangfang Wu 1 , Zhengliang Zhang 1, Linshu Hu 1 , Feng Zhang 1,2,* , Bifeng Hu 3 ,
Zhenhong Du 1,2, Zhou Shi 4 and Renyi Liu 1,2,5

����������
�������

Citation: Fu, Z.; Wu, F.; Zhang, Z.;

Hu, L.; Zhang, F.; Hu, B.; Du, Z.; Shi,

Z.; Liu, R. Sea Surface Salinity

Estimation and Spatial-Temporal

Heterogeneity Analysis in the Gulf of

Mexico. Remote Sens. 2021, 13, 881.

https://doi.org/10.3390/rs13050881

Received: 19 January 2021

Accepted: 23 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; 11838030@zju.edu.cn (Z.F.);
21938035@zju.edu.cn (F.W.); zlzhang@zju.edu.cn (Z.Z.); hulinshu1010@zju.edu.cn (L.H.);
duzhenhong@zju.edu.cn (Z.D.); liurenyi@zju.edu.cn (R.L.)

2 Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China
3 Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University

of Finance and Economics, Nanchang 330013, China; hubifeng@zju.edu.cn
4 Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental

and Resource Sciences, Zhejiang University, Hangzhou 310058, China; shizhou@zju.edu.cn
5 Ocean Academy, Zhejiang University, Zhoushan 316021, China
* Correspondence: zfcarnation@zju.edu.cn; Tel.: +86-571-8827-3287

Abstract: As an important parameter to characterize physical and biogeochemical processes, sea
surface salinity (SSS) has received extensive attention. Cubist is a data mining model, which can
be well-suited to estimate and analyze SSS in the Gulf of Mexico (GOM) because it can reflect the
SSS internal heterogeneity in the GOM—overall circular distribution, and the seasonality related to
temperature and river discharge changes. Using remote sensing reflectance (Rrs) at 412, 443, 488
(490), 555, and 667 (670) nm and sea surface temperature (SST), a cubist model was developed to
estimate SSS with high accuracy with the overall performance demonstrates a root mean square
error (RMSE) of 0.27 psu and correlation coefficient of 0.97 of R2. The model divides the GOM area
according to model rules into four sub-regions, which include estuary, nearshore, and open sea,
reflecting the gradient distribution of SSS. The division of sub-regions and seasonal changes can
be explained by the distribution of water bodies, river discharges, and local wind forces since it is
obvious that the estuary region reaches the largest low-value area and spreads eastward with the
monsoon in the spring when the river flow increases to the highest value. While the east to west wind
in the non-summer monsoon period guides the plume westward, and the lowest river discharge in
winter corresponds to the smallest low value area. After comparison with other statistical models,
the cubist model showed satisfactory results in independent verification of cruise data, proving the
estimation capability under different geographical conditions (such as estuaries and open seas) and
seasons. Therefore, considering high accuracy and heterogeneity mining, the cubist-based model
is an ideal method for coastal SSS estimation and spatial-temporal heterogeneity analysis, and can
provide ideas for model construction for coastal areas with similar geographic environments.

Keywords: sea surface salinity; remote sensing; Gulf of Mexico; data mining

1. Introduction

Ocean salinity controls the dynamic and thermodynamic behaviors of seawater, plays
a role as a key parameter in oceanic and climate studies, and its distribution provides
significant information for studying physical and biochemical marine processes [1,2].
Several processes govern the evolution of salinity, such as evaporation, precipitation, river
runoff, formation and melting of sea ice, and internal ocean dynamics such as circulation
and mixing of water masses [3]. Thus, changes in salinity can be used to indicate freshwater
input to coastal oceans and therefore understand many physical and biogeochemical
processes in coastal waters [4,5].
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Previous salinity studies were mainly based on measurements from vessels and buoys,
and the spatial coverage of these measurements is inadequate to capture complex ocean
processes [1]. Satellite-generated sea surface salinity (SSS) maps show a wide range of
multi-phase temporal and spatial salinity changes, improving the understanding of ocean
circulation and the air–sea interaction and their influence on the global climate [6]. In recent
years, optical satellite data and microwave satellite data have been used to estimate SSS
in coastal areas [7–9]. Although microwave remote sensing can provide a global SSS
map, the low spatial and temporal resolution limits microwave approaches in coastal SSS
estimation [10].

Compared with a salinity satellite, an optical satellite possesses higher revisit frequen-
cies and spatial resolution. The use of optical satellite images to estimate SSS in the estuary
can be traced back to 1982 [11], and a multiple linear relationship between Landsat MSS
and SSS was developed. There are two ways to retrieve SSS, one is using colored dissolved
organic material (CDOM) as an intermediate agent due to its significant correlation with
SSS [12]. Related studies that use CDOM to track SSS have been conducted in large river
estuaries and plume systems [13–17]. The other method directly connects remote sensing
reflectance (Rrs) with SSS, since SSS can be expressed directly as a function of remotely
sensed ocean color bands because CDOM can be estimated by Rrs [1,7,10]. Both meth-
ods are based on the inverse relationship between SSS and CDOM concentration, which
performs well in coastal regions [18,19]. A large portion of CDOM in the coastal ocean
is terrestrial in origin and is associated with fresh water; thus, it can be used to indicate
the water mixing [20,21]. In addition, CDOM primarily absorbs light in the ultraviolet
and blue portions of the spectrum and can therefore be retrieved from apparent optical
properties [22,23].

Statistical methods are commonly used in SSS estimation; linear models such as
multiple linear regression (MLR), multi-source polynomial regression (MPR), and the least
squares method have been used to retrieve SSS in previous studies [7,23–28]. Nonlinear
methods show great advantages in estimation accuracy owing to the nonlinear relationship
of chemical ocean effects. These models performed well in many coastal areas, such as
the mid-Atlantic coastal ocean, the Indonesia coastal area, and Chesapeake Bay [10,29–31].
With the population of machine learning methods, SVR (Support Vector Regression), RF
(Random Forest), and NN (Neural Network) models have been developed to predict SSS
with satisfactory performance [32–35]. However, the interpretability of machine learning
methods is poor, and spatial correlation cannot be well reflected, thus complicating the
combination analysis between the model result and environmental factors. However, for
complex coastal areas, the impact of the surrounding environment is too significant to
be ignored.

Diverse habitats and ecosystems, such as barrier islands, mangrove forests, sea grass
beds, coral reefs, and river deltas, are located on Gulf shores [36]. The Mississippi–
Atchafalaya River system (MARS), the seventh largest freshwater discharge system, domi-
nates the northern Gulf of Mexico (GOM), making coastal lagoons and estuaries typical
and critical areas in the Gulf coastal zone [37]. As an abiotic factor, salinity may be highly
variable in coastal and estuarine ecosystems due to the unique geographical location [38].
River runoff and human activities have great influence on coastal salinity, making the
estimation more complicated than in the open sea [39]. Therefore, the division of different
regions was particularly necessary in the GOM. As a decision-tree-based method, the cubist
model has been well applied in digital mapping in recent years [40,41]. The cubist model
divides datasets according to different rules composed of different environmental variable
conditions [42,43], which can mine the internal heterogeneity of data, and thus can be used
to spatially partition salinity regions. It can enable spatial-temporal analysis with higher
accuracy when estimating SSS.
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In this study, we will use the cubist model to predict SSS of the GOM with higher
accuracy, using Rrs and sea surface temperature (SST) as input variables. At the same time,
it analyzes the temporal and spatial heterogeneity of salinity in coastal areas on the basis of
model zoning. The model divides the GOM area based on variable differences rather than
geographic locations for the first time. This study can contribute to proposing a model
with general applicability to estimate SSS from satellites for coastal areas, and facilitate
the selection of variables and forms of SSS model construction for different regions of
the GOM.

2. Materials and Methods
2.1. Study Area

The Gulf of Mexico (GOM) possesses an outer shoreline from the Florida Keys to
the northwest coast of Cuba, and is the ninth largest body of water in the world [36]
(Figure 1). The largest river system in North America (the MARS) comprises a complex
estuary in the northern GOM [44]. The GOM is a shallow basin that holds approximately
2.5 million km3 of water. The average water depth is 1615 m, with its deepest point at
4383 m. Approximately 38% of the Gulf is less than 20 m deep—mainly intertidal areas.
The continental shelf and slope comprise approximately 42% of the Gulf, and abyssal areas
cover approximately 20% [45].
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water depth and typical Loop Current path in the GOM.

Both local wind stress and river flow have greater impact on the plume near the estuary.
In the spring/summer with high river discharge, the southerly/southeast wind promotes
eastward spread of the Mississippi River plume, while in the fall/winter—the low-flow
period—the northeast/northern wind transports the river’s fresh water westward [46,47].

2.2. Field Data

The in-situ measured salinity data used in this study were downloaded from Ocean
Carbon Data Systems (OCADS, https://www.nodc.noaa.gov/ocads/) (access on 1 January
2021). These data were collected by twelve cruises and covered the entire 2018 year with
properties, including SSS and SST. The SSS and SST data were obtained ~3 m below the sea
surface using a CTD (SBE-38 or SBE-45, Seabird Inc.) integrated in the underway pCO2
system. Data used for independent verification were distributed in the coastal area, open
sea, and west of the Florida Current, guaranteeing that the typical region can be well
verified (Table 1).

https://www.nodc.noaa.gov/ocads/
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Table 1. Underway surface salinity measurements used for the development, validation and indepen-
dent validation of the sea surface salinity(SSS) model. Independent validation cruises were listed in
blue font. The cruise GU1609Leg1-3 Fall Pelagic Trawl/Acoustic Survey was listed as GU1609Leg1-3
for convenience. The number of total points used in model development and independent validation
was the number obtained after conjugate matching.

Cruise ID Platforms Date Range # of Observations

EQ17 M/V Celebrity
Equinox 1/1/2018–1/6/2018 2179

AS17 M/V Allure of the
Seas 1/4/2018–1/7/2018 1198

GU1801_Leg1 R/V Gordon Gunter 1/14/2018–
1/22/2018 4178

GU1801_Leg2 R/V Gordon Gunter 1/26/2018–2/9/2018 7421

GU1801_Leg3 R/V Gordon Gunter 2/12/2018–
2/27/2018 5428

GU1801_Leg4 R/V Gordon Gunter 3/1/2018–3/16/2018 7941
GU1802 R/V Gordon Gunter 6/24/2018–7/9/2018 7609

GU1803-transit R/V Gordon Gunter 7/11/2018–
7/14/2018 1340

GU1803-Leg1 R/V Gordon Gunter 7/20/2018–8/3/2018 7196
GU1803-Leg2 R/V Gordon Gunter 8/6/2018–8/19/2018 4727

GU1804 R/V Gordon Gunter 8/23/2018–
8/31/2018 4445

GU1805-Leg1 R/V Gordon Gunter 9/2/2018–9/9/2018 3563

GU1805-Leg2 R/V Gordon Gunter 9/11/2018–
9/30/2018 9659

EQ18 M/V Celebrity
Equinox

1/6/2018–
12/22/2018 872

GU1806 R/V Gordon Gunter 11/10/2018–
12/4/2018 10,127

GM0606 OSV Bold 6/6/2006–6/11/2006 7178
GU1609Leg1-3 R/V Gordon Gunter 9/2/2016–10/1/2016 10,284

EQNX_20190209 M/V Celebrity
Equinox 2/9/2019–2/16/2019 2270

Total from all cruises 97,615
Total used in model development and validation 7935

Total used in independent validation 7494

2.3. Satellite Data

Daily standard NASA Moderate Resolution Imaging Spectroradiometer (MODIS/
Aqua) level-2 data products were downloaded from NASA Goddard Space Flight Center
(http://oceancolor.gsfc.nasa.gov/) (access on 1 January 2021), including SST and spectral
remote sensing reflectance (Rrs) between 412 and 678 nm. All data products have been
validated by in-situ data in the study area to ensure the availability of data in the region.
Images with quality level > 1 were discarded from the daily level-2 SST data. Discarding
low quality images (quality level >1) from the daily level-2 SST data to guarantee data
accuracy. Conjugate matching was processed between the remote sensing images and in
situ measurement, and daily images were matched up with in situ underway measure-
ments after discarding low quality data (Figure 2). The spatial resolution of the field and
satellite data was reprocessed to approximately 1 km for conjugate matching. As the same
consideration of Chen and Hu [34], we chose five visible spectral bands (412, 443, 490, 555,
and 670 nm) based on the exponential decay of CDOM absorption from the blue to the
red color spectra. SST was used as a model input to capture the difference in temperature
between the ocean and rivers.

http://oceancolor.gsfc.nasa.gov/
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2.4. Method
2.4.1. Cubist

Cubist is an algorithm based on M5, which is similar to regression trees and can be
used in spatial data mining [48]. As a data partitioning algorithm, it enables exploration
of the nonlinear relationship in the observed data [49]. The predicted variable will be
fitted by composed linear equations under rules generated by the cubist model, which
is different from the CART regression tree model [50] in which its terminal nodes are
not predictions [51]. The heterogeneity caused by predictor variables produces differ-
ent data division conditions, which means “rules”, and will be used to divide the total
dataset [52]. For each sub-dataset corresponding to each rule, the cubist model creates
linear equations for sub-datasets, respectively, with the form: if {condition} then linear
model. By using the linear regression model at each terminal node, a prediction is made
and is “smoothed” by considering the prediction in the previous node [53]. The cubist
algorithm was implemented in R with the “caret” package in this study.

2.4.2. Other Compassion Methods

Multilinear regression uses linear equations to model the relationship between pre-
dictor variables and response variables. It is one of the most widely used methods to
express how the response variable depends on multiple independent variables. Similar
to MLR, the multiple nonlinear regression (MNR) method uses nonlinear equations, the
nonlinear functions include exponential functions, logarithmic functions, power functions,
etc., which is also a commonly used empirical method [54]. The MLR and MNR models in
this study were implemented in Python with the sklearn package.

The support vector machine (SVM) method is a kernel-based method proposed by
Vladimir Vapnik in 1995 [55]. SVM is a general term, possessing two sub-categories support
vector classification (SVC) and support vector regression (SVR). SVR uses strips to cover
the sample points. The points on the boundary and the points that violate the margin
within the two boundaries are regarded as support vectors. The support vector will affect
predictions, while the point weight of the non-support vector is zero [56]. In this study, we
chose the typical kernel radial basis function (RFB) as the core and implemented the SVM
model in Python with the sklearn package.

The multilayer perceptron neural network (MPNN) is a feedforward neural network
developed in the Gulf of Mexico and consists of an input layer, a hidden layer and an output
layer. The Levenberg–Marquardt optimization and Bayesian regularization algorithm were
used for backpropagation. The change of neuron number in the hidden layer will affect the
effect of MPNN, because the neuron number of input and output is unchanged [34]. In this
study, we used Matlab (R2019a) to implement the construction of MPNN.
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3. Results
3.1. Model Performance

When choosing the suitable rule of the cubist model for this study, we used root mean
square error (RMSE) and correlation coefficient (R2) to assess model performance. As seen
in Figure 3, the lowest RMSE and highest R2 appeared when the number of rules was four;
the RMSE increased and the R2 decreased when it exceeded four. This indicates that four
rules should be selected owing to the high accuracy and simplicity of the model.
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Eighty percent of the dataset was used to build the prediction model, and the rest was
used to validate the model. Before dividing, the total dataset was sorted and grouped, and
for each group, the data were randomly divided by 8:2. Then two sub-datasets with the
same range were created by composing group data. The performance of the cubist model
in both the training and validation datasets is shown in Figure 4, colored by data density.
R2 is 0.97 and 0.95 for model development and validation, with RMSE of 0.24 and 0.38 psu,
respectively. The other standard statistical measures, mean bias (MB), and mean absolute
error (MAE), were also used to compare the cubist model with other methods.
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color coded by data density.

As presented in Table 2, the performance of training and validation was stable in total,
meaning that there was no overfitting in each method. The machine learning approaches
were better than the regression methods obviously, since the performance of MLR was the
worst with RMSE of 1.00 psu and R2 of 0.64 for training, and RMSE of 1.04 psu and R2 of
0.63 for validation. Despite the poor performance of MLR, the correlation coefficient was
still higher than 0.6, indicating that a linear relationship can explain part of the SSS, and
the regression method can be used as a simple SSS estimation algorithm. As a regression
method, the MNR was better owing to the capacity of simulating the inherent nonlinear
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relationship, with RMSE of 0.78 psu and R2 of 0.78, and RMSE of 0.90 psu with R2 of 0.72
for training and validation, respectively. SVM processes the stable performance showing
the little difference between training and validation, the R2 of 0.85 and RMSE of 0.38 psu for
training, and R2 of 0.84 with RMSE of 0.39 psu for validation. The MPNN model was also
developed in the GOM, and our results were similar to those of [34], with R2 of 0.86 and MB
of 0.00 psu for training, and R2 of 0.85 with MB of 0.00 psu for validation. The complexity
of the ocean makes it impossible to directly estimate SSS with high accuracy through linear
or simple nonlinear combinations. However, since the use of CDOM to estimate salinity is
based on remote sensing mechanisms, simple statistical methods can still fit salinity data.
The task of the SVM regression method is to use a fixed-width strip to cover more sample
point as possible, making the total error smaller, so there are some limitations for complex
data. The internal fitting of the neural network is more complicated, and the learning
of data features makes it perform better on large data sets. Comparing all the machine
learning methods, the cubist model provided outstanding performance with all indices
significantly better than those of other methods. Although the improvement in R2 was
small, the RMSE decreased by nearly half compared with that of the MPNN model.

Table 2. Comparison table of SSS estimation approaches in the GOM, all methods used the same
training dataset and validation dataset.

Approach RMSE
(psu) R2 MB

(psu)
MAE
(psu)

MLR [7]
Training 1.00 0.64 0.00 0.61

Validation 1.04 0.63 0.04 0.63

MNR [31]
Training 0.78 0.78 0.00 0.43

Validation 0.90 0.72 0.04 0.44

SVM [32]
Training 0.38 0.85 0.00 0.18

Validation 0.39 0.84 0.02 0.19

Cubist (this
study)

Training 0.24 0.97 0.00 0.10
Validation 0.38 0.95 −0.02 0.16

MPNN [34]
Training 0.62 0.86 0.00 0.33

Validation 0.67 0.85 0.00 0.35

The year’s SSS map estimated by the cubist model is shown in Figure 5. It can be seen
that the overall trend of SSS showed a concentric inward value increase. The influence
of wind force and GOM dynamics affects the distribution of SSS values [57]. In the
northern region, due to the physical mixing of river water with low salinity, SSS was lower
throughout the year. In the open sea area, the SSS was usually higher because of minimal
river influence.

In summary, the cubist model was superior to other methods in terms of relevance
and accuracy. Considering the good interpretability of the cubist model, for it was not
a “black box” and can provide the equation of each rule, the cubist model was the most
favorable method for estimating SSS within the range 22–38 in the GOM.

3.2. Rule Accuracy Validation

The cubist model divided the dataset into sub-datasets based on conditions and
generated an equation for each sub-dataset. Based on the rule partition of the cubist model,
it can be seen that the inputs Rrs(412), Rrs(555), and SST, played an important role in
dataset division, since the conditions were composed of these three parameters (Table 3).
The difference between rule 2 and 4 was the range of SST, while the range of Rrs(555)
was the reference to divide rule 1 and 3. Contrary to the rule condition, most model
inputs participated in the composition of linear equations of each rule, except Rrs(667).
The intercepts of the four equations were very close, but the coefficient of each parameter
had great differences.
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It is obvious that rule 4 delivered the best performance in each index among the sub-
datasets when evaluating the accuracy of each rule-divided dataset, although it possessed
the largest amount of data (Table 4). Rule 4 was also the only sub-dataset that did not
underestimate SSS. Comparing rules 2 and 4 with rules 1 and 3, it is worth noting that using
more data can often make the model more stable. The large difference between training
and validation datasets appeared in rule 3; the validation performance was significantly
worse than that of the training dataset, with RMSE of 0.69 and R2 of 0.80.

1 

 

 

Figure 5. Annual SSS map generated by the cubist model, averaged from daily composed image within the cruise date range.

Table 3. Cubist-generated linear models for each rule, reflecting the usage and weight of each variable.

Rule Conditions
Data Range Equation Count

Rrs412 Rrs443 Rrs488 Rrs555 Rrs667 SST

1

Rrs(412) ≤
0.003746 &
Rrs(555) >
0.001552

−0.001744–
0.003746

−0.000418–
0.00578

0.000846–
0.009736

0.001556–
0.008024

0.000066–
0.003372 18.28–32.15

42.01913 + 2374 ∗
Rrs(412) – 2843 ∗
Rrs(443) + 1107 ∗
Rrs(488) – 948 ∗

Rrs(555) − 0.329 ∗
SST

539

2
Rrs(412) >
0.003746 &
SST > 28.98

0.003788–
0.016226

0.003156–
0.014352

0.002262–
0.018128 0–0.011534 −0.000324–

0.000924 28.99–32.53

40.31452 + 271 ∗
Rrs(412) − 447 ∗

Rrs(555) − 0.218 ∗
SST − 113 ∗ Rrs(443)

+ 88 ∗ Rrs(488)

870

3

Rrs(412) ≤
0.003746 &
Rrs(555) ≤
0.001552

−0.001438–
0.003744

−0.000056–
0.004428

0.000882–
0.004028

0.000112–
0.001548

−0.000292–
0.000366 20.25–30.75

39.16627 − 501 ∗
Rrs(555) + 240 ∗
Rrs(412) + 348 ∗
Rrs(488) + 261 ∗

Rrs(443) − 0.227 ∗
SST

367

4

Rrs(412) >
0.003746 &

SST ≤
28.98

0.003746–
0.030036

0.003124–
0.036298

0.003226–
0.044100

0.000086–
0.028062

−0.000650–
0.010122 18.27–28.98

38.57491 − 0.105 ∗
SST − 150 ∗ Rrs(555)
+ 102 ∗ Rrs(488) − 37

∗ Rrs(443) + 27 ∗
Rrs(412)

4572
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Table 4. Accuracy verification of each rule model for both train and validation, the validation result
was listed with blue background.

Rule Count RMSE
(psu) R2 MB

(psu)
MAE
(psu)

1
539 0.51 0.98 −0.03 0.31
140 0.80 0.97 −0.11 0.48

2
870 0.41 0.88 −0.03 0.21
207 0.58 0.80 −0.08 0.35

3
367 0.33 0.95 −0.03 0.17
99 0.69 0.80 −0.04 0.32

4
4572 0.10 0.98 0.00 0.05
1167 0.14 0.96 0.01 0.07

4. Discussion
4.1. Rule-Based GOM Partition

Based on the rule conditions, the cubist model divided the total GOM area into four
parts, which can indicate the spatial heterogeneity of SSS. Incorporating the annual data
of model inputs (Rrs(412), Rrs(443), Rrs(488), Rrs(555), Rrs(667), and SST), and conditions
applied to region division, the distribution of the four partitions can be distinguished
(Figure 6). Due to the strong correlation with the surrounding freshwater environment,
the analysis should be combined with the GOM water depth and wetland distribution
(Figure 1).

On the whole, region 1 was mainly distributed in the nearshore aera, while region
2 and region 3 were scattered in estuaries and nearshore places with water depths less
than 5 m. Region 4 occupied the largest area of GOM, covering a large area of open sea.
In general, this distribution of the sub-regions corresponded to water depth, the area with
depth of less than 30 m comprised most of region 1. The other areas of region 1, such as a
small area on the south side of the GOM and west side of Yucatan, were consistent with
the distribution of water bodies, which has great influence on the zoning and was also
reflected in the distribution of region 2. Most areas of region 2 mainly correspond to the
estuary area, where the river water is mixed with seawater, and the salinity was different
from that of region 1. Region 4 covered most of the GOM area—mainly open sea areas.
Referring to the division rules, we can see that the temperature in region 2 was higher than
that in region 4. This may be because a larger amount of data was distributed in summer,
and high temperature can also be used to explain that other areas in region 2 are mainly in
the Loop Current range, corresponding to warm Florida currents. Region 3 corresponds to
very few areas, which may be due to the small number of samples in rule 3.
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4.2. Seasonal Variations of Surface Salinity

The salinity of the GOM presents a gradient distribution throughout the year, with
low values in the nearshore and high values in open seas. The areas near fresh water
vary greatly, and sea water with high temperature and high salinity brought by the Loop
Current can also be observed (Figure 7).
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Figure 7. Monthly map of SSS in the GOM, derived from MODIS using the cubist model for 2018.

It can be seen that the most obvious change occurs in the estuary area, reflecting the
seasonal cycle, which may be related to the discharge of rivers, since salinity is largely
controlled by fluxes of freshwater into and out of the Gulf [58]. The river discharge data
were acquired to analyze the influence of river discharge (Figure 8), downloaded from
U.S. Army Corps of Engineers website. Mississippi River at Tarbert Landing (Gate ID
01100Q) and Atchafalaya River at Simmesport (Gate ID 03045Q) capturing the water flow
from the total Mississippi-Atchafalaya basin. In addition, wind force is an important factor
affecting the distribution of salinity. Combining the effects of wind and river flow, the
discharge of the Mississippi River increases and the wind plume gradually guides eastward
in the spring [59]. Therefore, the SSS values related to the river plume are significantly
different than those of the surrounding waters, extending eastward from the mouth of the
Mississippi River since March [46,47,60]. Since the monthly image is composed during the
cruise period, the data during the maximum flow period in March are not well shown on
the monthly map. However, the largest low-value salinity area shown in April indicates
the impact of continuous large flow. Although the discharge began to decline in May,
the SSS value in the estuary still maintained a low trend. A low SSS plume in the east of
the estuary can be clearly observed due to the strong winds out of the south and west
during the summer, which drives river plumes eastward [61]. The force of wind directed
downcoast from east to west in non-summer periods, and areas with low SSS values were
distributed westward due to the effect of wind [62]. At the same time, since the effect of
river water is offset by ocean dynamics, the distribution of salinity in autumn is stable
with little monthly change [39]. The generally high summer value in open sea areas would
have continued throughout the fall, but due to a large amount of precipitation, the value
dropped. In addition, as river runoff will reach its lowest annual value, the low-value areas
of the estuary contracted in winter.
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Figure 8. River discharge data in 2018, acquired from Gate ID 01100Q and 03045Q. Blue line presents
Mississippi River discharge and green line presents Atchafalaya River discharge.

Along with the estuary area, other surrounding areas with water bodies, including
wetlands and small rivers, are also affected by fresh water and present seasonality related
to river flux. The seawater entering with the Loop Current is also well reflected, usually
bringing high-temperature and high-salinity seawater and flowing out to the east of
the GOM.

4.3. Model Evaluation for Various Cases

Cruise data distributed in different areas of the GOM were collected to assess the
versatility of the cubist SSS model (Table 5). Since, on the one hand, the chosen independent
cruises are located in different geographical locations, reflecting the spatial heterogeneity.
On the other hand, the independent cruises covered different seasons, which reflects the
temporal heterogeneity. For each cruise, the field-measured dataset was independent
from the others, and none of these datasets were used in the model development above.
The verification data covered much of the northern GOM and the southeast area near the
Loop Current. As seen in the overall results, the model has good generalization ability
with an RMSE of 1.64 psu, indicating good predictability in remotely estimating SSS both
spatially and temporally.

Table 5. Independent validation of the SSS model, the overall result of each cruise was listed
with blue background, the cruise GU1609Leg1-3 Fall Pelagic Trawl/Acoustic Survey was listed as
GU1609Leg1-3 for convenience.

Cruise ID RMSE
(psu)

MB
(psu) MR Count

GM0606
≤30 2.96 2.04 1.07 555
>30 1.49 −0.02 1.00 2208

1.88 0.40 1.02 2763

GU1609Leg1-3
≤30 3.01 0.91 1.03 221
>30 1.53 0.09 1.00 3597

1.65 0.14 1.00 3818
M2019 >30 0.13 0.04 1.00 914

Total
≤30 2.98 1.72 1.06 776
>30 1.41 0.05 1.00 6719

1.64 0.22 1.01 7495

The results based on the underway SSS data collected from cruise GM0606 between
June 6 and 11, 2006, are shown in Figure 9. This cruise was collected in the Mississippi-
Atchafalaya coastal areas (Figure 9b). For the entire dataset, the RMSE was 1.88, with MB
of 0.4 and mean ratio (MR) of 1.02. The variation of satellite SSS along the cruise track
agreed well with the field-measured SSS with RMSE of 1.49, MB of −0.02, and MR of 1.0
when the value was higher than 30. However, the model showed higher uncertainties
(RMSE = 2.96, MB = 2.04, and MR = 1.07) in the area close to the coastline, especially in
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four locations (marked A, B, C, and D in Figure 9a,b). The SSS values in these areas were
lower than 30 psu and were overestimated by the cubist model. This may be due to the
mixing with Mississippi-Atchafalaya water, and the wind directed eastward in summer,
making the low value of SSS in the east of the estuarine area difficult to model. However,
except for the cubist method, the RMSE of other methods is greater than 3 psu where the
salinity value is lower than 30 psu (Table 6). It indicates that the cubist model has a good
estimation potential in river dominated nearshore areas in summer.
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in Figure 10a. Although there were more overestimated values, mainly because a large 
number of the points were distributed in the open sea, the overall performance was good 
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results with SSS > 30 (RMSE = 1.53, MB = 0.09, and MR = 1.0). The effect of seawater and 
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in the areas near the water bodies (locations marked B and C in Figure 10a,b), and in the 
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indicate that there are no corresponding MODIS-derived SSS; (b) spatial distributions of the MODIS-derived SSS along the
cruise track in (a), colored by field-measured value, white color indicates no MODIS data.

Table 6. Model comparison in independent validation of cruise GM0606, the overall result of each
cruise was listed with blue background.

Approach RMSE
(psu)

MB
(psu) MR

MLR
≤30 4.13 3.46 1.13
>30 1.01 −0.12 1.00

2.06 0.60 1.02

MNR
≤30 4.57 4.25 1.16
>30 1.53 0.14 1.01

2.46 0.96 1.04

SVM
≤30 5.13 4.63 1.17
>30 1.37 0.07 1.00

2.60 0.98 1.04

MPNN
≤30 3.69 3.02 1.11
>30 1.19 −0.33 0.99

1.97 0.34 1.02

The validation result based on one cruise dataset (GU1609 Leg 1-3 Fall Pelagic
Trawl/Acoustic Survey) collected in the northeastern GOM between September 2 and
October 1, 2016 was shown in Figure 10. A comparison of field and satellite SSS was shown
in Figure 10a. Although there were more overestimated values, mainly because a large
number of the points were distributed in the open sea, the overall performance was good
with an RMSE of 1.65 psu. There was no need for concern with the overestimation of the
results with SSS > 30 (RMSE = 1.53, MB = 0.09, and MR = 1.0). The effect of seawater and
freshwater mixing was well reflected in the results with overestimated values occurring
in the areas near the water bodies (locations marked B and C in Figure 10a,b), and in the
coastal area where there is no fresh water influence, underestimated values occurred (loca-
tions marked A and D in Figure 10a,b). The advantages of the cubist model in nearshore
estimation were still reflected, but a large number of overestimated points in open sea areas
makes the overall RMSE results not very prominent. Combined with the results of MB,
the estimation ability of the cubist model in the autumn nearshore was still satisfactory
(Table 7).
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The results based on SSS data collected from cruise EQNX_20190209 in the south-
eastern GOM waters between February 9 and 16, 2019 can be seen in Figure 11. The
field-measurement SSS in this area was very stable, because in winter, there was no strong
water mass mixing in the open sea areas. The model results were consistent with the
previous performance in the open sea area, with primarily overestimated SSS (Table 4), but
the most overestimated value did not exceed 0.5 psu. The RMSE of the result is 0.13, which
is not significantly different from other machine learning methods results (Table 8), but it
still proves the good prediction ability of the model in open sea areas.

Table 7. Model comparison in independent validation of cruise GU1609Leg1-3 Fall Pelagic
Trawl/Acoustic Survey, the overall result of each cruise was listed with blue background.

Approach RMSE
(psu)

MB
(psu) MR

MLR
≤30 2.81 −2.74 1.14
>30 1.34 0.41 1.01

1.46 0.23 1.02

MNR
≤30 3.27 −2.81 1.14
>30 1.51 0.20 1.00

1.67 0.02 1.01

SVM
≤30 5.47 4.80 1.19
>30 1.06 0.13 1.00

1.67 0.40 1.02

MPNN
≤30 4.70 3.66 1.15
>30 1.17 0.21 1.01

1.60 0.41 1.02
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Table 8. Model comparison in independent validation of cruise M2019.

Approach RMSE
(psu)

MB
(psu) MR

MLR >30 0.54 −0.15 1.00

MNR >30 0.29 0.08 1.00

SVM >30 0.19 0.06 1.00

MPNN >30 0.18 0.06 1.00

5. Conclusions

In this study, we applied a cubist model to estimate SSS from MODIS images for the
GOM area and obtained satisfactory performance with an RMSE of 0.38 psu and R2 of 0.95.
Through accuracy verification for each rule, we found that the linear equations given by
the model have good accuracy in each region, which makes the overall salinity prediction
more accurate. The model rules divided the GOM into four sub-regions, mainly including
the continental shelf, estuary, and open sea area. The influences of water circulation
and rivers and distribution of wetlands can be used to explain the rationality of model
zoning. Seasonal changes are mainly affected by river discharge and local wind force,
reflected in the area and direction of low-salinity-value plumes. Our model performs well
in estimating salinity, and the auxiliary verification of other voyages proves the usability of
the model under different geographical conditions. Additional estimation and research are
needed to locally tune model parameters when extrapolating the model to other areas with
similar environmental and geographic conditions. The model provides ideas for model
construction in other coastal areas and also provides effective information for explaining the
spatial heterogeneity of salinity in coastal areas and exploring seasonal changes in salinity.
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