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Abstract: Recently, land cover change detection has become a research focus of remote sensing. To
obtain the change information from remote sensing images at fine spatial and temporal resolutions,
subpixel change detection is widely studied and applied. In this paper, a new subpixel change
detection method based on radial basis function (RBF) for remote sensing images is proposed, in
which the abundance image difference measure (AIDM) is designed and utilized to enhance the
subpixel mapping (SPM) by borrowing the fine spatial distribution of the fine spatial resolution image
to decrease the influence of the spectral unmixing error. First, the fine and coarse spatial resolution
images are used to develop subpixel change detection. Second, linear spectral mixing modeling and
the degradation procedure are conducted on the coarse and fine spatial resolution image to produce
two temporal abundance images, respectively. Then, the designed AIDM is utilized to enhance the
RBF-based SPM by comparing the two temporal abundance images. At last, the proposed RBF-AIDM
method is applied for SPM and subpixel change detection. The synthetic images based on Landsat-7
Enhanced Thematic Mapper Plus (ETM+) and real case images based on two temporal Landsat-8
Operational Land Imager (OLI) images and one Moderate Resolution Imaging Spectroradiometer
(MODIS) image are undertaken to validate the proposed method. The experimental results indicate
that the proposed method can sufficiently decrease the influence of the spectral unmixing error and
improve the subpixel change detection results.

Keywords: change detection; subpixel mapping (SPM); radial basis function (RBF); abundance image
difference measure (AIDM); remote sensing

1. Introduction

In remote sensing, change detection is the process that identifies the differences that
have occurred on the Earth’s surface by observing multi-temporal images acquired in the
same area at different times [1–5]. With the advancement of remote sensing technology, the
acquisition of multi-temporal remote sensing images over a certain area is becoming more
convenient. Under this background, it is possible to detect land cover changes using remote
sensing change detection methods, and it has been one of the most important ways of land
cover change detection. Remote sensing change detection methods have been successfully
applied in many fields, such as environmental monitoring [6,7], agricultural surveys [8],
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urban studies [9,10] and forest monitoring [11,12]. At present, land cover change detection
from remote sensing images has become a research focus in remote sensing.

Over the past few decades, a large variety of change detection methods using remote
sensing images have been developed. Generally, remote sensing change detection methods
consist of three steps, namely, pre-processing, difference image generation and change
detection technique selection. (1) The pre-processing stage mainly includes geometry cor-
rection and radiative correction to address the problems caused by radiometric difference,
atmospheric difference and geometrical location difference between bi-temporal remote
sensing images. (2) The difference image generation stage is to create the difference image
between bi-temporal remote sensing images, and common difference image generation
methods include image difference [13], image ratio [14] and change vector analysis [15]. (3)
The change detection technique selection stage is to generate the change map in terms of the
difference image, and common change detection techniques include threshold-based meth-
ods [16,17], clustering-based methods [18,19], post-classification methods [20,21] machine
learning-based methods [22,23]. Moreover, deep learning-based change detection tech-
niques have been widely applied in remote sensing research [24,25]. The aforementioned
methods have been proved to be effective by practice.

In recent years, the change rate of the Earth’s surface is accelerating with the develop-
ment of technology and human behavior. Thus, the change detection results are required
to be obtained at a fine spatial resolution for detecting sufficient details. At the same time,
a fine temporal resolution is also required to detect changes in a short period, such as in
disaster monitoring. However, the reality is that sensors with fine spatial resolution usually
have a long revisit time, and sensors with fine temporal resolution always have a low
spatial resolution in contrast. For example, remote sensing images acquired by Landsat
sensors have 30 meters’ spatial resolution, but the revisit time is 16 days. Correspondingly,
remote sensing images acquired by the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors have 500 m spatial resolution, but the revisit time is 1 day. Hence, it
is necessary to develop change detection techniques at both fine spatial and temporal
resolutions.

To address the aforementioned problems, some researchers have started to pay atten-
tion to spectral unmixing and subpixel change detection methods. As we know, mixed
pixels are a widespread phenomenon within remote sensing images, especially within
coarse spatial resolution images. In a mixed pixel, it generally covers a large area and
contains more than one type of land cover class. Obviously, the existence of mixed pixels
plays an important role in restricting the accuracy of change detection at fine spatial and
temporal resolution remote sensing images. Spectral unmixing, as a mixed pixel analysis
technique, has been developed for decades to extract land cover information within mixed
pixels and it has already been utilized in change detection [26,27]. Lu et al. [26] proposed
the linear spectral mixture analysis of multi-temporal thematic mapper images to detect
land-cover change in Rondônia, Brazilian Amazon basin. Yokoya et al. [27] presented
a new multi-sensor coupled spectral unmixing framework, and the framework solved
unmixing problems involving a set of multi-sensor time-series spectral images in order to
understand the dynamic changes of the surface at a subpixel scale. However, we can only
acquire the change information at the pixel level and cannot obtain detailed information
about changes at a fine spatial resolution using spectral unmixing techniques simply for
change detection. For this reason, change detection methods based on subpixel mapping
(SPM) between remote sensing images with different spatial and temporal resolutions
have been developed in recent years [28–30]. Wang et al. [28] proposed a new subpixel
resolution land cover change detection method based on the Hopfield neural network. Wu
et al. [29] presented a new approach based on a back-propagation neural network with a
high resolution map, in which a supervised model was introduced into subpixel land-cover
change detection. He et al. [30] proposed the joint spectral–spatial–temporal maximum a
posteriori (MAP)-based model for subpixel change detection, in which a newly developed
temporal regularization model was added to the MAP model.
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Although efforts have been made to improve the change detection methods at fine
spatial and temporal resolutions, practical and effective methods still need to be developed.
In this paper, we focus on the subpixel change detection method to detect fine spatial and
temporal resolution changes. In remote sensing, SPM can be considered the post-processing
of spectral unmixing, and it is a technique to obtain a fine spatial resolution land cover map
using abundance images by estimating their spatial contribution [31–35]. Subpixel change
detection is a promising technique for its providing of fine spatial resolution thematic maps
of land cover changes. Wang et al. [33] proposed a new SPM method based on radial basis
function (RBF) interpolation, in which the subpixel soft class values were calculated by
RBF interpolation. Based on RBF-based SPM, a subpixel change detection method was
proposed to detect changes at fine spatial and temporal resolutions, and the experimental
results showed the effectiveness of the proposed subpixel change detection method [36].
Although the RBF-based subpixel change detection method has been demonstrated useful,
there is still room for improvement. The RBF-based subpixel change detection method
focused on the development of subpixel mapping but ignored the misdetection of changes
generated by spectral unmixing. In fact, the spectral unmixing error yielded at the first stage
will be propagated inevitably to the subpixel mapping stage and results in performance
degradation of change detection.

In this paper, a new RBF-based subpixel change detection method is proposed for fine
spatial and temporal resolution change detection, in which the spectral unmixing error is
considered and processed. The main contribution of this paper consists of two parts. First,
the abundance image difference measure (AIDM) is designed to reduce the impact of the
spectral unmixing error for change detection. Second, based on RBF-based SPM, a new RBF-
based subpixel change detection approach using the AIDM is developed. The remainder
of this paper is organized as follows. Section 2 presents an overview of subpixel change
detection and describes the proposed approach for fine spatial and temporal resolution
change detection. Section 3 introduces the datasets, describes the design of experiments
and illustrates and discusses the experimental results. Finally, Section 4 draws conclusions
and future developments.

2. Methods
2.1. Subpixel Change Detection Problem

As mentioned before, the subpixel change detection problem can be described as
identifying fine spatial resolution changes between bi-temporal remote sensing images
acquired from the same geographical area at different times with fine and coarse spatial
resolutions. The general scheme of subpixel change detection is shown in Figure 1. First,
the coarse image at t2 is processed using spectral unmixing techniques to generate the
abundance image, then the generated abundance image at t2 is operated by subpixel
mapping methods to yield the subpixel map. Second, the fine spatial resolution thematic
map is obtained by remote sensing image classification procedure on the fine image at
t1. Note that the spatial resolution of the subpixel map is the same as the fine spatial
resolution thematic map. Finally, subpixel resolution change detection is performed on
the subpixel map and the fine spatial resolution thematic map to produce the subpixel
resolution change map. In recent studies, the land cover information in the fine image is
incorporated into the subpixel mapping to modify the subpixel map, then improve the
subpixel change detection results.
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Figure 1. The general scheme of subpixel change detection. 
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Figure 1. The general scheme of subpixel change detection.

2.2. Spectral Unmixing on the Coarse Spatial Resolution Image

In recent years, a large number of spectral unmixing methods have been proposed,
such as linear spectral mixing modeling [37], artificial neural networks [38], support vector
machine [39] and fuzzy c-means classifier [40]. In the aforementioned spectral unmixing
methods, the linear spectral mixing modeling is widely used thanks to its simplicity. Here,
the principle of linear spectral mixing modeling is introduced briefly.

Linear spectral mixing modeling is based on the presupposition that it is a linear
combination relationship between the spectral signature of a mixed pixel and the spectra
of its endmembers. A lot of endmember extraction methods have been proposed, such as
the sequential maximum angle convex cone (SMACC) [41] and N-FINDR [42]. Therefore,
mixed pixels can be expressed by endmembers and its abundance values as follows:

X = WH + ε (1)

where X is a p× 1 vector of the mixed pixels with p spectral bands. W is a p× q matrix with
q pure spectral signatures, and the column vector W = [W1, W2, . . . , Wq] is q endmember
spectrum of the coarse image. H = [H1, H2, . . . , Hq]T is a q × 1 vector of the abundance
fractions vector. ε is a p× 1 vector of an additive noise representing the measurement errors.

To satisfy the physical interpretation, there are two constraints for spectral and abun-
dance: (1) the endmember spectral values and the abundance fractions are nonnegative,
namely, Wi ≥ 0, 0 ≤ Hi ≤ 1; (2) the sum of abundance fractions for a mixed pixel is 1, i.e.,
∑

q
i=1 Hi = 1 (i = 1, 2, . . . , q).

2.3. RBF-Based Subpixel Change Detection
2.3.1. RBF-Based SPM

The RBF-based SPM method consists of subpixel soft class value estimation and
subsequent class allocation for each subpixel. In detail, RBF interpolation was used to
estimate the soft class value, and the abundance image generated by spectral unmixing on
the coarse image is taken as input. Then an interpolation model is built for each visited
coarse pixel. Here, the principle of RBF-based SPM is introduced as follows.

Let Pi (i = 1, 2, . . . , N, N is the number of pixels in the coarse spatial resolution image)
be a coarse pixel and pi,j (j = 1, 2, . . . , S2, S is the zoom factor for SPM, i.e., each coarse
spatial resolution pixel can be divided to S × S subpixels) be a subpixel within Pi. Let
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Vk_c
(

pi,j
)

(k = 1, 2, . . . , q, q is the number of endmembers, namely, land cover classes) be
the soft class value for the k-th class at subpixel pi,j, and the task of RBF interpolation is to
predict Vk_c

(
pi,j
)

at the target fine spatial resolution. Let Pn (n = 1, 2, . . . , N, N is the number
of neighboring coarse pixels) be the neighboring pixel around Pi. In RBF interpolation, the
soft class value Vk_c

(
pi,j
)

is predicted by:

Vk_c
(

pi,j
)
=

N

∑
n=1

λk(Pn)φ
(

Pn, pi,j
)

(2)

in which φ
(

Pn, pi,j
)

is a basis function that reflects the spatial relation between subpixel
pi,j and pixel Pn, and λk(Pn) is the coefficient of class k for the coarse pixel Pn. The basis
function takes the Gaussian form:

φ
(

Pn, pi,j
)
= e−d2(Pn ,pi,j)/a2

(3)

where d
(

Pn, pi,j
)

is the Euclidean distance between the centroids of pixel Pn and subpixel
pi,j, and a is a parameter.

The coefficients λk(P1), λk(P2), . . . , λk(PN) are calculated by:
φ(P1, P1) φ(P2, P1) · · · φ(PN , P1)
φ(P1, P2) φ(P2, P2) · · · φ(PN , P2)
· · · · · · · · · · · ·

φ(P1, PN) φ(P2, PN) · · · φ(PN , PN)

×


λk(P1)
λk(P2)
· · ·

λk(PN)

 =


Fk_c(P1)
Fk_c(P2)
· · ·

Fk_c(PN)

 (4)

in which Fk_c(Pi) is the abundance fraction of class k in pixel Pi, and the elements in the
first matrix are calculated in the same way for Equation (3).

Following the above, the subpixel soft class values can be obtained. Besides, there is
one more constraint for the abundance image: the sum of the numbers of subpixels for all
classes is S2 (S is the zoom factor between the fine and coarse spatial resolution images).

Let Bk
(

pi,j
)

be the binary class value of subpixel pi,j as follows:

Bk
(

pi,j
)
=

{
1, i f pi,j ∈ class k
0, i f pi,j /∈ class k

(5)

The subsequent class allocation for each subpixel is to predict Bk
(

pi,j
)

using the gener-
ated soft class values and abundance fraction constraint. Here, the hard class allocation step
is performed by a recently developed approach, namely, allocating classes for soft-then-
hard subpixel mapping algorithms in units of class (UOC) [43]. After the aforementioned
RBF-based SPM, the subpixel map is obtained.

2.3.2. RBF-Based SPM for Subpixel Change Detection

Let TM1 denote the thematic map at t1 using remote sensing image classification meth-
ods (e.g., k-means classifier, fuzzy c-means classifier), and SM2 denote the subpixel map
at t2 using RBF-based SPM. Then, subpixel change detection is performed by comparing
TM1 and SM2 to generate the subpixel resolution change map. Note that the class number
of TM1 is the same as SM2, and is equal to the endmember number of the coarse spatial
resolution image.

2.4. AIDM Formulation

Although the aforementioned RBF-based SPM for subpixel change detection can
generate subpixel resolution change map, the existence of a spectral unmixing error reduces
the accuracy of SPM and results in performance degradation of subpixel change detection.

Let Fk_ f (Pi) be the abundance fraction of the fine spatial resolution image at t1 by
degradation process, which corresponded with the abundance fraction Fk_c(Pi) of the
coarse spatial resolution image at t2. As shown in Figure 2, the degradation procedure can
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be introduced as follows. Figure 2a shows the fine spatial resolution image patch within
the coarse pixel Pi, in which three classes are included and S = 10. We can see the number
of pixels belonging to class 1 is 38 in Figure 2a, and the abundance fraction F1_ f (Pi) can be
calculated as 0.38. Similarly, F2_ f (Pi) and F3_ f (Pi) are calculated as 0.25 and 0.37, and the
degradation result is shown in Figure 2b.
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For a particular coarse spatial resolution pixel Pi, if Fk_c(Pi)− Fk_ f (Pi) = 0, it indicates
that there is no change for class k, namely, the spatial distribution of class k in the fine spatial
resolution image is the same as that in the coarse spatial resolution image. In other words,
if Fk_c(Pi)− Fk_ f (Pi) 6= 0, some changes for class k happened and the spatial distribution of
class k at t1 is different from that at t2. However, it is ineluctable that the unmixing error is
led into change detection during the spectral unmixing process. In such a case, although
there is no change between two temporal images, the values of Fk_c(Pi) and Fk_ f (Pi) are
not consistent with each other.

To address the aforementioned problem, the AIDM is defined in this section. For
a particular pixel Pi in the abundance image, the changed information is not directly
obtained by comparing the abundance values of bi-temporal abundance images. The
overall difference of all q classes is considered to estimate the changes within the pixel Pi.
The AIDM value, denoted as DF(Pi), can be designed and formulated as follows:

DF(Pi) =
q

∑
k=1

∣∣∣Fk_c(Pi)− Fk_ f (Pi)
∣∣∣2 (6)

Using the AIDM, two thresholds are utilized to separate the changed and unchanged
pixels to improve the performance of SPM. As shown in Figure 3, if DF(Pi) ≤ T1, the pixel
belongs to the totally unchanged region; if DF(Pi) ≥ T2, the pixel belongs to the totally
changed region; and if T1 < DF(Pi) < T2, the pixel belongs to the partly changed region.
According to the aforementioned rules, the following cases are taken into consideration.

1. If DF(Pi) ≤ T1, there is no change for all classes within Pi. Consequently, the spatial
distribution of the thematic map at t2 is the same as that at t1. More specifically, the
RBF-based SPM result can be improved by repeating the fine thematic map at t1.

2. If DF(Pi) ≥ T2, it is totally changed between bi-temporal images within Pi. In this
condition, we need to make further judgments. If Fu_c(Pi) > T3 (u = 1, 2, . . . , q; T3
is a threshold parameter), it indicates that the thematic map at t2 within Pi belongs
to class u, then the RBF-based SPM result can be improved by replacing it to class u.
Otherwise, the SPM result can be directly generated by RBF-based SPM method.

3. If T1 < DF(Pi) < T2, it is indicated that there are partial changes within Pi. In
this condition, further judgments on the abundance image cannot be made, and
RBF-based SPM method is conducted to obtain the SPM result.
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2.5. RBF-Based SPM for Subpixel Change Detection with AIDM

According to the proposed AIDM, the SPM result based on RBF is improved by
utilizing the fine spatial resolution thematic map and enhances the performance of subpixel
change detection. Therefore, a new subpixel change detection method based on RBF-SPM
is proposed in this section. As shown in Figure 4, the proposed method broadly consists of
four steps.

(1) Abundance image generation. For the coarse spatial resolution image at t2, the
spectral unmixing method is conducted to generate the abundance image Fk_c(Pi). For the
fine image at t1, the remote sensing image classification method is performed to obtain
the fine spatial resolution thematic map. Then the degradation procedure is accomplished
to generate the abundance image Fk_ f (Pi) using the fine spatial resolution thematic map.
Note that the degradation procedure is achieved according to the zoom factor S to ensure
Fk_c(Pi) and Fk_ f (Pi) have the same size.

(2) AIDM incorporation. For the generated Fk_c(Pi) and Fk_ f (Pi), the proposed AIDM
is applied to yield three kinds of changed pixels, namely, totally unchanged pixels, partly
changed pixels and totally changed pixels.

(3) SPM. RBF-based SPM with the AIDM is accomplished in this step. Based on the
abundance image at t2 generated by spectral unmixing, pixels within the totally unchanged
region are modified by repeating the fine thematic map at t1. For the pixels within the
totally changed region, a further process is conducted by comparing it with T3, then
the SPM result can be enhanced by replacing it with the classes that meet the threshold
condition. For pixels in the partly changed region, RBF-based SPM is performed to generate
a subpixel map. Finally, the advanced subpixel map is obtained.

(4) Change detection. Subpixel resolution change detection is performed between the
advanced subpixel map and the fine spatial resolution thematic map to produce the final
subpixel resolution change map.
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3. Experimental Results and Discussion

To evaluate the performance of the proposed subpixel change detection method, two
datasets were tested for comparing the conventional RBF-based subpixel change detection
and the proposed method. The parameters of the RBF method were set as follows according
to the related paper [36]: the parameter a was set to 10, and the neighborhood window was
set to 5.

3.1. Experiment A

In this experiment, two temporal images acquired by the Landsat-7 Enhanced The-
matic Mapper Plus (ETM+) sensor were utilized to simulate the fine and coarse spatial
resolution images for controlling the analysis. The spatial resolution of the two temporal
images is 30 m. Specifically, the previous image was obtained in August 2001 in Liaoning
Province, China, which was denoted as the fine spatial resolution image at t1. Corre-
spondingly, the following image was obtained in August 2002 to denote the coarse spatial
resolution image at t2 by degradation procedure. The degradation procedure was accom-
plished via an S × S mean filter to generate the coarse image. As shown in Figure 5, the
two temporal Landsat-7 ETM+ images are shown in Figure 5a,b, respectively.

There are many benefits of using the existing fine spatial resolution image to simulate
the coarse spatial resolution image by degradation procedure. First, the true subpixel
resolution change map can be obtained by comparing the two temporal thematic maps
yielded by the corresponding Landsat-7 ETM+ images. Using the true subpixel resolution
change map, different subpixel change detection methods can be evaluated precisely.
Second, the true abundance images can be acquired by degrading the two temporal
thematic maps, and they are used to generate the SPM results without spectral unmixing
errors. At last, the true subpixel map can be generated by the thematic map at t2 to evaluate
the performance of SPM methods.
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Figure 5. Two temporal Landsat-7 ETM+ images covering the same area in Liaoning Province, China.
(a) Real color image (band 3, 2, and 1 as RGB) acquired in August 2001. (b) Real color image (band 3,
2, and 1 as RGB) acquired in August 2002.

The two temporal Landsat-7 ETM+ images include three classes of crops, which are
denoted as C1, C2 and C3, and the size of this area is 200 × 200 pixels. To explore the
influence of different zoom factors on subpixel change detection, the zoom factor S is set to
5, 8, 10 to generate the coarse spatial resolution image at t2 in this experiment. The spatial
resolutions are 150, 240 and 300 m, respectively. As shown in Figure 6, the synthetic coarse
images are shown in Figure 6a–c.
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For the generated coarse spatial resolution images, the linear spectral mixing model-
ing is conducted to obtain the abundance image at t2 (AI2), in which the SMACC method 
is applied to acquire the three types of endmembers for its simplicity. Then, the thematic 
map at t1 is processed to generate the abundance image at t1 (AI1) by degradation proce-
dure. In order to evaluate the performance of the spectral unmixing method, the true 
abundance image at t2 (TAI2) is acquired by degrading the thematic map at t2. Note that 

Figure 6. Synthetic coarse spatial resolution images degraded by S × S mean filter using Landsat-7
ETM+ image at t2. (a) S = 5, (b) S = 8, (c) S = 10.

The two temporal thematic maps can be obtained by all kinds of classification methods,
such as unsupervised classification methods, supervised classification methods and manual
visual interpretation. In order to guarantee the accuracy of the thematic map, manual
visual interpretation is employed in this experiment. According to the spectral differences
of the three classes of crops, the thematic maps including three land covers, namely, C1, C2
and C3, can be obtained. Furthermore, the subpixel resolution change map including six
types of changes (e.g., C1 to C2, C1 to C3) can be generated by comparing the two temporal
thematic maps. As shown in Figure 7, the thematic map at t1 is shown in Figure 7a, the
thematic map at t2 is shown in Figure 7b and the true subpixel resolution change map, or,
the reference change map, is shown in Figure 7c.
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Figure 7. Two temporal thematic maps and the reference change map. (a) The thematic map at t1. (b)
The thematic map at t2. (c) The reference change map.

For the generated coarse spatial resolution images, the linear spectral mixing modeling
is conducted to obtain the abundance image at t2 (AI2), in which the SMACC method is
applied to acquire the three types of endmembers for its simplicity. Then, the thematic map
at t1 is processed to generate the abundance image at t1 (AI1) by degradation procedure. In
order to evaluate the performance of the spectral unmixing method, the true abundance
image at t2 (TAI2) is acquired by degrading the thematic map at t2. Note that AI1 and TAI2
are obtained by degradation procedure using the two temporal thematic maps, then they
can be taken as the true abundance images. Three sets of abundance images with S = 5, 8
and 10 are shown in Figure 8. We can see that there are some differences between AI2 and
TAI2 in Figure 8, and it demonstrates that the spectral unmixing error does exist.
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After the generation of the abundance images at t2, the conventional RBF-based SPM
method (RBF1) and the proposed RBF-based SPM method with the AIDM (RBF-AIDM)
are performed to produce the subpixel map. As shown in Figure 9, taking AI2 as input
and setting T1 = 0.02, T2 = 0.3, T3 = 0.5 (the parameters are obtained by the experimental
method), the SPM results can be generated using RBF1 and RBF-AIDM. In contrast, the
SPM results (RBF-TAI2) can be achieved using TAI2 as input, and the results represent the
RBF-based SPM results without the influence of spectral unmixing error. By comparing
the three sets of SPM results with the thematic map at t2 in Figure 7b, we can see that the
SPM results based on RBF-TAI2 are better than those based on RBF1 and RBF-AIDM, and
the phenomenon indicates that the spectral unmixing error had a deep influence on SPM
results. Moreover, the SPM results based on RBF-AIDM have a greater performance than
those based on RBF1, and it is shown that the proposed AIDM can decrease the influence
of the spectral unmixing error effectively and improve the RBF-based SPM results.
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(AIDM) and RBF-true abundance image at t2 (TAI2) with S = 5, 8 and 10.

Based on the aforementioned SPM results, the subpixel resolution change maps can
be obtained by comparing the three sets of SPM results with the thematic map at t1 in
Figure 7a. As shown in Figure 10, the subpixel resolution change maps based on RBF1
are generated by comparing the RBF1-based subpixel maps and the thematic map at t1.
Similarly, the subpixel resolution change maps based on RBF-AIDM and RBF-TAI2 are
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generated by comparing the RBF-AIDM-based subpixel maps, and the RBF-TAI2-based
subpixel maps with the thematic map at t1, respectively. By comparing the three sets of
subpixel change maps with the reference change map in Figure 7c, we can see that the
subpixel resolution change maps based on RBF-TAI2 are better than those based on RBF1
and RBF-AIDM, and they indicate that the spectral unmixing error had a deep influence
on subpixel change detection. Moreover, by comparing the subpixel resolution change
maps based on RBF1 and RBF-AIDM, the results represent that RBF-AIDM-based subpixel
resolution change maps have greater performance than those based on RBF1, and they
indicate that the proposed AIDM can improve the RBF-based subpixel change detection.
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For quantitative evaluation of the three sets of subpixel change detection results based
on RBF1, RBF-AIDM and RBF-TAI2, the overall accuracy (OA) is used to evaluate the
change detection performances. Additionally, two change detection error indexes are
implemented to evaluate the influences of spectral unmixing error and SPM error. Here, we
denote E1 as the change detection error generated by spectral unmixing error and E2 as the
change detection error generated by the SPM stage. Table 1 shows the OA, E1 and E2 values
of the three sets of subpixel change detection results. As shown in Table 1, the OA of RBF1,
RBF-AIDM and RBF-TAI2 is 81.11%, 82.89 and 94.20% when S = 5, respectively. Hence, RBF-
TAI2 outperforms RBF1 and RBF-AIDM in subpixel change detection performance, and it
indicates that the spectral unmixing error has a deep influence on subpixel change detection
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considering that the subpixel change detection results based on RBF-TAI2 are generated
without the spectral unmixing stage. By comparing the subpixel change detection results
based on RBF1 and RBF-AIDM, we can see that the OA of RBF-AIDM improves 1.78% over
RBF1, and it demonstrates that the proposed method is effective in improving the subpixel
change detection performance.

Table 1. The quantitative evaluation of subpixel change detection based on the three methods.

CD OA
S = 5 S = 8 S = 10

OA1 E1 E2 OA1 E1 E2 OA1 E1 E2

RBF1 81.11 13.09 5.8 78.89 12.78 8.33 77.72 12.06 10.22

RBF-AIDM 82.89 11.31 5.8 79.51 12.16 8.33 77.99 11.79 10.22

RBF-TAI2 94.20 / 5.8 91.67 / 8.33 89.78 / 10.22

When it comes to the zoom factor S, we can see that the subpixel change detection
results of RBF1, RBF-AIDM and RBF-TAI2 with S = 8 and 10 are coincident with S = 5.
Especially, as shown in Figure 11, there is such a rule that the OA decreases as S increases.
It represents that the greater the spatial resolution difference between two temporal images,
the lower the subpixel change detection accuracy. Moreover, as S increases, the E1 gradually
decreases, and the E2 gradually increases. The phenomenon indicates that the influence of
spectral unmixing error for subpixel change detection is great when the spatial resolution
difference between the two temporal images is relatively small.
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To explore the effect of the aforementioned three threshold parameters (i.e., T1, T2 and
T3) on subpixel change detection results, the proposed RBF-AIDM method is conducted
on the Landsat-7 ETM+ images to produce the change detection results using a set of
parameters. Around the aforementioned parameters employed in experiment A, let set
T1 = 0.01, 0.02, 0.03 and 0.04; T2 = 0.2, 0.3, 0.4 and 0.5; T3 = 0.5, 0.6, 0.7, 0.8 and 0.9.
Figure 12 shows the subpixel change detection OA of the proposed RBF-AIDM method
using different parameters when S = 5. From Figure 12, three observations can be made.
First, the subpixel change detection OA based on the RBF-AIDM method using all of
the selected parameters is better than the conventional RBF1 method, and the results
indicate that the proposed RBF-AIDM method can effectively improve the subpixel change
detection result, and it is insensitive to parameter selection in the same time. Second, the
OA can achieve the maximum when T1 = 0.02, T2 = 0.3 and T3 = 0.5, and the OA will
decrease when the three parameters decrease or increase. The phenomenon indicates that
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the optimal parameters are existing and different parameters will have an effect on the
subpixel change detection result.
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3.2. Experiment B

In this experiment, a set of Landsat-MODIS images, including two temporal Landsat-8
Operational Land Imager (OLI) images and one MODIS image, was used to test the pro-
posed subpixel change detection method for a real case. The studied site is a 24 km × 24 km
area of tropical water covering the city of Hefei, China. The previous Landsat-8 OLI image
was acquired in October 2014, which was denoted as the fine spatial resolution image at
t1. The following MODIS image was acquired in October 2018, which was denoted as the
coarse spatial resolution image at t2. To facilitate accuracy evaluation, one Landsat-8 OLI
image acquired in November 2018 was used as the reference. Note that the latter Landsat-
8 OLI image is only used to evaluate the change detection accuracy as the fine spatial
resolution image and is not necessary for the proposed subpixel change detection method.

Considering that the spatial resolution of the Landsat-8 OLI image is 30 m, the SPM
method was conducted on the MODIS image to produce the 30 m spatial resolution land
cover map. Because the spatial resolution of the MODIS image is 500 m, the nearest
neighbor algorithm is used to resample the original MODIS image to 480 m for satisfying
the zoom factor. Then, the zoom factor of SPM for the MODIS image is set to 16 to predict
a land cover map at 30 m spatial resolutions. The spatial size of the Landsat image is 800 ×
800 pixels, and the MODIS image is 50 × 50 pixels, Figure 13 shows the three images.

As with experiment A, the manual visual interpretation was conducted on the two
temporal Landsat-8 OLI images to produce the corresponding thematic maps at t1 and
t2. For the studied tropical water area, two main classes, i.e., water and non-water, were
applied as the types of classification, and two change types, namely, water to non-water
and non-water to water, were detected. For each 30 m Landsat-8 OLI image, the pixels
were expected to be pure materials. Figure 14 shows the two temporal thematic maps, in
which Figure 14a shows the thematic map at t1 and Figure 14b shows the thematic map at
t2. In addition, Figure 14c shows the reference change map by comparing the two temporal
thematic maps.
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Before executing the SPM method, the linear spectral mixing modeling is conducted
on the MODIS image to produce the abundance image at t2. As with the aforementioned
thematic map, the endmembers within the abundance image include two types, namely,
water and non-water. For the Landsat-8 OLI image, the degradation procedure is performed
to produce the abundance image at t1. Figure 15 displays the two temporal abundance
images. As shown in Figure 15, the two images on the left denote the abundance images of
water and non-water based on the Landsat-8 OLI image at t1, and the two images on the
right denote the abundance images of water and non-water based on the MODIS image
at t2.

After generating the abundance images at t2 based on MODIS image, the conventional
RBF-based SPM method and the proposed RBF-based SPM method, namely, RBF1 and
RBF-AIDM, are performed to produce the subpixel map. As shown in Figure 15, taking
the aforementioned abundance image as input and setting T1 = 0.02, T2 = 0.3, T3 = 0.5,
the SPM results can be generated using RBF1 and RBF-AIDM. By comparing the two SPM
results with the thematic map at t2 in Figure 14b, we can see that the SPM result based
on RBF-AIDM is better than that based on RBF1, and the phenomenon indicates that the
proposed AIDM can decrease the influence of spectral unmixing error effectively and
improve the RBF-based SPM result.
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Using the aforementioned SPM results, the subpixel resolution change maps can
be obtained by comparing the two SPM results with the thematic map at t1. As shown
in Figure 16, the subpixel resolution change maps based on RBF1 and RBF-AIDM are
generated by comparing the RBF1-based subpixel map and RBF-AIDM-based subpixel map
with the thematic map at t1, respectively. By comparing the two subpixel change maps with
the reference change map in Figure 14c, the results represent that RBF-AIDM-based subpixel
resolution change maps have a greater performance than those based on RBF1, and they
indicate that the proposed AIDM can improve the RBF-based subpixel change detection.
Moreover, the quantitative evaluation of the two subpixel resolution change maps based on
RFB1 and RBF-AIDM demonstrates the effectiveness of the proposed method. Specifically,
the OA of subpixel resolution change map based on RBF1 is 89.04%, and the OA of subpixel
resolution change map based on RBF-AIDM is 91.76%. By comparing the subpixel change
detection results based on RBF1 and RBF-AIDM, we can see that the OA of RBF-AIDM
improve 2.72% over RBF1, and it demonstrates that the proposed method is effective in
improving the subpixel change detection performance.
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4. Conclusions

Land cover change detection from remote sensing images has become a research focus
in the remote sensing field, and the change detection results are required to be obtained
at a fine spatial resolution for detecting sufficient details in recent years. Considering
the reality that sensors with fine spatial resolution usually have a long revisit time, and
sensors with fine temporal resolution always have a low spatial resolution in contrast,
the subpixel change detection is widely utilized to produce fine spatial resolution change
detection results.

In this paper, we proposed a new RBF-based SPM method for subpixel change de-
tection with the AIDM. In this method, the AIDM is designed using the two temporal
abundance images to reduce the impact of the spectral unmixing error for subpixel change
detection. Specifically, this method can be described as follows. First, the fine and coarse
spatial resolution images are used to generate the fine spatial resolution change map. The
fine spatial resolution image is processed to obtain the fine spatial resolution thematic map
by image classification procedure, then the corresponding abundance image is generated
by degradation using the fine spatial resolution thematic map. Meanwhile, the coarse
spatial resolution image is utilized to produce the abundance image using linear spectral
mixing modeling. Second, the proposed RBF-AIDM-based SPM method is conducted
on the abundance image generated by spectral unmixing to produce the SPM result. In
this procedure, the designed AIDM is used to enhance the RBF-based SPM by comparing
the two temporal abundance images, in which the spatial distribution of the fine spatial
resolution thematic map is borrowed to improve the SPM result. Lastly, the subpixel
change map is obtained by comparing the fine spatial resolution thematic map with the
SPM result.

The synthetic image experiment based on Landsat-7 ETM+ sensor is undertaken to
validate the proposed RBF-AIDM method for controlling the analysis. The experiment
result indicates that the spectral unmixing error has a deep influence on the subpixel
change detection, and the proposed RBF-AIDM method can decrease the influence of the
spectral unmixing error effectively and improve the subpixel change detection results. In
addition, two temporal Landsat–MODIS images are used to test the proposed subpixel
change detection method for a real case, and the experiment result confirms that the
proposed method has the capability of borrowing the fine spatial distribution from the fine
spatial resolution thematic map and improving the subpixel change detection results. In
future research, more SPM algorithms will be explored for subpixel change detection and
automatic determination of parameters will be studied.
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