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Abstract: Oblique photogrammetry-based three-dimensional (3D) urban models are widely used
for smart cities. In 3D urban models, road signs are small but provide valuable information for
navigation. However, due to the problems of sliced shape features, blurred texture and high incline
angles, road signs cannot be fully reconstructed in oblique photogrammetry, even with state-of-the-
art algorithms. The poor reconstruction of road signs commonly leads to less informative guidance
and unsatisfactory visual appearance. In this paper, we present a pipeline for embedding road sign
models based on deep convolutional neural networks (CNNs). First, we present an end-to-end
balanced-learning framework for small object detection that takes advantage of the region-based
CNN and a data synthesis strategy. Second, under the geometric constraints placed by the bounding
boxes, we use the scale-invariant feature transform (SIFT) to extract the corresponding points on
the road signs. Third, we obtain the coarse location of a single road sign by triangulating the
corresponding points and refine the location via outlier removal. Least-squares fitting is then applied
to the refined point cloud to fit a plane for orientation prediction. Finally, we replace the road signs
with computer-aided design models in the 3D urban scene with the predicted location and orientation.
The experimental results show that the proposed method achieves a high mAP in road sign detection
and produces visually plausible embedded results, which demonstrates its effectiveness for road
sign modeling in oblique photogrammetry-based 3D scene reconstruction.

Keywords: embedded modeling; photogrammetry-based 3D city model; oblique aerial image; stereo
vision; road sign detection; small object detection

1. Introduction

Real-world three-dimensional (3D) urban models are important in building “smart
cities” and supporting numerous applications such as city planning, space management,
and intelligent traffic systems [1]. In recent years, with the development of unmanned
aerial vehicles (UAVs), oblique photogrammetry has been widely used to create 3D urban
models because it collects abundant information on a large scale with the benefit of low
cost and high efficiency [2,3].

However, due to slice- and pole-like shape features, weak texture and high camera
incline angle, oblique photogrammetry-based 3D modeling of some artifacts, such as light
poles and road signs, remains challenging. Road signs, which play crucial roles in city
infrastructure, are set up at the sides of roads and artificially designed with striking colors
and regular sliced shapes to provide navigation information and warnings to drivers and
pedestrians [4,5]. Reconstructed road signs are fragmentary with discontinuous surfaces
and blurred textures in the 3D scene, exposing the defects of oblique photogrammetry-
based methods.
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Cases of 3D road sign models reconstructed via an aerial photogrammetry-based
approach are shown in Figure 1. We consider the reasons for defects from two perspectives.

(1) The limited number of 3D points is not sufficient to generate complete models of road
signs with continuous surfaces due to image resolution and the accuracy of feature
matching algorithms. Low-quality oblique aerial images also produce a blurred
texture of road signs.

(2) The sliced shape road signs are too thin to distinguish both sides. Thus, the cloud
points are merged into a whole part and cannot be separated easily for meshing.
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Figure 1. Examples of road sign models reconstructed via the software ContextCapture in urban scenes.

In oblique aerial image-based 3D city models, large-scale incomplete road signs
commonly lead to less informative guidance and unsatisfactory appearance. Generally,
fragmentary road signs are usually erased manually to embellish 3D urban models. The task
of model optimization is undoubtedly labor intensive and time consuming and requires
prior knowledge. As 3D city models are popularly used in various applications, road signs
augment the visual realism and enrich traffic information of the reconstructed city models.
In addition to their significance in generating road databases, road signs provide valuable
information for navigation in 3D scenes; thus, the modeling of road signs is essential.

Additionally, the overwhelmingly popular deep CNN provides smart detectors to
locate and recognize road signs in massive oblique aerial images with high performance.
Therefore, one alternative is to leverage the detected 2D location and semantic information
to localize road signs in a 3D scene via triangulation. Moreover, it is conceivable to fit a
3D bounding box and a plane that estimates the 3D location and orientation of road signs
using the triangulation result.

Compared to existing object detectors, region-based CNN methods perform supremely
well in object detection tasks with high localization and recognition accuracy [6–9]. How-
ever, the gap in the performance between the detection of small and large objects is
significant [10]. Small object detection is challenging since small objects do not contain
detailed information and may even disappear in the deep network. In addition, defects
such as complex training procedures with many heuristics and hyperparameters [11], im-
balances during the training process [12] and predefined dense anchoring schemes where
anchors are sampled uniformly over the spatial domain with a predefined set of scales
and aspect ratios [13] still exist. On the other hand, compared to generic images, oblique
aerial images are taken with high-tilting camera angles that lead to variable deformation of
objects. Generally, road signs are sparsely distributed in oblique aerial images with blurred
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In oblique aerial image-based 3D city models, large-scale incomplete road signs
commonly lead to less informative guidance and unsatisfactory appearance. Generally,
fragmentary road signs are usually erased manually to embellish 3D urban models. The task
of model optimization is undoubtedly labor intensive and time consuming and requires
prior knowledge. As 3D city models are popularly used in various applications, road signs
augment the visual realism and enrich traffic information of the reconstructed city models.
In addition to their significance in generating road databases, road signs provide valuable
information for navigation in 3D scenes; thus, the modeling of road signs is essential.

Additionally, the overwhelmingly popular deep CNN provides smart detectors to
locate and recognize road signs in massive oblique aerial images with high performance.
Therefore, one alternative is to leverage the detected 2D location and semantic information
to localize road signs in a 3D scene via triangulation. Moreover, it is conceivable to fit a
3D bounding box and a plane that estimates the 3D location and orientation of road signs
using the triangulation result.

Compared to existing object detectors, region-based CNN methods perform supremely
well in object detection tasks with high localization and recognition accuracy [6–9]. How-
ever, the gap in the performance between the detection of small and large objects is
significant [10]. Small object detection is challenging since small objects do not contain
detailed information and may even disappear in the deep network. In addition, defects
such as complex training procedures with many heuristics and hyperparameters [11], im-
balances during the training process [12] and predefined dense anchoring schemes where
anchors are sampled uniformly over the spatial domain with a predefined set of scales
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and aspect ratios [13] still exist. On the other hand, compared to generic images, oblique
aerial images are taken with high-tilting camera angles that lead to variable deformation of
objects. Generally, road signs are sparsely distributed in oblique aerial images with blurred
texture and a variable shooting view. Thus, detecting road signs from oblique aerial images
is challenging.

To address the road sign modeling issue, this paper presents a pipeline for embedding
road sign models based on a deep CNN using oblique aerial images. The proposed method
also provides a referenced solution for the unresolved reconstruction problem of some
characteristic objects, such as street lamps. The framework of our approach includes road
sign detection, localization, orientation, and computer-aided model embedding.

Related works on oblique photogrammetry-based modeling, 3D scene augmentation,
road sign detection and small object detection are discussed in Section 2. The details of our
proposed approach and its key steps are described in Section 3, which effectively promotes
road sign modeling tasks. The proposed approach begins by recognizing road signs for
location and classification using a region-based CNN and a data synthesis strategy. We
then classify road signs into three categories based on functionality: warning, mandatory
and prohibitory. Detecting road signs from oblique aerial imagery is challenging due to the
infinite number of background objects. Moreover, road signs do not frequently appear in
each oblique aerial image containing them, which depresses the detection performance.
Second, under the geometric constraints placed by the bounding boxes, we use the SIFT [14]
feature to extract the corresponding points on the road signs. Third, we obtain the coarse
location of a single road sign by triangulating the corresponding points and refine the
location via outlier removal. Least-squares fitting is then applied to the refined point
cloud to fit a plane for orientation prediction. Finally, we replace the road signs with
computer-aided design models in the 3D urban scene based on the predicted location and
orientation. Experiments are introduced and analyzed in Section 4, and Sections 5 and 6
present the discussion and conclusion, respectively.

2. Related Work
2.1. Oblique Photogrammetry-Based Modeling and 3D Scene Augmentation

Oblique photogrammetry, a cost-effective and flexible data acquisition approach,
provides a new data source with distinct advantages: detailed information about facades,
multiple views from various perspectives and a substantially varying image scale [15–17].
The growing interest of the scientific and industrial community and software developers in
using oblique aerial images to build 3D models has made the advantages of the technique
evident [18,19]. Even though remarkable progress has been made in recent years, oblique
aerial image-based 3D modeling may have defects caused by the occlusion and large tilting
angles of the camera. However, defects are exceptionally prominent for small and sliced
shape objects.

Methods have been proposed to optimize oblique photogrammetry-based 3D models.
Integration of aerial and ground images [20,21] is beneficial to enhance the surface recon-
struction in urban environments. Additional approaches [22–26] have been developed
to augment 3D building models. However, most of them focus on building façades and
surface optimization via feature matching in urban areas but not in the context of street
objects, such as road signs.

Additionally, studies exploit matching-based [27,28] and scene synthesis
methods [29,30] to optimize the reconstruction results and retrieve and align 3D mod-
els from an extensive database. However, most of these approaches focus on indoor
environment reconstruction based on RGB-D scans or LiDAR data. [31] embedded user-
generated content to reduce the complexity of the oblique photogrammetry-based 3D
model, yet they manually delineated the boundary for scene editing and ignored some
essential artifacts such as road signs.
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2.2. Road Sign Detection

In recent years, CNN-based object detection has experienced impressive progress.
Comprehensive surveys [32–35] have systematically analyzed and discussed the advances,
applications and pending issues related to object detection. State-of-the-art algorithms
for road sign recognition and tracking are used to support driver-assistance systems
(ADAS) [32–35], autonomous vehicles [5,36,37], and road safety inspections. Most of them
detect road signs from street-view images, yet few of them concentrate on 3D reconstruction
or detection from oblique aerial images.

In addition, various approaches [38,39] have been proposed to manage the task of
road sign 3D localization using panoramic images and depth-map data collected via a
mobile mapping system or RGB images to estimate the 3D location. Ref. [40] proposed
a pipeline for 3D reconstruction of traffic signs via detection, shape fitting and template
matching from multistreet view images, where the silhouette and texture of traffic signs
are crystal clear. In general, few studies have been conducted on the detection or modeling
of road signs through oblique aerial images.

Compared to street-view data, panoramic images, or satellite imagery, road signs are
relatively small with blurred texture and unpredictable distortion in oblique aerial images
due to the limitations of image resolution and varying shooting angles. Moreover, road
signs do not appear frequently even in oblique aerial images containing them, resulting in
a major imbalance in the dataset. As a result, it is more challenging to detect road signs
from oblique aerial images.

2.3. Small Object Detection with Balanced Learning and Guided Anchoring

To manage small object detection tasks, multiscale feature learning [41,42], data aug-
mentation, training strategy [43,44], context-based detection, improved loss function [45]
and GAN-based [46] detection methods have been applied to enhance the performance.
Moreover, some studies [47–49] have detected small objects from satellite remote sensing
imagery, but detection studies based on oblique aerial images are rare.

For imbalance problems [50], oversampling and stitching data augmentation [51,52]
and effective frameworks [12,53] are leveraged to decrease the negative effect of category
imbalance in the training dataset and training process, respectively. Regarding data synthe-
sis, most approaches cut object masks from the training data first and then render them on
background imagery directly for data augmentation.

The width-to-height ratios of road signs in oblique aerial images are not fixed since the
high tilting camera angle leads to variable distortion. In this case, the dense and uniform
anchoring scheme is not necessarily the optimal way to prepare the anchors for road
sign detection. Several approaches [13,54,55] have proven that anchors can be sufficiently
intelligent to generate in proper scale and location by themselves with the advantage of
saving effort and improving accuracy, and there is no need to manually predefine the
sophisticated dense anchoring scheme.

3. Method

Road signs augment the realism and semantic information of 3D urban scenarios, yet
it is difficult to reconstruct them via oblique photogrammetry. Meanwhile, deep learning
algorithms provide an alternative to locate and classify road signs from massive images
with high performance. Thus, this paper proposes an embedded modeling method based
on a region-based CNN to address this issue.

In this section, we introduce the overall framework of the proposed method for road
sign embedded modeling in oblique photogrammetry-based 3D scenarios. Figure 2 depicts
the overall structure of the proposed framework. The main steps are as follows:

(1) Data synthesis and road sign detection. We present an end-to-end balance-learning
framework for small object detection that takes advantage of the region-based CNN
and a data synthesis strategy. First, data synthesis and augmentation are applied to
moderate the negative effects caused by object imbalance in the training dataset. Second,



Remote Sens. 2021, 13, 879 5 of 24

a region-based CNN that combines balanced learning with guided anchoring strategies
is used to enhance the detection results, as illustrated by comparative experiments.

(2) Road sign 3D localization and orientation. Stereo vision of multiple image sets is used
for 3D localization and orientation. First, all oblique aerial images containing the
same road signs are grouped according to the imaging similarity. Second, under the
geometric constraints of the bounding boxes, we use the SIFT feature to extract the
corresponding points on the road signs of an image set. Third, we apply triangulation
to the corresponding points in each image group to obtain 3D points. The triangulation
results from all image groups are merged to generate the approximate location of
a single 3D road sign. Additionally, we remove sparse outliers through statistical
analysis to refine the 3D point cloud for a more precise 3D location. Finally, least-
squares fitting is applied to the refined point cloud to fit a plane for orientation
prediction. The fitted plane should be vertical to the known surface of the street and
indicate the orientation of a road sign.

(3) Model matching and embedding. On the basis of the classification results, we retrieve
computer-aided design models of road signs from the database via template and
texture matching and then embed them in 3D urban scenes with the predicted location
and orientation.
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3.1. Road Sign Detection

Road signs are difficult to detect from oblique aerial images of the complicated real
world. There are three main challenges. (1) Road signs are usually small in terms of pixel
size with blurred textures due to the limitation of image resolution, which makes small
objects more difficult to detect than large ones. (2) Road signs do not appear frequently,
even in images that contain them, resulting in class imbalance in the training dataset.
(3) The distortion caused by high shooting angles increases the interclass differences,
making it difficult to distinguish real road signs and fake targets in complex street scenes.
Concerning image resolution limits, it is not easy to improve the quality of oblique aerial
images immediately, as it depends significantly on the data collection equipment.

Therefore, these challenges can be summarized as an imbalance problem in the training
dataset and during the training process. In our method, we leverage a balanced learning
strategy to alleviate the negative effect of the imbalance problem. Additionally, we adopt a
guided anchoring strategy to eliminate complicated manual anchor design and thus avoid
uncertain impacts it may bring. Generally, we present an end-to-end balance-learning
framework for small object detection that takes advantage of the region-based CNN and a
data synthesis strategy (see Figure 3). The detection pipeline takes Faster R-CNN [7] as the
basis and Resnet101 [57] as the basic feature extractor.
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3.1. Road Sign Detection

Road signs are difficult to detect from oblique aerial images of the complicated real
world. There are three main challenges. (1) Road signs are usually small in terms of pixel
size with blurred textures due to the limitation of image resolution, which makes small
objects more difficult to detect than large ones. (2) Road signs do not appear frequently,
even in images that contain them, resulting in class imbalance in the training dataset.
(3) The distortion caused by high shooting angles increases the interclass differences,
making it difficult to distinguish real road signs and fake targets in complex street scenes.
Concerning image resolution limits, it is not easy to improve the quality of oblique aerial
images immediately, as it depends significantly on the data collection equipment.

Therefore, these challenges can be summarized as an imbalance problem in the training
dataset and during the training process. In our method, we leverage a balanced learning
strategy to alleviate the negative effect of the imbalance problem. Additionally, we adopt a
guided anchoring strategy to eliminate complicated manual anchor design and thus avoid
uncertain impacts it may bring. Generally, we present an end-to-end balance-learning
framework for small object detection that takes advantage of the region-based CNN and a
data synthesis strategy (see Figure 3). The detection pipeline takes Faster R-CNN [7] as the
basis and Resnet101 [56] as the basic feature extractor.
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Figure 3. The end-to-end balance-learning framework for small object detection takes advantage of the region-based CNN
and a data synthesis strategy.

In this study, we split the imbalance problems into two types: that in the training
dataset and the during the training procedure. It is crucial to alleviate the imbalance to
achieve optimal training and fully exploit the potential of model architectures. Specifically,
data synthesis and augmentation and training techniques, including IoU-balanced sam-
pling, balanced feature pyramid, and balanced L1 loss, are used to mitigate the adverse
effects of the aforementioned imbalance. In addition, to reduce efforts for sophisticated
anchor settings and design, a guided anchoring strategy [13] is adopted in our research,
avoiding the negative and uncertain impacts on detection performance caused by unsuit-
able anchor settings. Much higher quality region proposals are generated using the guided
anchoring method, thus achieving an enhancement in accuracy.

3.1.1. Imbalance Problems in the Training Dataset

Due to the high and tilting shooting angle, road signs are small in terms of pixel size,
sparsely distributed and distorted in oblique aerial images. Two issues in the training
dataset result in object imbalance. (1) Each image contains only a few road signs and a large
ratio of background. (2) Interclass differences exist since the orientation and brightness of
road signs in oblique aerial images vary greatly. The imbalance of objects in the training
images results in overlap between small ground-truth objects, and the predicted anchors
are much lower than the expected IoU threshold. The primary purpose of synthesizing
data is to balance the number of oblique aerial images and objects to address the imbalance
problem in the training dataset. To better learn the distribution of our training dataset,
the quantity of each road sign category in the oblique aerial images is shown in Table 1.
There are 450 images with a pixel size of 1024× 1024.

Table 1. The number of oblique aerial images and objects of each road sign category.

Class Mandatory Sign Warning Sign Prohibitory Sign

Image number 358 63 131
Object number 509 71 227

The above statistical results indicate considerable category imbalance in the training
dataset, which adversely impacts the detection results of road signs with a small number of
samples. For example, the number of mandatory signs is nearly six times that of warning
signs, while the number of mandatory signs is more than seven times that of warning signs.
In addition, road signs occupy fewer image areas, and the less frequent road signs usually
have fewer matched anchors, which may make it more difficult to learn useful information
from the network.

Figure 3. The end-to-end balance-learning framework for small object detection takes advantage of the region-based CNN
and a data synthesis strategy.

In this study, we split the imbalance problems into two types: that in the training
dataset and the during the training procedure. It is crucial to alleviate the imbalance to
achieve optimal training and fully exploit the potential of model architectures. Specifically,
data synthesis and augmentation and training techniques, including IoU-balanced sam-
pling, balanced feature pyramid, and balanced L1 loss, are used to mitigate the adverse
effects of the aforementioned imbalance. In addition, to reduce efforts for sophisticated
anchor settings and design, a guided anchoring strategy [13] is adopted in our research,
avoiding the negative and uncertain impacts on detection performance caused by unsuit-
able anchor settings. Much higher quality region proposals are generated using the guided
anchoring method, thus achieving an enhancement in accuracy.

3.1.1. Imbalance Problems in the Training Dataset

Due to the high and tilting shooting angle, road signs are small in terms of pixel size,
sparsely distributed and distorted in oblique aerial images. Two issues in the training
dataset result in object imbalance. (1) Each image contains only a few road signs and a large
ratio of background. (2) Interclass differences exist since the orientation and brightness of
road signs in oblique aerial images vary greatly. The imbalance of objects in the training
images results in overlap between small ground-truth objects, and the predicted anchors
are much lower than the expected IoU threshold. The primary purpose of synthesizing
data is to balance the number of oblique aerial images and objects to address the imbalance
problem in the training dataset. To better learn the distribution of our training dataset,
the quantity of each road sign category in the oblique aerial images is shown in Table 1.
There are 450 images with a pixel size of 1024× 1024.

Table 1. The number of oblique aerial images and objects of each road sign category.

Class Mandatory Sign Warning Sign Prohibitory Sign

Image number 358 63 131
Object number 509 71 227

The above statistical results indicate considerable category imbalance in the training
dataset, which adversely impacts the detection results of road signs with a small number of
samples. For example, the number of mandatory signs is nearly six times that of warning
signs, while the number of mandatory signs is more than seven times that of warning signs.
In addition, road signs occupy fewer image areas, and the less frequent road signs usually
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have fewer matched anchors, which may make it more difficult to learn useful information
from the network.

In contrast to simply cutting and pasting to synthesize data [57], the proposed data
synthesis and augmentation method is designed based on computer-aided design 3D
road sign models to balance the quantity of each road sign category and to reduce the
negative impact of the imbalance in the training dataset. Furthermore, the transformation
of 3D rotation and lighting conditions are taken into account to make the synthetic data
more realistic. The proposed method for data synthesis and augmentation is illustrated in
Figure 4.
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road sign models in three dimensions to generate road sign masks.

(2) According to the statistical information on the number of road signs within each
category in the original training dataset, we render the road sign mask, which is
scaled to the appropriate size on random background images, to create synthetic
training images.

(3) We count the number of signs in each category in the synthetic training images to keep
the number of oblique aerial images and objects in the training dataset as balanced
as possible.

(4) We augment the synthetic data via rotation, flip and gamma transformations to avoid
overfitting and to improve the detection accuracy.

3.1.2. Imbalance Problems in the Training Process

During the training process, the selected region samples, the extracted visual fea-
tures and the designed objective function have significant impacts on the performance
of the detection model. The imbalance issues that exist in these three aspects prevent
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The main steps of data synthesis and augmentation are as follows:

(1) A collection of computer-aided design 3D road sign models is created via the 3D
modeling software 3DSMax. Considering the lighting conditions, we rotate the 3D
road sign models in three dimensions to generate road sign masks.

(2) According to the statistical information on the number of road signs within each
category in the original training dataset, we render the road sign mask, which is
scaled to the appropriate size on random background images, to create synthetic
training images.

(3) We count the number of signs in each category in the synthetic training images to keep
the number of oblique aerial images and objects in the training dataset as balanced
as possible.

(4) We augment the synthetic data via rotation, flip and gamma transformations to avoid
overfitting and to improve the detection accuracy.

3.1.2. Imbalance Problems in the Training Process

During the training process, the selected region samples, the extracted visual fea-
tures and the designed objective function have significant impacts on the performance
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of the detection model. The imbalance issues that exist in these three aspects prevent
the power of well-designed model architectures from being fully exploited, thus limiting
overall performance. Referring to the Libra R-CNN [12], we apply IoU-balanced sampling,
balanced feature pyramid, and balanced L1 loss to mitigate the imbalance during the
training process.

Specifically, in contrast to random sampling, the IoU-balanced sampling strategy
evenly splits the sampling interval into K bins according to the IoU, the N demands are
equally distributed in each bin, and training samples are selected from uniformly from
the bins.

pk =
N
k
∗ 1

Mk
, k ∈ [0, L), (1)

where Mk is the number of sampling candidates in the corresponding interval denoted by
k. Experiments show that the performance of this approach is not sensitive to k.

For the imbalance between low-level and high-level features, enhanced multilevel
features using the same deeply integrated balanced semantic feature are applied, generated
through rescaling, integrating, refining, and strengthening processes based on original
feature maps. After rescaling the multilevel features to the same size, the balanced semantic
features are obtained by simple averaging

C =
1
L

lmax

∑
l=lmin

Cl , (2)

where L is the number of multilevel features and lmin and lmax represent the lowest and
highest levels, respectively. Then, the balanced semantic features are further refined
for detection.

To balance the classification and localization tasks in detection, we use the balanced
L1 loss to balance the involved tasks by tuning their loss weights. The balanced L1 loss
function is provided in Equation (3).

Lb(x) =

{
α
b (b|x|+ 1)ln(b|x|+ 1)− α|x| if |x| < 1
γ|x|+ C otherwise,

(3)

in which the parameters γ, α and b are constrained by

αln(b + 1) = γ (4)

3.2. Road Sign 3D Localization and Orientation

Based on the detection result, multiple oblique aerial images are used to retrieve the
3D position and orientation of road signs, each acquired from a different point of view in
space. Three main steps are involved in the process of 3D localization and orientation.

(1) Group all oblique aerial images containing the same road signs according to imaging
conditions, such as shooting angles and lighting conditions.

(2) Search corresponding points in image groups. Under the geometric constraints placed
by the bounding boxes, the SIFT feature and optimized brute-force matcher are
applied to extract corresponding points.

(3) Apply corresponding points for triangulation to obtain a coarse location and refine
it via outlier removal. Then, merge 3D points of the same road signs to obtain the
location of a single 3D road sign. Finally, we fit a plane to the refined point cloud
using least-squares fitting to estimate the orientation.

3.2.1. Image Grouping

The accuracy of localization depends to a large extent on the accuracy of the corre-
sponding points. There are differences between the same road signs in different oblique
aerial images due to the variable shooting angles and lighting conditions. Thus, the corre-
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sponding points of two identical road signs with completely different views are difficult
to extract.

Experiments have shown that there are more corresponding points in road sign images
with more similar shooting conditions. Thus, to improve the accuracy of the extracted
corresponding points, we first divide the road sign images into several groups. Then,
under the geometric constraints placed by the bounding boxes, the corresponding points
are searched within the image group to reduce the number of mismatched points.

We group images according to the similarity of shooting angles and lighting conditions,
and there are at least two images containing the same road sign in each group.

P = θ(G1 ∪ G2 ∪ · · · ∪ Gi) = ∑ θ(Gi) (5)

where θ denotes the method used to extract corresponding points. N(Gi) is the number of
images containing the same road signs, and N(Gi) ≥ 2.

3.2.2. Corresponding Point Extraction with Geometric Constraints

After grouping images, the critical step in stereo vision is to obtain the corresponding
points from multiview images. In this research, we take advantage of the SIFT feature to
extract the key points in constraint regions defined by the detected bounding box, rather
than extracting from the complete oblique aerial image. Then, based on the brute-force
matching method, a distance ratio is utilized to optimize the matching of feature points
(see Figure 5).
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The probability of a match being correct can be determined by taking the distance
ratio of the closest neighbor to the second closest neighbor. Instead of accepting all the
best-matched results generated by the brute-force method, we reject matches in which
the distance ratio is more than 0.8. The definition of the distance ratio is provided in
Equation (6).

Dratio =
Dclosest

Dnextclose
(6)

3.2.3. Triangulation and Unrefined Location

The 3D location of any visible object point in space is restricted to the straight line
that passes through the center of projection and the projection of the object point. Thus,
the position of a point is at the intersection of the two lines crossing the center of the
projection and the projection of the point in each image [59] (see Figure 6). Consider
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The probability of a match being correct can be determined by taking the distance
ratio of the closest neighbor to the second closest neighbor. Instead of accepting all the
best-matched results generated by the brute-force method, we reject matches in which
the distance ratio is more than 0.8. The definition of the distance ratio is provided in
Equation (6).

Dratio =
Dclosest

Dnextclose
(6)

3.2.3. Triangulation and Unrefined Location

The 3D location of any visible object point in space is restricted to the straight line
that passes through the center of projection and the projection of the object point. Thus,
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the position of a point is at the intersection of the two lines crossing the center of the
projection and the projection of the point in each image [58] (see Figure 6). Consider
recovering the position of the 3D space point from a pair of point correspondences Vl ↔ Vr
and a pair of camera matrices Pl and Pr. Then,

V = τ(Vl , Vr, Pl , Pr) (7)

where τ denotes the triangulation method and V = (x, y, z, 1) is the 3D coordinates of
the point.
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Such sparse outliers caused by ambiguous corresponding points will lead to localiza-
tion and orientation errors. Some irregularities can be removed by performing statistical
analysis on the neighborhood of each point and trimming those that do not meet a cer-
tain criterion.

In this research, sparse outliers are removed using statistical analysis techniques to
filter out the noise and avoid misleading information. Specifically, the removal of sparse
outliers is based on the computation of the point-to-neighbor distance distribution in the
raw point cloud. For each spatial point, we compute the mean distance from that point to
each of its neighbors. Assuming that the resulting distribution is Gaussian with a mean
µ and a standard deviation σ, all points whose mean distances are outside an interval Dc
defined by the global distance mean and standard deviation can be considered outliers and
removed from the dataset, as illustrated in Equation (8).

Dc = µ + Smul ∗ σ, (8)

where Smul is a threshold of multiple standard deviations that is set to 1.0 in our experiments.
Regarding 3D location, the refined point cloud is applied to fit a 3D bounding box for

each road sign in the space where the side face is vertical to the ground surface while the
bottom face is parallel to the ground surface. Figure 7 shows the overall process for refining
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Triangulation is performed in a single image group, and a pair of corresponding points
is used to produce a point in 3D space via triangulation. Then, a set of 3D points is merged
from image groups to generate the point cloud that predicts the coarse 3D location of a
single road sign. Further optimization of cloud points is necessary to locate and orient
accurately in 3D space.

3.2.4. Refined 3D Location and Orientation

The 3D points produced from the same road sign within each group of images are
merged into a raw point cloud that predicts the coarse 3D location of a single road sign.
Such sparse outliers caused by ambiguous corresponding points will lead to localiza-
tion and orientation errors. Some irregularities can be removed by performing statistical
analysis on the neighborhood of each point and trimming those that do not meet a cer-
tain criterion.

In this research, sparse outliers are removed using statistical analysis techniques to
filter out the noise and avoid misleading information. Specifically, the removal of sparse
outliers is based on the computation of the point-to-neighbor distance distribution in the
raw point cloud. For each spatial point, we compute the mean distance from that point to
each of its neighbors. Assuming that the resulting distribution is Gaussian with a mean
µ and a standard deviation σ, all points whose mean distances are outside an interval Dc
defined by the global distance mean and standard deviation can be considered outliers and
removed from the dataset, as illustrated in Equation (8).

Dc = µ + Smul ∗ σ, (8)

where Smul is a threshold of multiple standard deviations that is set to 1.0 in our experiments.
Regarding 3D location, the refined point cloud is applied to fit a 3D bounding box for

each road sign in the space where the side face is vertical to the ground surface while the
bottom face is parallel to the ground surface. Figure 7 shows the overall process for refining
the road sign 3D location. We use the geometric center point of the fitted 3D bounding box
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to clarify the center location of the embedded model. The geometric center point of the
fitted 3D bounding box Pc (xc, yc, zc) is calculated via Equation (9),

Pc(xc, yc, zc) =





xc = xmin +
1
2 (xmax − xmin))

yc = ymin +
1
2 (ymax − ymin))

zc = zmin +
1
2 (zmax − zmin))

, (9)

where xmin, ymin and zmin are the minimum x, y and z of the 3D points, respectively,
and xmax, ymax and zmax are the maximum x, y and z of the 3D points.
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perpendicular to the normal vector of the ground surface.

The plane we want to estimate is z = ax + by + c, where a, b and c are scalars. This
defines a plane that best fits the samples in the sense that the sum of the squared errors
between zi and the plane values axi + byi + c is minimized. We can define the error function
for the least-squares minimization as Equation (10).

E0(a, b, c) =
n

∑
i=1

[(axi + byi + c)− zi]
2 (10)

under the condition of Equation (11)

v1 ⊥ v2 → v1 · v2 = 0, (11)

where v1 is the normal vector to the ground surface and v2 is the normal vector to the fitted
plane. v1 is perpendicular to v2.

Thus, we utilize a point Pc(xc, yc, zc) and the vectors v1 and v3(a, b,−1) to clarify the
position and orientation of the embedded road sign model, where Pc is the center point
of the fitted 3D bounding box, v1 is the normal vector to the ground surface and v3 is the
normal vector to the fitted plane.
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signs are developed for template fitting and texture matching, respectively.
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Concerning orientation, we fit a plane to the refined point cloud using least-squares
fitting to indicate the orientation of a road sign. Generally, the road sign face should be
vertical to the ground surface. We fit the plane under the condition that the fitted plane
is perpendicular to the ground surface. Thus, the normal vector of the fitted plane is
perpendicular to the normal vector of the ground surface.

The plane we want to estimate is z = ax + by + c, where a, b and c are scalars. This
defines a plane that best fits the samples in the sense that the sum of the squared errors
between zi and the plane values axi + byi + c is minimized. We can define the error function
for the least-squares minimization as Equation (10).

E0(a, b, c) =
n

∑
i=1

[(axi + byi + c)− zi]
2 (10)

under the condition of Equation (11)

v1 ⊥ v2 → v1 · v2 = 0, (11)

where v1 is the normal vector to the ground surface and v2 is the normal vector to the fitted
plane. v1 is perpendicular to v2.

Thus, we utilize a point Pc(xc, yc, zc) and the vectors v1 and v3(a, b,−1) to clarify the
position and orientation of the embedded road sign model, where Pc is the center point
of the fitted 3D bounding box, v1 is the normal vector to the ground surface and v3 is the
normal vector to the fitted plane.
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3.3. Road Sign Model Matching and Embedding

There are general guidelines to follow in the design of road signs to conform to basic
standards. Thus, following the same rules, 3D templates and texture databases of road
signs are developed for template fitting and texture matching, respectively.

In this research, we create a sketch model and texture database of road signs for model
matching. Considering the functionality and shape of road signs, we classify them into
three categories: warning signs with a triangular shape, prohibitory signs with a circular
shape and mandatory signs with a square shape.

In general, prohibitory traffic signs are used to prohibit certain types of maneuvers or
some types of traffic. Such signs have round shapes with radii of 30, 40 or 50 cm. Warning
signs are equilateral triangles with sides lengths of 70, 90 or 110 cm, mostly bright yellow
in color. Mandatory signs are used to define the obligations of all traffic that uses a specific
area of the road, generally using a white safety symbol on a blue background. The standard
sizes of mandatory signs include 60× 60 and 80× 80 cm. The computer-aided design 3D
templates and texture database are clarified in Figure 8.
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On the basis of the classification and 3D bounding box results, the correspondence
template and texture are retrieved from the database to generate a rendered road sign
model, and the template with the size closest to the generated 3D bounding box is selected.
Meanwhile, the correspondence texture is selected to render the selected template according
to the similarity of the image. The schema of road sign model generation is illustrated in
Figure 9. Once we obtain a complete computer-aided design road sign from the database,
we position it in the 3D urban scene based on the estimated 3D location and orientation:
the embedded road sign model is placed upright to the ground surface.
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Figure 8. 3D templates and texture database of road signs.

On the basis of the classification and 3D bounding box results, the correspondence
template and texture are retrieved from the database to generate a rendered road sign
model, and the template with the size closest to the generated 3D bounding box is selected.
Meanwhile, the correspondence texture is selected to render the selected template according
to the similarity of the image. The schema of road sign model generation is illustrated in
Figure 9. Once we obtain a complete computer-aided design road sign from the database,
we position it in the 3D urban scene based on the estimated 3D location and orientation:
the embedded road sign model is placed upright to the ground surface.
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3.4. Evaluation Metric

Average precision (AP) is a popular measure of the accuracy of object detectors, and a
general definition of AP is the area under the precision-recall curve. Mean average precision
(mAP) is the average of the AP. Equation (12) is used to calculate the average precision for
each road sign type.

AP = ∑
n
(Rn − Rn−1)Pn (12)

where Pn and Rn are recall and precision. Precision represents the correctness of the
predictions, while recall measures the ability of the detector to identify all positive samples.
Mathematical definitions of precision and recall are given in Equations (13) and (14).

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

where FP and TP are the numbers false positives and true positives, respectively, and FN is
the number of false negatives.

In our experiments, we use IoU with a predefined threshold of 0.5 to classify whether
the prediction is a true positive or a false positive. The IoU measures how much our
predicted boundary overlaps with the ground truth (the real object boundary). An IoU
less than 0.5 indicates an FP; otherwise, the result is a TP. Equation (15) illustrates how to
calculate the IoU.

IoU =
area of overlap
aera of union

(15)

4. Experiments
4.1. Aerial Oblique Image Collection and Preprocessing

Flight planning should consider the best approach to cover a whole object with the
minimum flight time, visibility of vertical structures, occlusions due to context, acquisition
of all parts of the objects (the closest and the farthest) with similar resolution and suitable
camera inclination [59]. Considering these problems, we collect oblique aerial images via
the Shuangyu 5.0B data collection platform carried on a DJI M600 UAV, which deploys two
SONY RX100 M2 cameras with 42 million camera pixels. We collect oblique aerial images
in Shenzhen area, China.

Oblique aerial images are processed by aerial triangulation to correct distortion and
export stereo camera parameters with the commercial software ContextCapture. The pro-
cess of oblique aerial image collection, preprocessing and synthesis is depicted in Figure 10.
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Considering the memory limits of computer hardware, undistorted oblique aerial images
with a size of 7952× 5304 pixels are cropped to 1024× 1024 pixels for CNN model training.
Leaving out those images without road signs, we select 450 original images for data syn-
thesis and augmentation. Figure 10 shows the process of oblique aerial image collection,
preprocessing, and synthesis.

The number of images containing each road sign category and the number road
signs in each category before and after data synthesis are shown in Figure 11. Before data
synthesis, these numbers are small. The number of images with mandatory signs is nearly
six times that of warning signs, while the number of mandatory signs in images is more
than seven times that of warning signs. Thus, to ensure that the image number and object
number of each category were as balanced as possible, we used the proposed data synthesis
method to augment the training dataset.
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We split the training dataset into two groups by randomly selecting 70% of the images
for training and the remaining 30% for testing and altered the obtained images 24 times via
rotation, mirror transformation and gamma transformation to avoid overfitting. Original
and synthetic training data are presented in Figure 12. The final set includes 450 images
with a pixel size of 1024× 1024.
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Figure 12. Comparison of training data before and after synthesis and augmentation. (a–c) Original oblique images,
and (d–f) synthetic images. We cropped the training images to a pixel size of 512× 512 in this figure.

Figure 11. (a) The number of oblique aerial images containing each road sign category before and after data synthesis.
(b) The number of road signs belonging to each category before and after data synthesis.
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4.2. Road Sign Detection
4.2.1. CNN Model Training Setup

For detector training, we implement experiments in the PyTorch framework with the
Ubuntu 16.04 operating system. The computer hardware is an RTX2080ti GPU with 11 GB
memory. We train the detector for ten epochs with an initial learning rate of 0.001 and
decrease the learning rate at the 5th and 8th epochs. We use a weight decay of 0.0001 and
momentum of 0.9. The minibatch sizes of the RPN stage and classification stage are 256
and 256. Furthermore, ResNet101, which is pretrained on the ImageNet dataset [60], is
used to extract features in this paper.

Comparative experiments are conducted with the baseline of faster R-CNN to verify
the effectiveness of the proposed method. We first train faster R-CNN with the original data
and synthetic dataset. Then, we implement guided anchoring (GA) with synthetic data,
balanced learning (BL) and the proposed combined method (BL and GA combined) based
on faster R-CNN. We consider anchors with an IoU overlap below 0.3 as negative samples
and those with an IoU overlap greater than 0.7 as positive samples for all experiments.
Regarding the methods that require predefined anchors, the size of the anchors and the
ratio of anchors are set to [4, 8, 16, 32, 64] and [0.5, 1.0, 2.0], respectively.
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4.2.2. Detection Result

The detection results based on the proposed method are shown in Figure 13. Green
bounding boxes represent TPs, while red bounding boxes represent FPs or FNs. Most road
signs are distinguished from other objects and located with well-fitted bounding boxes.

The results of comparative experiments are shown in Table 2, including the results of
faster R-CNN (Faster) and guided anchoring (GA) using the original data, GA using syn-
thetic dataset (GA&SD), balanced learning (BL), and the proposed method that combined
BL with GA (BL&GA). All the experiments are based on the backbone of ResNet-101-FPN.

Table 2. Detection results of the comparison approaches.

Method Mandatory Sign Warning Sign Prohibitory Sign mAP

Faster 0.803 0.785 0.909 0.832
Faster with GA 0.876 0.832 0.818 0.842
Faster with SD 0.907 0.886 0.897 0.897

Faster with GA&SD 0.907 0.908 0.904 0.906
Faster with BL 0.908 0.952 0.903 0.921

Faster with BL&GA 0.909 0.987 0.909 0.935
Faster: faster R-CNN method. Faster with GA: training the faster R-CNN model with guided anchoring. Faster
with SD: training the faster R-CNN model using synthetic data. Faster with GA&SD: training the faster R-CNN
model with guided anchoring and synthetic data. Faster with BL: training the faster R-CNN model with balanced
learning. Faster with BL&GA: training the faster R-CNN model with balanced learning and guided anchoring.

Compared to that of faster R-CNN, the proposed method for synthesizing data im-
proves the mAP from 83.2% to 89.7%. The synthetic data method enhances the mAP by
6%. The guided anchoring strategy contributes slightly, with a 1% enhancement to the
mAP. However, the guided anchoring strategy improves the mAP by 7.4% when using
synthetic data. The balanced learning method improves the mAP from 83.2% to 92.1%,
and the combined balanced learning and guided anchoring method outperforms the other
methods in our experiments, improving the mAP by 10.3%.

In comparison, synthetic data effectively improves the detection accuracy: the per-
formance of the detector improves as the number of road signs increases. However,
the accuracy is not enhanced further after the object number exceeds a certain threshold.
Both the guided anchoring strategy and balanced learning method contribute to mAP
enhancement, and the proposed method obtained the best mAP of 93.5%.



Remote Sens. 2021, 13, 879 17 of 24
Remote Sens. 2021, 13, 0 16 of 22

Figure 13. Road sign detection result in cropped oblique aerial images. Green bounding boxes represent TPs, while red
boxes represent FPs or FNs. We cropped the images of the detection results to a pixel size of 512× 512 in this figure.
The proposed method obtained an mAP of 93.5%.

4.3. Road Sign Embedded Modeling

We apply the proposed method for embedded modeling of road signs in the area of
Shenzhen, China. Generally, road signs are located along streets and are easy to find at
junctions. Several embedded modeling cases are shown to illustrate the feasibility of the
proposed method.

4.3.1. Extracting Corresponding Points with Geometric Constraints in Image Groups

In our experiment, the SIFT feature and optimized brute-force matching method are
utilized for key point extraction and matching. However, the same road signs in different

Figure 13. Road sign detection result in cropped oblique aerial images. Green bounding boxes represent TPs, while red
boxes represent FPs or FNs. We cropped the images of the detection results to a pixel size of 512× 512 in this figure.
The proposed method obtained an mAP of 93.5%.

4.3. Road Sign Embedded Modeling

We apply the proposed method for embedded modeling of road signs in the area of
Shenzhen, China. Generally, road signs are located along streets and are easy to find at
junctions. Several embedded modeling cases are shown to illustrate the feasibility of the
proposed method.

4.3.1. Extracting Corresponding Points with Geometric Constraints in Image Groups

In our experiment, the SIFT feature and optimized brute-force matching method are
utilized for key point extraction and matching. However, the same road signs in different
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oblique aerial images may vary substantially due to variations in shooting angles and
lighting conditions. Thus, it is not easy to extract corresponding points from the same two
road signs with different views. Figure 14 shows the matching results of road signs with
different and similar shooting angles.

The results of corresponding point extraction in Figure 14 show that road sign images
with more similar shooting angles have more corresponding points with higher accuracy.
Distortion and lighting changes in images impact the corresponding point extraction. Al-
though incorrect corresponding points remain, most of the errors are avoided by grouping.

Therefore, we group images containing road signs based on the similarity of the
shooting angle and lighting conditions. At least two images in each group contain the
same road sign. Then, corresponding points are extracted with geometric constraints in the
image groups. Additionally, instead of using all the best-matched point pairs, we reject all
matches in which the distance ratio is more than 0.8 to further improve the accuracy of the
corresponding points. Finally, the corresponding points of all the groups are merged to
generate a coarse 3D location.
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Figure 14. Corresponding points: grouping images before matching. (a) Corresponding points extracted from road signs
with different shooting angles. (b) Corresponding points extracted from road signs with similar shooting angles.

4.3.2. Localization and Orientation

As mentioned in Section 3.2.4, we adopt statistical outlier removal to improve the
accuracy of the corresponding points. In this research, we set the number of adjacent
points to 50 and the value of Smul to 1.0, thereby preserving 75% of the spatial points of
the raw point cloud in the experiments. The refined point cloud is then used for more
accurate 3D localization and orientation. Based on the spatial information of the ground
surface, the geometric center of the 3D bounding box is the center of the embedded model.
The fitted plane indicates the orientation. Four cases, a, b, c, and d, are depicted in Figure 15.

Figure 14. Corresponding points: grouping images before matching. (a) Corresponding points extracted from road signs
with different shooting angles. (b) Corresponding points extracted from road signs with similar shooting angles.

4.3.2. Localization and Orientation

As mentioned in Section 3.2.4, we adopt statistical outlier removal to improve the
accuracy of the corresponding points. In this research, we set the number of adjacent
points to 50 and the value of Smul to 1.0, thereby preserving 75% of the spatial points of
the raw point cloud in the experiments. The refined point cloud is then used for more
accurate 3D localization and orientation. Based on the spatial information of the ground
surface, the geometric center of the 3D bounding box is the center of the embedded model.
The fitted plane indicates the orientation. Four cases, a, b, c, and d, are depicted in Figure 15.



Remote Sens. 2021, 13, 879 19 of 24Remote Sens. 2021, 13, 0 18 of 22

(a0) (a1) (a2)

(b0) (b1) (b2)

(c0) (c1) (c2)

(d0) (d1) (d2)

Figure 15. The first column is the result of triangulation. The second column is the refined point cloud. Removing outliers
to refine 3D localization, the number of adjacent points is set to 50, and the value of Smul is set to 1.0, preserving 75% of the
spatial points of the raw point cloud. The third column is the fitted plane using least-squares fitting with the condition that
the fitted plane is vertical to the ground surface.

4.3.3. Model Embedding

For model embedding, we retrieve the best-matched road sign template and texture
from the predefined database to obtain a complete road sign model and then lay it on the
urban scene based on the predicted 3D position and orientation. Generally, the embedded
road sign model is supposed to be upright to the ground surface. Regarding the 3D location,
we consider the geometric center of the 3D bounding box as the center of the computer-
aided design 3D road sign model. An estimated normal vector of the fitted plane and a
normal vector of the ground surface are applied to orient the computer-aided design road
sign model. We selected several cases to demonstrate the results of embedding modeling,
revealing the feasibility of the proposed method. The results of embedded modeling in the
experimental area are shown in Figure 16.

Figure 15. (a0–d2) The first column is the result of triangulation. The second column is the refined point cloud. Removing
outliers to refine 3D localization, the number of adjacent points is set to 50, and the value of Smul is set to 1.0, preserving 75
spatial points of the raw point cloud. The third column is the fitted plane using least-squares fitting with the condition that
the fitted plane is vertical to the ground surface.

4.3.3. Model Embedding

For model embedding, we retrieve the best-matched road sign template and texture
from the predefined database to obtain a complete road sign model and then lay it on the
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urban scene based on the predicted 3D position and orientation. Generally, the embedded
road sign model is supposed to be upright to the ground surface. Regarding the 3D location,
we consider the geometric center of the 3D bounding box as the center of the computer-
aided design 3D road sign model. An estimated normal vector of the fitted plane and a
normal vector of the ground surface are applied to orient the computer-aided design road
sign model. We selected several cases to demonstrate the results of embedding modeling,
revealing the feasibility of the proposed method. The results of embedded modeling in the
experimental area are shown in Figure 16.
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Figure 16. Several cases of road sign embedded modeling results.

5. Discussion

We present a pipeline for embedding road sign models based on a deep CNN in this
paper. There are three main steps in the proposed method: detecting road signs from
oblique aerial images, locating and orienting road signs in 3D scenes, and retrieving tem-
plates and texture to embed computer-aided design models of road signs. The advantages
and efficiencies of the proposed algorithm include two main aspects. First, we present an
end-to-end balanced-learning framework for small object detection that takes advantage
of the region-based CNN and a data synthesis strategy. Second, corresponding points
applied for triangulation are extracted with the geometric and image group constraints
and optimized via a statistical method.

The performance of the detector improves as the number of road signs increases.
However, accuracy is not further enhanced after the object number exceeds a certain
threshold. Although data synthesis improves the detection performance, we did not
analyze the relationship between the number of objects and the accuracy of the detection
method in detail.

Concerning the detection approach, we take advantage of the region-based CNN
and a data synthesis strategy to improve the accuracy. The proposed method achieves a
high mAP for road sign detection, yet there remains room for improvement in accuracy.
Additionally, it is not sufficient to roughly classify all road signs into three categories
according to shape and functionality.

Regarding 3D localization and orientation, we extract corresponding points with
geometric constraints in image groups, and we exploit a statistical analysis method to refine
the results of triangulation. However, in our experiments, we use only the SIFT feature
and the optimized brute-force matcher to extract corresponding points such that other
methods may overwhelm the implemented method. Although we use strategies such as
image grouping, the distance ratio, and statistical analysis for optimization, errors remain.

Figure 16. (a–d) Several cases of road sign embedded modeling results.

5. Discussion

We present a pipeline for embedding road sign models based on a deep CNN in this
paper. There are three main steps in the proposed method: detecting road signs from
oblique aerial images, locating and orienting road signs in 3D scenes, and retrieving tem-
plates and texture to embed computer-aided design models of road signs. The advantages
and efficiencies of the proposed algorithm include two main aspects. First, we present an
end-to-end balanced-learning framework for small object detection that takes advantage
of the region-based CNN and a data synthesis strategy. Second, corresponding points
applied for triangulation are extracted with the geometric and image group constraints
and optimized via a statistical method.

The performance of the detector improves as the number of road signs increases.
However, accuracy is not further enhanced after the object number exceeds a certain
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threshold. Although data synthesis improves the detection performance, we did not
analyze the relationship between the number of objects and the accuracy of the detection
method in detail.

Concerning the detection approach, we take advantage of the region-based CNN
and a data synthesis strategy to improve the accuracy. The proposed method achieves a
high mAP for road sign detection, yet there remains room for improvement in accuracy.
Additionally, it is not sufficient to roughly classify all road signs into three categories
according to shape and functionality.

Regarding 3D localization and orientation, we extract corresponding points with
geometric constraints in image groups, and we exploit a statistical analysis method to refine
the results of triangulation. However, in our experiments, we use only the SIFT feature
and the optimized brute-force matcher to extract corresponding points such that other
methods may overwhelm the implemented method. Although we use strategies such as
image grouping, the distance ratio, and statistical analysis for optimization, errors remain.

6. Conclusions

In this paper, we presented a pipeline for embedding road sign models based on
deep convolutional neural networks (CNNs). The experimental results showed that the
proposed method obtained an mAP of 93.5% in road sign detection and produced visu-
ally plausible embedded results. Moreover, the proposed method is effective for road
sign modeling in oblique photogrammetry-based 3D scene reconstruction. The proposed
method also provided a reference for modeling some specific objects, such as street lamps
and billboards, in oblique photogrammetry-based 3D scenes. In future work, we will
enrich the diversity of oblique aerial image datasets and implement more detailed classifi-
cation criteria. Meanwhile, we will develop better feature extractors and matchers with
fewer errors.
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