
remote sensing  

Article

The Influence of ENSO and MJO on Drought in Different
Ecological Geographic Regions in China

Lei Zhou , Siyu Wang *, Mingyi Du, Qiang Chen , Congcong He, Jun Zhang, Yinuo Zhu and Yiting Gong

����������
�������

Citation: Zhou, L.; Wang, S.; Du, M.;

Chen, Q.; He, C.; Zhang, J.; Zhu, Y.;

Gong, Y. The Influence of ENSO and

MJO on Drought in Different

Ecological Geographic Regions in

China. Remote Sens. 2021, 13, 875.

https://doi.org/10.3390/rs13050875

Academic Editor: Luca Brocca

Received: 14 January 2021

Accepted: 23 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 102616, China; zhoulei@bucea.edu.cn (L.Z.); dumingyi@bucea.edu.cn (M.D.);
chenqiang@bucea.edu.cn (Q.C.); 2108521519044@stu.bucea.edu.cn (C.H.); 2108570020067@stu.bucea.edu.cn (J.Z.);
201704010327@stu.bucea.edu.cn (Y.Z.); 201804010420@stu.bucea.edu.cn (Y.G.)
* Correspondence: 2108521518028@stu.bucea.edu.cn; Tel.: +86-198-0131-0486

Abstract: Mastering the spatial and temporal differences of ENSO (EI Niño-Southern Oscillation)
and MJO (Madden–Julian Oscillation) and their influence on drought is very important for accurately
monitoring and forecasting drought. In this study, spatiotemporal characteristics and variability of
the impact of ENSO and MJO on drought were analyzed from the perspectives of meteorological
drought and agricultural drought through temporal and spatial correlation analyses of China’s 48 eco-
geographical regions. The results show a strong correlation between drought and ENSO and MJO in
general. The spatial correlation coefficients are different, and the response of extreme events varies in
different regions. The influence of ENSO and MJO on agricultural drought is higher than that on
meteorological drought. ENSO and MJO have a considerable influence on agricultural drought in
regions such as the Qinghai-Tibet Plateau and Xinjiang, with the highest correlation coefficient of
0.72. A significant influence of ENSO and MJO on meteorological drought was found in the Jiangnan
region with the highest correlation coefficient of 0.40. In addition, agricultural drought shows a
significant time lag in response to ENSO events. When the lag time is six months, the time series
presents the highest correlation coefficient with the mean value of the correlation coefficient reaching
0.38 and the maximum value reaching 0.75. This research is of great significance for understanding
the spatiotemporal correlation between climate patterns and drought on a large regional scale and it
provides further insights into the teleconnection mechanisms of drought.

Keywords: ENSO; MJO; global climate change; correction

1. Introduction

Drought ranks first among natural disasters in terms of frequency, duration, cov-
erage and economic losses [1]. In recent years, under the background of global climate
change, relevant studies have predicted that extreme disasters will occur frequently in the
future [2,3]. As a frequent extreme disaster on land, drought severely affects the ecological
environment, agricultural production, socioeconomic status and other aspects [4–7]. It
is crucial to reduce the loss of drought and achieve the goal of sustainable development
by exploring the teleconnection mechanism of drought and improving the level of mon-
itoring and forecasting for it [8]. Several studies have indicated the correlation between
ENSO (EI Niño-Southern Oscillation) and MJO (Madden–Julian Oscillation) and drought,
but the characteristics and spatiotemporal differences of the correlation have not been
systematically determined.

ENSO and MJO are typical oscillations affecting climate change. The El Niño phe-
nomenon and Southern Oscillation are collectively known as ENSO. ENSO events increase
the possibility of global extreme drought events [9], and it can change the frequency and
intensity of drought [10]. ENSO cold and warm events lead to different rainfall distribu-
tions in different regions of the Philippines [11]. In Florida, the USA and Rio Grande do
Sul, Brazil, El Niño causes below-normal agricultural reference index for drought (ARID)
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values [12]. The interaction between the MJO and ENSO [13] makes it necessary to study
the correlation between the MJO and drought. Numerous studies worldwide have shown
that the MJO leads to changes in rainfall, which is one of the main parameters underlying
meteorological drought [14]. Furthermore, the MJO phase and amplitude activity play an
important role in rainfall variability [15].

With the recent occurrence of ENSO warm and cold events, extreme weather disasters,
such as drought and flood, have occurred in most parts of the world. Many researchers
have explored and quantified the link between El Niño and precipitation by applying
various methods. The influence of the ENSO on drought was confirmed in India by a
correlation analysis of the ENSO index with the standard precipitation index (SPI) and the
standardized precipitation evapotranspiration index (SPEI) using the nonlinear Granger
causality [16], while empirical mode decomposition was applied in the Nile River Basin [17].
In the semi-arid region of Northern Chile, there is a negative correlation between the ENSO
index and SPEI in spring and summer [18]. A similar negative correlation between the
normalized difference vegetation index (NDVI) and ENSO was found in 87.3% of southern
Africa during DJF (December–January–February) [19]. In addition, there was a time lag
between dry-hot conditions and ENSO [19]. In the arid and semi-arid regions in Northeast
Brazil and East Africa and arid to semi-arid subtropical regions, ENSO and drought were
closely correlated in different periods with a certain degree of time lag [20–22]. In view
of the MJO, most researchers have analyzed the influence of MJO on drought mainly by
studying the correlation between it and rainfall. For example, in Indonesia and Katulampa,
rainfall is obviously affected by MJO activity [15,23]. In summary, in different regions
around the world, both ENSO and MJO have different degrees of impact on drought [24].
The correlation is complex and has not been studied systematically because of the different
mechanisms of ENSO warm and cold events and the different phases and amplitudes
of MJO.

China includes regions that are sensitive to climate change. The impact of ENSO
and MJO on drought varies by the region of the country [25,26]. Under the influence of
ENSO events, the precipitation in China is changed [27]. Summer, autumn and winter
precipitation and annual precipitation were lower in the northern part of eastern China,
while autumn precipitation in the southern part and winter precipitation in southeastern
China apparently increased [28,29]. For most regions of Shanxi Province, the wavelet
coherence between winter dry–wet conditions and ENSO was generally dominated by
a negative multiscale relationship [30]. In southwestern China, there was a drier sum-
mer with less precipitation and it was more prone to drought after La Niña events [31].
However, the Poyang Lake basin is more likely to experience drought when there is an
El Niño event [32]. Studies on the influence of MJO on China’s weather have indicated
that MJO has a modulating effect on China’s precipitation process, showing that it is an
important factor influencing precipitation [33,34]. Different MJO activity periods also
lead to different precipitation characteristics in China [35]. Because China has multiple
temperature–precipitation subdivisions, the spatiotemporal differences in the influences of
ENSO and MJO on drought are more complicated. In summary, it is of great significance to
study the influences of ENSO and MJO on drought in different regions of China and the
characteristics and spatiotemporal differences of the correlations are important to further
understand the mechanism of drought.

Drought is a state of surface water imbalance in which water supply cannot satisfy
normal water demand [36]. The temporal and spatial characteristics of drought are complex.
Normally, it is classified into meteorological drought, agricultural drought, hydro-drought
and socioeconomic drought [37]. Among them, meteorological drought is the phenomenon
of abnormal water shortage caused by the imbalance between precipitation and evaporation
in a period. Agricultural drought refers to the growth and development of crops being
inhibited due to water deficit during the growing season. Moreover, hydrological drought
refers to the decrease of water storage in rivers and runoff or the lowering of water level in
underground aquifers. Due to the economic and social development of water demand is
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increasing, water affecting production and consumption activities is called socioeconomic
drought [38,39]. Drought is often quantified using drought indices, which have been
constructed as the main indicators for monitoring the severity and spatial distribution
of drought [40]. The existing drought indices can be divided according to the category
and characteristic differences of drought. McKee et al. [41] proposed SPI, which is based
on the standard deviation of actual measured precipitation relative to the distribution
function of precipitation probability. Serrano et al. [42] proposed the SPEI, which replaces
the precipitation with the difference between precipitation and evaporation during the
calculation of the SPI. The Palmer drought severity index (PDSI), which is a classical index
in meteorological drought monitoring, was proposed by considering various factors [43].
At the beginning of the 21st century, the self-calibrating Palmer drought severity index
(SC-PDSI) was proposed on the basis of the PDSI [44]. Percentage of precipitation anomaly
(Pa) is used to characterize precipitation over or under normal years in a given period.
Furthermore, remote sensing drought monitoring indices have been established for the
quantitative assessment of agricultural drought conditions. Among them, NDVI was
proposed for monitoring drought using remotely sensed vegetation signals. The vegetation
condition index (VCI) was proposed by Kogan based on NDVI. VCI considers vegetation
condition variations caused by environmental change. It was found that VCI can better
explain the relationship between vegetation conditions and drought [45,46]. Anomalous
vegetation index (AVI) and enhanced vegetation index (EVI) are also drought indices based
on vegetation conditions [47]. Additionally, the occurrence of drought can also cause
changes in canopy temperature. The temperature condition index (TCI) was constructed
using the land surface temperature (LST) [48]. The surface water supply index (SWSI)
monitors hydrological drought [49]. Crop water stress indicator (CWSI) is used to monitor
crop water stress [50]. Within these different kinds of drought indices, PDSI is universal in
China and the multiscale properties of SPEI enable the identification of different drought
types and effects on different systems. While VCI can well show the plant growth status and
TCI is not limited by the plant growing season, both are considered as being able to better
express agricultural drought. Therefore, we selected these indices for our research [51].

Taking eco-geographical regions into consideration, it is necessary to systematically
analyze the spatiotemporal correlation of ENSO and MJO indices with drought indices from
the perspective of meteorological drought and agricultural drought. The following research
objectives are proposed in this study: (1) The characteristics and spatiotemporal differences
of the influences of ENSO and MJO on drought were analyzed from the perspective
of meteorological drought and agricultural drought in China. (2) The time lag of the
agricultural drought response to the ENSO was investigated and quantified through time
series analysis. This research can help to explore the mechanism of drought, thus providing
a basis for accurate monitoring and predictions of drought and further improving drought
management levels.

2. Materials and Methods
2.1. Study Area and Data

China is a vast country that spans a wide range of latitudes with large disparities
in terrain, landforms and distance from the ocean in different areas, resulting in a wide
variety of temperature and precipitation combinations [52]. Most parts of China have a
monsoon climate. There are several temperature zones including tropics, subtropics, warm-
temperate zones, moderate temperate zones, cold temperate zones and the Qinghai-Tibet
Plateau region over China. In terms of dry and wet conditions, China can be divided into
arid, semi-arid, semi-humid and humid regions. Therefore, based on temperature and
precipitation, China can be divided into several ecological geographic regions. In Table 1,
Roman numerals I–IX stand for cold temperate zone to the equatorial tropical zone. HI
and HII stand for plateau sub-cold temperate and plateau temperate zones [53]. Due to the
differences in various factors, the climate differences in various regions are obvious.
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Table 1. Codes of eco-geographical regions.

Temperature Zone Dry–Wet Partition Natural Region

I Cool Temperate Zone A Humid Region IA1 Daxing’an Mountains

II Mid-Temperate Zone

A Humid Region
IIA1 Sanjiang Plain

IIA2 East Upland Area of Northeast China
IIA3 Front Mountain Plain of Eastern

Northeast China

B Semi-Humid Region
IIB1 Central Songliao Plain

IIB2 Southern Daxing’an Mountains
IIB3 Plain and Hills Sanhe Piedmont

C Semi-arid Region
IIC1 Southwestern Songliao Plain

IIC2 Northern Daxing’an Mountains
IIC3 Eastern Inner Mongolia Plateau

IID1 Western Inner Mongolia Plateau and
Hetao

IID2 Alxa and Hexi Corridor
D Arid Region IID3 Junggar Basin

IID4 Altai Mountain and Tacheng Basin
IID5 Ili River Basin

III Warm Temperate Zone

A Humid Region IIIA1 Jiaodong Mountain Hills in Eastern
Liaoning Province

B Semi-Humid Region

IIIB1 Mountain and Hills in Central
Shandong

IIIB2 North China Plain
IIIB3 Mountain and Hills in North China
IIIB4 Guanzhong Basin in South Shanxi

C Semi-arid Region IIIC1 Hilly and Plateau in Central Shanxi,
Northern Shanxi and Eastern Gansu

D Arid Region IIID1 Tarim and Turpan Basins

IV Northern Subtropical
Zone

A Humid Region
IVA1 South of the Huaihe River and Middle

and Lower Reaches of the Yangtze River
IVA2 Hanzhong Basin

V Middle Subtropical Zone A Humid Region

VA1 Jiangnan Hills
VA2 Jiangnan and Nanling Mountains

VA3 Guizhou Plateau
VA4 Sichuan Basin

VA5 Yunnan Plateau
VA6 South Limb of Eastern Himalayan

VI Southern Subtropical
Zone

A Humid Region

VIA1 Mountain Plain in Central and
Northern Taiwan

VIA2 Hilly Plain of Fujian, Guangdong and
Guangxi

VIA3 Mountain Hills in Central Yunnan

VII Edge Tropical Zone A Humid Region
VIIA1 Lowlands in Southern Taiwan

VIIA2 Mountain Hills in Qionglei
VIIA3 Valley Hills in South Yunnan

VIII Central Tropical Zone A Humid Region VIIIA1 Qionglei Lowland and Dongsha,
Zhongsha and Xisha Islands

IX Equatorial Tropical Zone A Humid Region IXA1 Nansha Islands

HI Highland Subduction
Zone

B Semi-Humid Region HIB1 Hilly Plateau in Guoluo and Naqu

C Semi-arid Region
HIC1 Wide Valley of the South Qinghai

Plateau
HIC2 Qiangtang Plateau Lake Basin

D Arid Region HID1 Plateau of Kunlun Mountain

HII Highland Temperate
Zone

A/B Humid
Region/Semi-Humid Region

HIIA/B1 High Mountains and Canyon in
Eastern Sichuan and Tibet

C Semi-arid Region HIIC1 Eastern Qilian Mountains
HIIC2 Mountain South Tibet

D Arid Region
HIID1 Qaidam Basin

HIID2 North Limb of Kunlun Mountain
HIID3 Ali Mountain
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2.1.1. Basic and Meteorological Data

The eco-geographical region data were obtained from the Resource and Environment
Science and Data Center (http://www.resdc.cn/data.aspx?DATAID=125 (accessed on
11 January 2021)) [54,55]. According to the combination of temperature and wet–dry
condition differences, there are 48 eco-geographical regions in China. The indicators
for the division of temperature zones are the number of days (d) and the accumulated
temperature (◦C) with temperature greater than or equal to 10 ◦C, the average temperature
of the coldest month (◦C) and the average temperature of the warmest month (◦C). The
indicator for the division of dry and wet conditions is the annual aridity and precipitation
(mm) [53]. Meteorological data were derived from the China Meteorological Data Network
(http://data.cma.cn/ (accessed on 11 January 2021)) [56]. The meteorological data include
temperature, relative humidity, wind speed, sunshine data, precipitation and evaporation,
which were from the China Surface Climate Data Diurnal Dataset (V3.0) produced by
the National Meteorological Information Center and have undergone quality control.
Additionally, as shown in Figure 1, the meteorological data from 577 meteorological stations
that met the conditions were finally selected since there were several meteorological stations
with missing data, such as in Tibet, Guizhou, Jiangxi, Zhejiang, the south-central part of
Hebei and the western part of Inner Mongolia.Remote Sens. 2021, 13, 875 6 of 19 
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2.1.2. Remote Sensing Data

The daily observation values from 1980 to 2018 from the selected stations were used to
calculate meteorological drought indices. The Advanced Very High Resolution Radiometer
(AVHRR)–Health Product (VHP) set of global scales provided by the National Oceanic
and Atmospheric Administration (NOAA) of America (ftp://ftp.star.nesdis.noaa.gov/
pub/corp/scsb/wguo/data/Blended_VH_4km/ (accessed on 11 January 2021)) [57] was
selected as the source of agricultural drought indices, including VCI and TCI data from
2006 to 2019. The spatial resolution of VCI and TCI is 4 km, and the temporal resolution is
seven days. The monthly mean values of VCI and TCI were synthesized and clipped for
the study area before being used for correlation analysis.

VCI is an index widely used in drought monitoring based on NDVI. NDVI is an
index that quantifies vegetation by measuring the difference between near-infrared light
(vegetation strongly reflected) and red light (vegetation absorption). Kogan et al. proposed
TCI according to the principle that, when vegetation is subjected to water stress, the stomata
of the leaves are closed to reduce transpiration, which leads to a decrease in the latent
heat flux and an increase in the sensible heat flux in the vegetation canopy, resulting in an
increase in land surface temperature that can reflect the energy flow and material exchange
of the soil–vegetation–atmosphere system. The smaller are VCI and TCI, the more serious
is the drought.

The expressions of VCI [58] and TCI [48] are as follows:

VCI = 100× NDVIi − NDVImin

NDVImax − NDVImin
(1)

where NDVIi is the NDVI value of the i period of a specific year and NDVImax and
NDVImin are the maximum and minimum values of the NDVI in the i period of multiple
years, respectively.

TCIi = 100× LSTmax − LSTi
LSTmax − LSTmin

(2)

where TCIi is the temperature condition index of month i of the year, LSTi is the LST value
of i month, and LSTmax and LSTmin are the maximum and minimum LST values of the
corresponding month in multiple years, respectively.

2.1.3. Climatic Indices

Sea surface temperature (SST) data from the Niño 3.4 area were selected to characterize
the ENSO phenomenon. The data were derived from the National Climate Center of China
Meteorological Administration (https://cmdp.ncc-cma.net/pred/cn_enso.php?product=
cn_enso_nino_indices (accessed on 11 January 2021)) [59]. Distribution of the Niño 3.4 index
(three-month moving average) from 1980 to 2020 is shown in Figure 2. Trenberth [60] found
that the area for monitoring should be in the Niño 3.4 area, which covers the range of
5◦N–5◦S, 170◦W–120◦W. The type of the ENSO event in the Niño 3.4 region is between the
eastern and central types, and the influence of its sea surface temperature anomaly is also
between the effects of the two types of indices.

The intensity of the MJO phenomenon is mainly characterized by the real-time mul-
tivariate MJO series (RMM) proposed by Wheeler et al., who divided the MJO into eight
phases [61]. The MJO data were obtained from the National Climate Center of America
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml (accessed
on 11 January 2021)) [62]. RMM is the most widely used MJO index, and a strong MJO
corresponds to a RMM greater than or equal to 1, and vice versa [14].

ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/
ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/
https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices
https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml
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Figure 2. Distribution of the Niño 3.4 index (three-month moving average) from 1980 to 2020. ENSO events are mainly
identified by the three-month moving average absolute value of Niño 3.4. The three-month moving average of Niño
3.4 index was derived from the National Climate Center of China Meteorological Administration (https://cmdp.ncc-cma.
net/pred/cn_enso.php?product=cn_enso_nino_indices (accessed on 11 January 2021)).

2.2. Methods
2.2.1. Calculation of Drought Indices

In this study, the selected remote sensing drought indices include the monthly scale
TCI and VCI from 2006 to 2019. The meteorological drought indices (PDSI, SC-PDSI and
SPEI of 1-, 3-, 6-, 9- and 12-month scales) were constructed based on averaged monthly
scale meteorological data during 1980–2018.

PDSI is a traditional drought index based on the soil water balance model [43]. SC-
PDSI corrects the spatial incompatibility of PDSI by replacing its empirical constant with
the dynamic calculated values of the study area. PDSI is constructed by establishing the
water balance equation suitable for the climate first based on the water balance principle
and calculating the water departure d:

d = P− P = P− (αPE + βPR + γPRO − δPL) (3)

where P is the actual precipitation (mm), P is the precipitation under suitable climate
conditions (mm), PE is the possible evapotranspiration (mm), PR is the possible soil water
supply (mm), PRO is the soil possible runoff (mm) and PL is the soil possible water loss
(mm). These values are calculated from precipitation (mm), temperature (◦C) and available
water holding capacity (AWC) (mm). α, β, γ, δ are the evapotranspiration coefficient, soil
water supply coefficient, runoff coefficient and soil loss coefficient, respectively. Each
region has four corresponding constant coefficient values every month.

SPEI is mainly used to express drought severity by the average deviation degree
between precipitation and evapotranspiration. SPEI has multiple time scales. In this
study, the 1-, 3-, 6-, 9- and 12-month scale SPEIs were calculated. In the SPEI generation
process, the potential evapotranspiration is calculated by the Thornthwaite method and
the difference Di between precipitation and evapotranspiration at various time scales is
estimated according to the potential evapotranspiration. Then, the cumulative probability
function density of the LOG distribution P is calculated. Finally, the data sequence is
normalized to calculate the SPEI value corresponding to each value. The magnitude of
SPEI can be defined by the following mathematical expression:

SPEI = S×
(

ω− c0 + c1ω + c1ω2

1 + d1ω + d2ω2 + d3ω3

)
(4)

https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices
https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices
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where S = ±1, ω =
√
−2 ln P and P is the value of the distribution probability calculated

before. When P ≤ 0.5, P = F(x) and S = 1, while, when P > 0.5, P = 1− F(x) and
S = −1. In Equation (4), c0, c1, c2, d1, d2 and d3 are constants.

2.2.2. Statistic and Spatiotemporal Analysis of Correlation

To study the correlation of ENSO and MJO with drought in different eco-geographical
regions in China, we carried out an exploratory analysis on meteorological drought and
agricultural drought. The variability in spatial and temporal correlations in different eco-
geographical regions was studied, and the time-lag phenomenon of agricultural drought
in response to ENSO events and its lag period were determined.

2.2.3. Spatiotemporal Analysis of Correlation

Due to the different data sources of remote sensing drought indices and meteorological
drought indices, the data processing and analysis between sources and climate index
methods are different. VCI and TCI were used in this study to characterize agricultural
drought; they are global-scale raster data with a time scale of seven days and 1456 images
from 2006 to 2019. Before analyzing the correlation, we performed batch clipping and
calculated the monthly mean of remote sensing images in China. Then, the correlation
coefficients between the remote sensing drought indices for each pixel and ENSO and
MJO were calculated after extracting the remote sensing drought index value pixel by
pixel. Finally, the time series of the mean values over the 48 eco-geographical regions were
extracted by zonal statistics. To investigate the responses of agricultural drought after the
period of the ENSO events, the time series of the Niño 3.4 index was shifted on the scale of
1–12 months. Spatial and temporal correlation analyses were used to explore whether there
was a lag in the agricultural drought response to ENSO events and determine its lag time.

For the purpose of exploring the correlation between the meteorological drought and
climate anomaly indices, the daily meteorological data of 577 stations from 1982 to 2018
were used to calculate the monthly average value. The PDSI, SC_PDSI and SPEI (with 1-,
3-, 6-, 9- and 12-month scales) were calculated based on the monthly meteorological data.
The correlation coefficients between the meteorological drought indices and ENSO and
MJO indices were calculated for each station. The results were spatially visualized and
analyzed. Next, we extracted the mean values of meteorological drought indices for each
of the 48 eco-geographical regions. The time series meteorological drought index values
from 1982 to 2018 were constructed for comparative analysis with the series of ENSO and
MJO. The correlations between the meteorological drought indices and ENSO and MJO
were determined by spatial and temporal correlation analysis at 577 stations.

2.2.4. Zonal Statistics

The spatiotemporal characteristics of the correlations between the drought indices and
ENSO and MJO were analyzed by zonal statistics. Based on zonal statistics, the maximum,
minimum and mean values of the correlation coefficients were calculated for each eco-
geographical region. Combining the statistical results and spatiotemporal analysis methods,
we can further confirm the degree of influence of ENSO and MJO on both meteorological
drought and agricultural drought and analyze their causes in various eco-geographical
regions of China.

3. Result
3.1. Both ENSO and MJO Oscillations Influenced Drought in Various Ecological
Geographical Regions

In general, there is a strong correlation between remote sensing drought indices
and ENSO and MJO, which shows that ENSO and MJO have a significant impact on
drought. The influences are relatively obvious in the Tibetan region, which has plateaus
and mountains, the Southeastern Coastal Area and most of the central region in China.
As shown in Figure 3a,b, Niño 3.4 and TCI in Tibet are positively correlated, but there is
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a negative correlation between Niño 3.4 and VCI. The maximum correlation coefficient
between the remote sensing drought indices and Niño 3.4 is 0.72, and the maximum
correlation coefficient between the remote sensing drought indices and RMM is 0.31.
The MJO anomaly mainly affected the northeastern, western and central parts of China
(Figure 4a,b). The spatial correlations between RMM and two different remote sensing
drought indices are in the opposite conditions. For example, in northeast China, MJO is
mainly negatively correlated with TCI but positively correlated with VCI. At the same
time, the areas with high correlation between MJO and remote sensing drought indices are
mostly distributed in humid and semi humid regions.
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The selected remote sensing indices are based on different principles and data. TCI
is based on LST, while VCI is based on NDVI. In addition, the topography and geomor-
phology of China are complex, and temperature zones which result in the climatic patterns
vary considerably in different regions. This leads to various effects of ENSO and MJO on
drought in different regions. By calculating and sorting the mean values of the correlation
coefficients, the difference in spatial correlation between the Niño 3.4 index and VCI is
mainly related to the temperature zones, dry–wet conditions of the region and vegetation
coverage. The eastern part of China is mainly humid or semi-humid with excellent water
supply, agricultural land and forest with high vegetation coverage [63]; therefore, it is
mainly a positive correlation area. China’s arid or semi-arid regions are mainly negative
correlation zones, especially in northwestern China, where there are mostly deserts and
low vegetation coverage [64]. The correlation differences between Niño 3.4 and TCI in
various regions are mainly related to the topography and geomorphology of the region.
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The statistical results show that the regions with high correlations are mostly distributed
in plateaus, hillsides and plains. Because of the altitude, these areas are more sensitive
to land surface temperature, which tends to be more changeable. Therefore, TCI is more
influenced by atmospheric circulation in areas with plateaus, hillsides and plains. How-
ever, the correlation is obviously low in areas with basins, which have low terrain and are
surrounded by high mountains. The atmospheric circulation in the basin is difficult to
spread, and the surface temperatures are usually high and slightly variable [65].
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ENSO and MJO also have a significant correlation with meteorological drought. From
a spatial perspective (Figures 5 and 6), the positive correlation between the ENSO and
meteorological drought is mainly distributed in southern China, the Jiangnan region, the
middle and lower reaches of the Yangtze River, the arid and semi-arid areas in northwestern
China and the northern part of northeastern China. The eastern part of northeastern
China, the central part and northern China are negative correlation areas. In addition, the
correlation was significantly stronger in areas close to the ocean. MJO and meteorological
drought mainly show a positive correlation in northern and central China while a negative
correlation in northeastern and southern China.
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(a–e) spatial distribution of the correlation coefficient between PDSI, SC_PDSI, SPEI- 1, SPEI- 6, SPEI- 12 and Niño 3.4.

As the time scale of SPEI increases, the correlation between SPEI and ENSO and MJO
indices becomes stronger. The correlation coefficients between SPEI-12 and ENSO and
MJO indices are the highest. The highest correlation coefficient between SPEI and Niño 3.4
is 0.40, while the highest correlation coefficient between SPEI and MJO is 0.15. The multi-
timescale SPEI reflects the different drought conditions in China. The correlation analysis
of the multi-timescale SPEI and ENSO and MJO indices further reveals the sensitivity of
meteorological drought to ENSO and MJO.

3.2. ENSO and MJO Oscillations Have a Significant Correspondence with Drought in the
Long-Term Series

The time series of the two types of drought indices and ENSO and MJO indices in
China’s 48 eco-geographical regions also have corresponding correlations. Their relation-
ships vary from region to region. To clearly show the differences in correlation between
drought indices and ENSO and MJO indices in various eco-geographical regions, we se-
lected four typical eco-geographic regions of historically drought-prone regions located
in the humid, sub-humid, semi-arid and arid zones. For the analysis of drought condi-
tions when ENSO events or MJO anomalies occurred, a time series was extracted from
2010 to 2018, during which both warm and cold ENSO events occurred. As shown in
Figure 7, ENSO and MJO are cyclical. In the south of the Huai River and the middle
and lower reaches of the Yangtze River, which are the representative humid regions of
China (Figure 7a), the trends of ENSO and MJO indices are consistent with the drought
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indices. In the Tarim and Turpan basins, which are located in the arid areas (Figure 7d),
when higher or lower ENSO and MJO indices occur, consistent trends are observed in the
drought indices. The results indicate that ENSO correlates with drought events in arid or
humid areas. However, in the semi-humid North China Plain (Figure 7b) and the semi-arid
Southwest Songliao Plain (Figure 7c), the drought indices show different trends during
the alternating periods of ENSO warm and cold events, and ENSO events occurred in
different seasons.

Remote Sens. 2021, 13, 875 13 of 19 
 

 

 
(a) (b) (c) 

  

(d) (e)  

Figure 6. Correlation between the meteorological drought indices and RMM (except the South China Sea Islands): (a–e) 
spatial distribution of the correlation coefficient between PDSI, SC_PDSI, SPEI- 1, SPEI- 6, SPEI- 12 and RMM. 

3.2. ENSO and MJO Oscillations Have a Significant Correspondence with Drought in the Long-
Term Series 

The time series of the two types of drought indices and ENSO and MJO indices in 
China’s 48 eco-geographical regions also have corresponding correlations. Their relation-
ships vary from region to region. To clearly show the differences in correlation between 
drought indices and ENSO and MJO indices in various eco-geographical regions, we se-
lected four typical eco-geographic regions of historically drought-prone regions located 
in the humid, sub-humid, semi-arid and arid zones. For the analysis of drought conditions 
when ENSO events or MJO anomalies occurred, a time series was extracted from 2010 to 
2018, during which both warm and cold ENSO events occurred. As shown in Figure 7, 
ENSO and MJO are cyclical. In the south of the Huai River and the middle and lower 
reaches of the Yangtze River, which are the representative humid regions of China  
(Figure 7a), the trends of ENSO and MJO indices are consistent with the drought indices. 
In the Tarim and Turpan basins, which are located in the arid areas (Figure 7d), when 
higher or lower ENSO and MJO indices occur, consistent trends are observed in the 
drought indices. The results indicate that ENSO correlates with drought events in arid or 
humid areas. However, in the semi-humid North China Plain (Figure 7b) and the semi-
arid Southwest Songliao Plain (Figure 7c), the drought indices show different trends dur-
ing the alternating periods of ENSO warm and cold events, and ENSO events occurred in 
different seasons. 

Figure 6. Correlation between the meteorological drought indices and RMM (except the South China Sea Islands):
(a–e) spatial distribution of the correlation coefficient between PDSI, SC_PDSI, SPEI- 1, SPEI- 6, SPEI- 12 and RMM.

Agricultural droughts have a “lagged response” to ENSO, as shown by the overall
changes in the time series. We shifted Niño 3.4 from 1 to 12 months for the time-series
analysis when calculating the correlation coefficients between climate indices and drought
indices and found an obvious lag between them. As shown in Figure 8, the same time
lag can be seen clearly in space by combining with the spatial correlation analysis of the
12 shifted timeseries. Moreover, the correlation between agricultural drought and ENSO
and MJO indices reached a maximum of 0.75 at a lag of six months. By extracting the mean
and maximum values of the correlation coefficients at different shifting times, when the
time lag is six months, the mean value reached a maximum of 0.38 and the maximum
value also reached the maximum value of 0.75 (Table 2). This indicates that the lag time
of agricultural drought to ENSO events is six months. The strongest correlation was also
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found in previous studies, which also found that the response time of agricultural drought
to a lack of precipitation was six months [66].
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Table 2. Extraction results of the mean and maximum values of the correlation coefficients between
the VCI and Niño 3.4 in different lag periods.

Time Lag 1 2 3 4 5 6 7 8 9 10 11 12

Mean Value of Correlation
Coefficient 0.27 0.31 0.34 0.36 0.37 0.38 0.37 0.35 0.32 0.30 0.27 0.25

Max Value of Correlation
Coefficient 0.65 0.67 0.68 0.69 0.73 0.75 0.74 0.73 0.72 0.71 0.67 0.68

4. Discussion

The maximum, minimum and mean values of the correlation coefficients between
drought indices and ENSO and MJO indices were extracted from different eco-geographical
regions by zonal statistics. It was found that the impact of ENSO and MJO on drought in
different eco-geographical regions has temporal and spatial variations. However, regions
relatively prone to drought, such as northwest China, northeast China, north China, Yungui,
Guizhou, middle and lower Yangtze River and southeast coastal areas, are more likely
affected by ENSO and MJO. In addition, we found that, in north China, for example, the
distribution of precipitation and response to drought differ between seasons when an
ENSO event occurs [25]. Most of China has a typical monsoon climate caused by the
temperature difference between the ocean and land. This climate type is affected by ENSO
events, which cause high anomalies in the western Pacific subtropical area. The anomalies
affect moisture transport, resulting in droughts and floods in some regions of China [27],
such as the temperate monsoon climate in north China and subtropical monsoon climate
in the south of the Huaihe River and the middle and lower reaches of the Yangtze River.
Southwest China, a transitional crossroads of multiple monsoon circulation influences,
experiences varying degrees of drought almost every year, with major severe droughts
occurring every 5–10 years. This region is mainly a negatively correlated region, meaning
that it is more prone to drought when an El Niño event occurs [67,68]. Northwest China is
primarily an arid and semi-arid region with complex topography. It is also dominated by
plateaus and basins and is far from the ocean. Therefore, in most of northwest China, a
warm ENSO event leads to drought; that is, the higher is the Niño 3.4 index, the greater is
the possibility of severe drought [69,70].

The correlation coefficients of ENSO and MJO with the drought indices have both
positive and negative spatial correlation zones. The reason for the different correlations
is that ENSO is divided into El Niño and La Niña when the sea temperature is higher or
lower than usual [71]. Due to the combined effects of distance from the ocean, climate
and geography, the response to ENSO varies from region to region. ENSO warm and cold
events can lead to different types of extreme events. MJO is active at different phases in
different seasons, so it has varying degrees of impact on drought in each region of China.
Related studies have shown that MJO does not directly contribute to the occurrence of
ENSO events, although it indirectly contributes to the intensity and development of the
climate system during its 30–60-day activity cycle. MJO interacts with ENSO, and, whether
MJO is unusually strong or weak, an El Niño or La Niña event may occur, which results in
extreme climate events [72].

The characteristics of drought are complex and can be reflected not only by factors
such as rainfall and groundwater but also by surface temperature and vegetation coverage.
The meteorological drought indices are mainly based on rainfall, evapotranspiration and
other direct indicators, while agricultural drought is mainly based on vegetation conditions
and the water resources, which have a response time to drought, especially in the areas of
low vegetation coverage.

5. Conclusions

We analyzed the influences of ENSO and MJO on drought in different regions of
China by assessing the spatial and temporal distributions of the correlation coefficients
between ENSO and MJO indices and drought indices. The study found that ENSO and
MJO are significantly correlated with both agricultural drought and meteorological drought
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throughout China. This is especially true in the drought-prone regions of northwest China,
northeast China, north China, Yunnan, Guizhou, the middle and lower reaches of the
Yangtze River and the eastern regions near the ocean. The spatial and temporal correlations
varied due to the different eco-geographic regions located in different dry–wet partitions,
the distance from the ocean, climate, topography and vegetation coverage. According to the
distribution of positive and negative correlations between the meteorological drought and
agricultural drought indices and ENSO and MJO, we conclude that, when El Niño occurs,
the risk of drought increases in northern regions, especially in northern China, while, when
La Niña occurs, there is a possibility of drought in southern China. The correlation between
MJO and drought indices also varied, but it had a relatively more obvious impact on the
southeastern coastal area of China, northern China and the middle and lower reaches of the
Yangtze River than the other regions. The response of agricultural droughts to ENSO events
has a time lag; the correlation of shifting data on different time scales is better than that of
contemporaneous data; and the best lag time is six months. Exploring the teleconnection
mechanism of ENSO and MJO with drought in China and analyzing them quantitatively,
this study provides a theoretical basis for accurate monitoring and forecasting of drought.
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