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Abstract: Object detection in optical remote sensing images (ORSIs) remains a difficult task because
ORSIs always have some specific characteristics such as scale-differences between classes, numerous
instances in one image and complex background texture. To address these problems, we propose
a new Multi-Feature Pyramid Network (MFPNet) with Receptive Field Block (RFB) that integrates
both local and global features to detect scattered objects and targets with scale-differences in ORSIs.
We build a Multi-Feature Pyramid Module (M-FPM) with two cascaded convolution pyramids as
the main structure of MFPNet, which handles object detection of different scales very well. RFB is
designed to construct local context information, which makes the network more suitable for the
objects detection around complex background. Asymmetric convolution kernel is introduced to RFB
to improve the ability of feature attraction by adding nonlinear transformation. Then, a two-step
detection network is constructed to combine the M-FPM and RFB to obtain more accurate results.
Through a comprehensive evaluation of the experimental results on two publicly available remote
sensing datasets Levir and DIOR, we demonstrate that our method outperforms state-of-the-art
networks for about 1.3% mAP in Levir dataset and 4.1% mAP in DIOR dataset. Experimental results
prove the effectiveness of our method in ORSIs of complex environments.

Keywords: object detection; convolutional neural networks (CNNs); remote sensing image (ORSIs);
receptive field; multi-feature pyramid

1. Introduction

As a challenging problem in the field of aerial image analysis, object detection in
optical remote sensing images (ORSIs) has attracted much more attention in recent years.
Meanwhile, optical remote sensing object detection is also an important part of the object de-
tection field because it has strong practical value. Nowadays, object detection models have
made great progress due to the development of convolutional neural networks (CNNs).
A large number of one-stage [1–4] and two-stage networks [5–10] have been put forward.
Large-scale natural image datasets for object detection tasks such as Pascal VOC [11,12]
and MS COCO [13] have also emerged. One-stage networks have high computational
efficiency, but the accuracy is often inferior to two-stage networks. Besides, some anchor-
free methods [14–16] also emerged in recent years. These approaches abandon anchors,
and are more intelligent when facing detection and classification problem. However, they
are not much efficient as one-stage networks. These methods are then applied to various
fields, such as face recognition [17,18], semantic segmentation [19–21] and autonomous
driving [22,23].

ORSIs possess abundant information and have a wide application prospect in both mil-
itary and civilian fields. However, object detection in ORSIs is a challenging task. As shown
in Figure 1, there are problems such as massive co-existing instances in one image, different
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scales between classes, and complex background textures. Due to these characteristics,
generic object detection approaches cannot perform well on ORSIs. However, trapped
by the absence of public datasets, there are not much detection methods for ORSIs. In
the past two years, object detection for ORSIs has got a chance to return to the public
with the appearance of large remote sensing datasets such as Levir [24], DOTA [25] and
DIOR [26]. Some networks such as [27–29] have emerged. These methods are designed for
the rotation cases of remote sensing objects, and they combined these with local context
features. However, these networks do not perform well in images that contain massive
instances. Some other methods [30–32] improve the speed of detection, but they are not
well optimized for small instances in ORSIs.

(a) (b) (c)
Figure 1. Three main problems in detection of ORSIs. (a) refers to the situation of scattered objects in one image. (b) has a
railway station in the middle, however it is overwhelmed by the complicated background. (c) is a scene with two categories
of objects with different scale.

To solve the problems above, we propose a Multi-Feature Pyramid Network (MFPNet)
with the Receptive Field Block (RFB). Different from the classical pyramid-based networks,
we design a cascaded pyramid structure called Multi-Feature Pyramid Module (M-FPM),
which can better balance the local and global feature extraction. The structure firstly
integrates features with different scales and make them compatible with local details and
global semantic information. Then the mixed features flow into the second stage of the
cascaded pyramid and generate balanced multi-scale features. RFB are performed to extract
local context features, strengthen the mining of local information, and enhance the ability
to detect instances with complex texture. Our method reaches state-of-the-art performance
on the Levir and DIOR benchmark. The main contributions of this work are summarized
as follows:

• We design a Multi-Feature Pyramid Network which obtains multi-scale features from
a cascaded pyramid structure. M-FPM is proposed to integrates both local and global
features, increasing the robustness of detecting scattered objects with scale differences.

• RFB is constructed to keep detailed information while increasing the receptive field.
By generating high resolution feature maps with local context information, the accu-
racy of detection can be raised.

• We have improved the network’s ability for multi-scale objects detection. The model
is also more responsive to ORSIs with numerous and scattered instances or complex
backgrounds. The network has achieved state-of-the-art results in the largest remote
sensing dataset currently.
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2. Related Works

In this section, we will briefly introduce object detection networks in ORSIs, methods
based on feature pyramids, and approaches using receptive fields. These studies have
greatly contributed to our method.

2.1. Object Detection Networks in ORSIs

CNN-based object detection networks are mainly divided into one-stage and two-
stage ones. Two-stage networks have a step of extracting Regions of Interest (ROIs), so
the detection accuracy of the network is improved, but the speed is also reduced. Faster
R-CNN [10] proposes a Region Proposal Network (RPN), which uses anchors to generate
candidate bounding boxes on the generated feature map. Cascade R-CNN [33] trains
multiple cascaded networks with various Intersection over Union (IoU) thresholds and
combines these networks together. PANet [34] makes full use of feature fusion to make
network detection results more accurate. One-stage networks omit the step of generating
ROIs, which can effectively speed up detection with the sacrifice on accuracy. RetinaNet [1]
introduces Focal Loss, which allows network to assign attention on hard negative samples.
CornerNet [35] is a keypoint-based method which uses corners of the bounding box to
detect objects. CenterNet [16] handles the center point of the bounding boxes for detection.

CNN-based object detection methods have achieved great improvement in natu-
ral image target location task, which provides a practical option for ORSIs object detec-
tion. Many optical remote sensing object detection methods today use R-CNN based
networks [27,29]. Ref. [29] seeks a breakthrough on the region proposal network (RPN). In
order to solve the problem of appearance ambiguity, Ref. [29] adds additional multiangle
anchors. Meanwhile, a hybrid restricted Boltzmann machine is introduced to provide local
context features. Ref. [27] imposes a rotation-invariant regularization function and a Fisher
discriminant regularization function to remove the similarity between classes. However,
the quality of region proposals affects the object detection performance. In order to achieve
real-time object detection, regression-based networks are also applied to ORSIs. Ref. [36]
uses YOLO-v2 [37] structure as a basic network to detect rotated objects. In response to the
lack of datasets, Refs. [38,39] focused on the transfer learning from natural images to ORSIs
to improve the detection accuracy. Ref. [39] uses multi-feature fusion. It combines two
independent CNNs to detect small objects from coarse to fine and achieves good results.
Except for this, some methods also use hard example mining [32,40] to make the model
more robust.

2.2. Object Detection Networks Based on Feature Pyramids

The feature pyramid is widely used for detecting objects with various scales. SSD [2]
obtain multi-scale features by extracting anchors in different stages. It achieves high
detection speed, but its performance for small objects is generally not as good as two-stage
networks. DSSD [41] uses deconvolution layers to extract both low-level and high-level
features, making contextual information much richer. However, the deconvolution module
slows down the speed of detection, and the deeper backbone also decreases the inference
speed. RefineDet [4] combines the advantages of one-stage and two-stage networks by
performing a correction step towards anchors to improve detection accuracy. M2Det [42]
uses Multi-Level Feature Pyramid Network (MLFPN) to fuse multiple features to detect
objects with different scales. However, the network structure is too complicated which lead
to a huge amount of parameters. Though there are still problems to be solved, the above
methods have verified that the feature pyramid has played an important role in facing
multi-scale and multi-class objects.

2.3. Object Detection Networks Using Receptive Fields

In order to reduce the depth of the network while improving the speed and accuracy
of detection, various works have been done to investigate the receptive field. According to
these research, the application of the receptive field enhances the feature representation of
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the area. The early application of the receptive field came from the Inception [43]. After that,
both Deformable CNN [44] and ASPP [45] have made their own understanding of receptive
fields. Inception [43] combines different sizes of convolution kernels to obtain multi-scale
information. However, the center point of each convolution kernel is in the same position,
which does not have a good effect on the extraction of edge information. Meanwhile,
Inception also needs to ensure that the kernel is large enough to get adequate information,
which increases the amount of parameters. ASPP [45] uses dilated convolution to extract
the characteristic information of the receptive fields in local areas. However, there are some
gaps between the convolution kernels of ASPP, and the collection of context information is
not very well. Deformable CNN [44] uses deformable convolution, which improves the
ability of CNNs for spatial modeling. However, the model can only operate on the target
area, and lacks the processing of context information. In ORSIs object detection, each object
and its surrounding background information are closely related, so this method is not
applicable. According to these shortcomings, RFBNet [46] improves the problem of lacking
receptive field information around the object. However, this model does not integrate
global and local features, so its feature extraction has limitations. All in all, the receptive
field makes it possible for fast object detection network.

3. Multi-Feature Pyramid Network

Figure 2 shows the structure of the Multi-Feature Pyramid Network (MFPNet). The
MFPNet is proposed to solve the problems of scattered distributed objects, complex back-
grounds, and scale difference between classes. These problems may also exist in general
object detection, but they are more significant in ORSIs. The size of the same object at
different resolutions may vary greatly, so most approaches are only effective on a specific
dataset. Our target is to promote the robustness of the method. As concluded in Section 2,
feature pyramids and receptive fields can make significant promotion for optical remote
sensing object detection. Thus, multi-scale features are adopted in our method. In order to
ensure that the network can cover semantic information from shallow layers to deep ones,
a cascaded feature pyramid is constructed in the VGG16 backbone and a cascade method
is used to merge the features of different layers to highlight the features of small objects.
Then, the RFB is used to extract the local context information from the cascaded feature
layer. Dilated convolutions are used to ensure the rotation-invariance. Finally, the second
convolution feature pyramid is built to propose multi-level anchors. Two detection mod-
ules are used to improve the regression and classification of the final bounding box. VGG16
is adopted as the backbone to ensure the real-time performance. In the following parts,
we will introduce the network from three aspects: (1) Multi-Feature Pyramid Module; (2)
Receptive Field Block; (3) Double-Check Detection Network Module.
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Figure 2. Architecture of MFPNet.

3.1. Multi-Feature Pyramid Module

Since the scale of objects in the ORSIs varies greatly, it is necessary to combine features
of different levels for detection. To solve the stated problems of ORSIs, the multi-scale
method is adopted, which lead to the concept of the Multi-Feature Pyramid Module (M-
FPM). The main architecture of the M-FPM consists of two parts. A cascaded feature
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pyramid and a convolution feature pyramid. In the first cascaded feature pyramid, Con-
volution Layer (Conv)3_3, Conv4_3, Conv5_3 and Conv_fc7 in VGG16 are extracted as
four source feature layers. The extraction of the feature layers refers to YOLO-v3 [47].
Though the max pooling strategy reduces the number of parameters and enhances the
global feature, the local features are also suppressed. The cascade strategy can make up
for this loss. Most objects in ORSIs are small and scattered, so local features need to be
preserved as much as possible. Thus, the pyramid start with Conv3_3 (of 80 × 80 pixels)
with rich local features. Conv4_3 (40 × 40), Conv5_3 (20 × 20) and Conv_fc7 (10 × 10) are,
respectively, upsampled to the same size as Conv3_3 to obtain the cascaded feature map.
This feature map contains both the global and local features, which allows us to extract
features using the RFB. It also enriches the features on different scales. Details of the local
and global features extracted by the cascaded feature pyramid are shown in Table 1. After
obtaining the cascaded feature map, we use stride convolution to construct the convolution
feature pyramid. The structure of the M-FPM is shown in Figure 3.

Table 1. The details of local and global features in M-FPM.

Layer Output Feature

Conv3_3 80 × 80 × 256 local
Conv4_3 40 × 40 × 512 ⇓Conv5_3 20 × 20 × 512
Conv_fc7 10 × 10 × 1024 global

Conv3_3

Conv4_3

Conv5_3

Conv_fc7

Cascaded feature pyramid

Conv3_3

Conv4_3*

Conv5_3*

Conv_fc7*Resize

Resize

Resize

Concat

Cascaded
Feature Map

Conv 3×3×512 s1

Conv 3×3×512 s2

Conv 3×3×512 s2

Conv 3×3×512 s2

Conv 3×3×512 s2

ReLU

ReLU

ReLU

ReLU

Convolution feature pyramid

Figure 3. The structure of Multi-Feature Pyramid Module. Mark * refers to the resized feature maps.

3.2. Receptive Field Block

Receptive field refers to the area where the convolution kernel can extract information
in the feature map. Receptive Field Block is a module that can obtain local context infor-
mation. In order to simulate the various receptive field sizes of the human eye, the block
is designed with a variety dilated convolution with different expansion rate, which can
increase the receptive field of convolution while reducing the information loss caused by
the operation of max pooling. As shown in Figure 4, for the incoming cascaded feature map,
the block first constructs a bottleneck structure using 1 × 1 convolution to reduce features,
and then performs convolutions with different kernel size. Asymmetrical convolution
kernels like 1 × 3 and 3 × 1 are used to introduce more nonlinear transformation as well
as save computational consumption. Dilated convolutions with different expansion rate
are then performed to simulate multi-scale receptive field. Finally, the results of the four
different branches are integrated and sent into the next layer. The Receptive Field Block
is created to help the network generating higher resolution feature maps for local context
information and improving the accuracy of object detection. Details of the local context
features in RFB are shown in Table 2. The resolution and dimension of the feature map
remains the same after concatenating the output of these four branches. Compared with
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methods using classical receptive field, our operations on the receptive field act on the
cascaded feature map, including the context information in different scales.

Table 2. The details of local and global features in RFB.

Branch Kernel Input Output Receptive Field

1 1 × 1 80 × 80 × 512 80 × 80 × 128 12 × 123 × 3, R = 1 80 × 80 × 128 80 × 80 × 128

2
1 × 1 80 × 80 × 512 80 × 80 × 128

36 × 363 × 1 80 × 80 × 128 80 × 80 × 128
3 × 3, R = 3 80 × 80 × 128 80 × 80 × 128

3
1 × 1 80 × 80 × 512 80 × 80 × 128

36 × 361 × 3 80 × 80 × 128 80 × 80 × 128
3 × 3, R = 3 80 × 80 × 128 80 × 80 × 128

4

1 × 1 80 × 80 × 512 80 × 80 × 64

60 × 601 × 3 80 × 80 × 64 80 × 80 × 96
3 × 1 80 × 80 × 96 80 × 80 × 128

3 × 3, R = 5 80 × 80 × 128 80 × 80 × 128

Feature Map

1×1 Conv 1×1 Conv1×1 Conv

3×1 Conv 1×3 Conv

3×3 Conv, R=1 3×3 Conv, R=3 3×3 Conv, R=3

Concatenation + 1×1 Conv

ReLU

Shortcut

1×1 Conv

3×1 Conv

3×3 Conv, R=5

1×3 Conv

Figure 4. The structure of Receptive Field Block. R refers to the expansion rate in the dilated convolution.

3.3. Double-Check Detection Network Module

For object detection networks, the accuracy of bounding box regression is important.
Although a one-stage detection network is much faster, it is not good for some challenging
conditions, especially for small objects in ORSIs. So, a one-stage double-check network
is used to perform better regression and classification of the bounding boxes. Bounding
boxes are initiated by anchors. In the first step of detection, a first-time regression is made
on the size and position of the bounding box. Specifically, the initial position of the anchor
box is fixed. We predict each confidence score from n candidate anchors and determine
whether it is foreground or not. At the same time, the network predicts the offset of each
anchor box to get the initial accurate position and size of the anchor box. This refined
anchor box is then sent to a second detection network for double-check. In the second step,
the location and scale of the refined anchors will be further optimized, and a confidence
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score will be assigned for each category. In order to reduce the impact of easy negative
samples on the detection and to make the network focus on hard negative samples, the
threshold is set 0.99 to filter the easy negative samples. The link between the two-steps is
a Transfer Connection Block (TCB), which is the same as described by RefineDet [4]. The
double-check detection network corresponds to the same feature map size, all from the
feature pyramid generated by the stride convolution. This design further improves the
detection accuracy and is more suitable for detecting small objects.

In order to deal with the various scales of objects, different kinds of anchors are
required. The input image resolution is 320 × 320. With the steps of 4, 8, 16, 32, and
64 pixels, the network can obtain five feature layers of different sizes. At the same time,
three anchor boxes with aspect ratios of 0.5, 1.0 and 2.0 are designed and placed in different
feature layers. In the training process, we determine the relationship between the anchor
box and the ground truth box according to the IoU size and match the anchor box with the
ground truth box with IoU greater than 0.5.

3.4. Loss Function

Our loss function consists of two parts, the first step detection network loss Ld, and the
second step detection network loss Lu. Similar to [4], combining the two-step losses as the
total loss function can achieve better performance. The loss function is designed as:

Ld(pi, xi) =
1

Nd
(∑

i
Lb(pi, [l∗i ≥ 1]) + ∑

i
[l∗i ≥ 1]Lr(xi, g∗i )) (1)

Lu(ci, ti) =
1

Nu
(∑

i
Lm(ci, l∗i ) + ∑

i
[l∗i ≥ 1]Lr(ti, g∗i )) (2)

L(pi, xi, ci, ti) = Ld(pi, xi) + Lu(ci, ti) (3)

where i is the information of the anchor box, pi is the confidence level of being the object
measured by the first step detection network, xi is the position of the anchor box obtained
by the first step detection network, and ci is the category of the anchor box in the second
step detection network, ti is the final position of the anchor box in the second step detection
network. l∗i is the category label of the true value, and g∗i is the location of the true value.
Nd and Nu represent the number of anchor boxes that are true in the first and second steps
detection network, respectively. The loss function Lb is a cross-entropy loss function for
classifying the anchor box, the loss function Lm is a softmax loss function for multi-class
classification, and the regression loss function Lr is a Smooth-L1 function.

4. Experiments

In this section, we compare the proposed MFPNet with the state-of-the-art methods.
Adequate experiments are conducted on two optical remote sensing datasets, the Levir [24]
dataset and the DIOR [26] dataset. Ablation studies are also conducted to prove the
effectiveness of each module. We use PyTorch to implement MFPNet, and the experimental
environment is CUDA 9.0, cuDNN v6, and NVIDIA GeForce 1080Ti.

4.1. Datasets and Evaluation Metric

The two datasets we adopted have differences in categories and data distributions.
Levir: Levir [24] is a small-scale remote sensing dataset, but it contains small objects

in ORSIs, so it is suitable for small and medium scale object detection. Levir contains 3791
high-resolution Google Earth images. The image size of the dataset is 800 × 600. Levir
covers most types of environments in ORSIs, such as cities, villages, mountains and oceans.
Three types of objects are labeled in the dataset, including aircrafts, ships and oil tanks.
There are 11,000 labeled independent objects in total. Although the number instances is
relatively small, the categories of targets are common in detection of ORSIs. So Levir is a
dataset suitable for verifying the feasibility of the method. The scales of the instances range
from smaller than 30 × 30 pixels to larger than 150 × 150 pixels, which is a hard task for a
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classical detector. The number of instances in the dataset is shown in Figure 5. Numbers of
objects with various scales are shown in different color.

Figure 5. The instance distribution of each category in Levir. Small instances refer to those smaller
than 30 × 30 pixels. Middle ones are those between 30 × 30 and 150 × 150 pixels. Large instances are
bigger than 150 × 150 pixels.

DIOR: DIOR [26] is currently the largest optical remote sensing dataset. As shown in
Figure 6, it contains 23,463 images and 192,472 instances, covering 20 object classes. The
size of images in the dataset is 800 × 800 pixels and the spatial resolutions range from
0.5 m to 30 m. The dataset has a large range of object size variations, not only in terms
of spatial resolution, but also in the aspect of inter- and intra-class size variability across
objects. For example, most instances of ships are small object whose size is smaller than
30 × 30 pixels, while most instances of train stations are large that have a size bigger than
150 × 150 pixels. For small objects such as oil tanks or ships, there are great numbers of
scenes that have numerous instances. There are images with complex background in DIOR,
making the dataset even harder. Moreover, the data show a long-tailed distribution, that is,
some classes such as Ship have mass instances, while other classes such as Train station have
few targets. This is a challenge to the generalization performance of the detection method.

As shown in Figure 7, the first line are images from Levir and the others are from DIOR.
Images in DIOR have more complex background. Besides, the problems of scale-difference
and scattered objects are more significant in DIOR. In general, DIOR is a more complex
dataset comparing with Levir.
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Figure 6. Total number of instances of each category in DIOR.

Figure 7. Schematic images of the datasets. The first row are images from Levir and the others are
from DIOR. Both datasets have scenes of the three problems pointed out, (i) scattered instances in
one image, (ii) complex background, and (iii) scale-differences between targets.

Evaluation Metric: The same as most object detection approaches, mean average
precision (mAP) is adopted as the evaluation metric of our method. The mAP is defined as:

mAP =
1
K

K

∑
n=1

∫
(Pn(Rn))dRn (4)

where Rn is the recall for a given class n, and Pn(Rn) represents the precision as the recall
of this class is Rn. K represents the total number of classes. The recall and precision are
defined as follows:

R =
TP

TP + FN
(5)

P =
TP

TP + FP
(6)

where TP, FN and FP represent the number of true positives, false negatives and false
positives, respectively.
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4.2. Implementation Details

In this part, we explain some details during training and inference, including the
strategy of data augmentation, hard negative mining, and optimization.

Data Augmentation: For the input data, augmentation operations similar to SSD [2]
are performed, including mirror inversion, random cropping, random mirror flipping,
image size scaling and other steps. The significance of data expansion is to make the
network more robust and adapt to different situations.

Hard Negative Mining: In order to alleviate the imbalance between positive and
negative anchors, and make the training of the network more effective, it is necessary to
remove those easy negative anchors and make the network more concentrated on learning
hard ones. We introduced hard negative mining, selecting the negative anchor boxes
with the highest loss value to learn, and keeping the ratio of foreground and background
anchors to 1:3.

Optimization and Inference: During the training process, an ImageNet pre-trained
model is loaded to the backbone. The parameters of the additional layers are randomly
initialized using Kaiming method [48]. The batch size during training is set to 32. We use
the Stochastic Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of
0.0005 to fine-tune the entire network. For Levir dataset, the learning rate is initialized to
0.001 for the first 40,000 iterations. In 40k to 80k iterations, the learning rate is attenuated
to 10−4. In the last 40k iterations, we attenuate the learning rate to 10−5.

During the inference process, the first step of the double-check detection network
deletes anchors with negative confidence scores T larger than 0.99 and then refine the
positions of other anchors. The second step of the network uses the refined anchors for
classification and further regression. Non-maximum suppression is applied to obtain the
final result.

4.3. Experimental Results

For experiments, we split the test data into different cases such as images with incom-
plete or scattered objects, so as to prove that our model can achieve promising results in
various complex situations.

4.3.1. Levir Dataset

We first conduct experiments on Levir dataset. VGG16 is adopted as the backbone.
The proposed MFPNet is compared with several state-of-the-art method, including Faster
R-CNN [10], SSD [2], RetinaNet [1], RefineDet [4] and CenterNet [16]. The experimental
results are shown in Table 3.

Table 3. Detection results on the Levir test set. All models are trained on Levir trainval set. The best
performance are shown in red.

Method Backbone Airplane Ship Oil Tank mAP

Faster R-CNN [10] VGG16 90.1 89.5 71.0 83.6
Faster R-CNN [10] ResNet-50 [49] 87.6 81.6 71.9 80.4

SSD300 [2] ResNet-50 87.7 81.5 68.7 79.3
RetinaNet500 [1] ResNet-50 87.6 80.2 74.0 80.6
RefineDet320 [4] VGG16 90.7 89.3 85.4 88.5

CenterNet-DLA [16] DLA-34 81.7 79.0 75.7 78.8
Ours VGG16 90.7 88.8 89.8 89.8

The input size of images will affect the detection accuracy. Many researchers [1–3]
have proved that the greater the size of the input image, the detection of small objects
will be more friendly, and the detection results will tend to be better, especially for the
large number of small objects in the ORSIs. Using a lower input size 320 × 320 (due to
insufficient computing resources, we are unable to test 512× 512 inputs. However, through
experience, we believe that the detection accuracy of the larger input will be much higher),
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MFPNet is capable of generating 89.8% mAP, exceeding all current one-stage and two-stage
methods. The input size of these methods is greater than or equal to ours, which proves
that our network has favorable performance on the detection of small objects in ORSIs. The
results on Levir dataset is shown in Figures 8–10.

Figure 8. Results of ships on the Levir dataset. For cases of incomplete objects, size differences and huge number of targets,
our method provides promising results.

Figure 9. Results of aircrafts on the Levir dataset. For cases of incomplete objects, size differences and huge number of
targets, our method provides promising results.
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Figure 10. Results of oil tanks on the Levir dataset. For cases of incomplete objects, size differences and huge number of
targets, our method provides promising results.

Figure 8 shows the results of ships. The first column shows the most common cases.
The second column contains some broken objects. MFPNet detects these fragmentary cases
correctly. The third column contains instances with different sizes. The M-FPM mechanism
ensure the accuracy of these cases. The last column are images that contain huge numbers
of targets. Though the objects in these images are small, our method can accurately detect
them. Figure 9 shows the results of aircrafts. Similar to Figure 8, the first column are easy
cases and the second column contains broken objects cases. The third and the last column
refer to images with different size objects and mass instances. MPFNet provides accurate
detection. Figure 10 shows the results of oil tanks. It also contains four cases similar to
Figures 8 and 9. It is worth mentioning that though the instances in the last column is very
small, our network still have high detection quality.

4.3.2. DIOR Dataset

DIOR [26] is the latest large-scale optical remote sensing dataset for target location
task. The advantage of this dataset is that it contains objects with different scales. As shown
in Table 4, in order to better display the results, we numbered each category in the dataset.

Table 4. Categories in the DIOR dataset and their corresponding numbers.

c1 Airplane c6 Chimney c11 Ground track field c16 Storage tank

c2 Airport c7 Dam c12 Harbor c17 Tennis court

c3 Baseball field c8 Expressway service area c13 Overpass c18 Train station

c4 Basketball court c9 Expressway toll station c14 Ship c19 Vehicle

c5 Bridge c10 Golf court c15 Stadium c20 Wind mill

The specific experimental results are shown in Table 5. The input size is also set as
320 × 320 and the learning rate is the same size as the experiment in Levir. MFPNet is
capable of generating 71.2% of mAP, which is 4.1% higher than the RefineDet method,
exceeding all current one and two-stage methods. Among the 20 classes of objects, most of
the classes have reached the top two highest accuracies. It means the model proposed in
this paper can show robustness against the imbalanced data distribution. At the same time,
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experiments are also conducted by using various backbone networks including VGG16,
ResNet-50, etc. Furthermore, we exploit the potential capability of the proposed MFPNet.
ResNet-50 has fewer network parameters than VGG16, but the network structure is much
deeper. From the results in Table 5, VGG16 performs better in the overall results, but for
objects with rich texture information, the detection results of ResNet-50 are much better.
The overall performance of our network excels all the comparison methods. Even if we
replace the backbone, it maintains favorable results and proves the effectiveness of the
network structure. The performance of our proposed MFPNet on multi-scale optical remote
sensing objects is also outstanding. In the first place, both the airplane and the ship are
small objects. MFPNet obtains high mAP on these categories. For objects such as airports,
stadiums and basketball courts, which have special texture features, our results are all in
the top two.

As shown in Figure 11, the first row shows the results of numerous objects. MFPNet
can detect almost all the objects even they are small and scattered. The second row shows
the conditions that the texture of the background is complex. It is hard for the network
to identify the objects from the background. However, our proposed model can find the
objects in most cases. The third row shows the results when objects with different scale
exist in one image. The M-FPM ensure our network to find all of the objects. The last row
shows several results of other categories. According to the results in Table 5, YOLO-v3 [47]
is very good for small object detection. However, for larger objects, such as airports and
golf courses, the test result is the worst. It means that YOLO-v3 has poor adaptability to
multi-scale objects. RICNN [28], RICAOD [29] and RIFD-CNN [27], which are designed
for optical remote sensing objects, achieve worse results on the DIOR dataset than other
methods because they are not adapt to multi-scale objects. Comparing to all of these
methods, the proposed MFPNet is more capable in detection tasks of ORSIs.

Figure 11. Qualitative results of MFPNet320 on the DIOR test set. The first row is the detection results when a large number
of scattered objects. The second row shows the results when the background texture is complex. The third row contains the
detection results when scale difference exists in and between classes. The fourth row are some results of other cases.
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Table 5. Detection results on the DIOR test set. All models are trained on the DIOR trainval set. * refers to adding FPN to
the method. The best performances are marked in red, and the second ones are marked in blue. Green indicates the third
best performances.

Method Backbone mAP c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

R-CNN [26] VGG16 37.7 35.6 43.0 53.8 62.3 15.6 53.7 33.7 50.2 33.5 50.1 49.3 39.5 30.9 9.1 60.8 18.0 54.0 36.1 9.1 16.4

Faster R-CNN [26] VGG16 54.1 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4

Faster R-CNN * [26] ResNet-50 63.1 54.1 71.4 63.3 81.0 42.6 72.5 57.5 68.7 62.1 73.1 76.5 42.8 56.0 71.8 57.0 53.5 81.2 53.0 43.1 80.9

Faster R-CNN * [26] ResNet-101 65.1 54.0 74.5 63.3 80.7 44.8 72.5 60.0 75.6 62.3 76.0 76.8 46.4 57.2 71.8 68.3 53.8 81.1 59.5 43.1 81.2

Mask R-CNN * [26] ResNet-50 63.5 53.8 72.3 63.2 81.0 38.7 72.6 55.9 71.6 67.0 73.0 75.8 44.2 56.5 71.9 58.6 53.6 81.1 54.0 43.1 81.1

Mask R-CNN * [26] ResNet-101 65.2 53.9 76.6 63.2 80.9 40.2 72.5 60.4 76.3 62.5 76.0 75.9 46.5 57.4 71.8 68.3 53.7 81.0 62.3 43.0 81.0

PANet [26] ResNet-50 63.8 61.9 70.4 71.0 80.4 38.9 72.5 56.6 68.4 60.0 69.0 74.6 41.6 55.8 71.7 72.9 62.3 81.2 54.6 48.2 86.7

PANet [26] ResNet-101 66.1 60.2 72.0 70.6 80.5 43.6 72.3 61.4 72.1 66.7 72.0 73.4 45.3 56.9 71.7 70.4 62.0 80.9 57.0 47.2 84.5

CBD-E [50] ResNet-101 67.8 54.2 77.0 71.5 87.1 44.6 75.4 63.5 76.2 65.3 79.3 79.5 47.5 59.3 69.1 69.7 64.3 84.5 59.4 44.7 83.1

SSD300 [26] VGG16 58.6 59.5 72.7 72.4 75.7 29.7 65.8 56.6 63.5 53.1 65.3 68.6 49.4 48.1 59.2 61.0 46.6 76.3 55.1 27.4 65.7

YOLO-v3 [26] Darknet-53 57.1 72.2 29.2 74.0 78.6 31.2 69.7 26.9 48.6 54.4 31.1 61.1 44.9 49.7 87.4 70.6 68.7 87.3 29.4 48.3 78.7

RetinaNet500 [26] ResNet-50 65.7 53.7 77.3 69.0 81.3 44.1 72.3 62.5 76.2 66.0 77.7 74.2 50.7 59.6 71.2 69.3 44.8 81.3 54.2 45.1 83.4

RetinaNet500 [26] ResNet-101 66.1 53.3 77.0 69.3 85.0 44.1 73.2 62.4 78.6 62.8 78.6 76.6 49.9 59.6 71.1 68.4 45.8 81.3 55.2 44.4 85.5

RefineDet320 [4] VGG16 67.1 69.5 80.4 74.4 81.1 40.0 72.7 68.8 80.2 58.9 77.7 74.2 61.3 57.8 63.3 75.3 47.3 81.3 65.7 34.7 78.2

CornerNet [26] Hourglass-104 64.9 58.8 84.2 72.0 80.8 46.4 75.3 64.3 81.6 76.3 79.5 79.5 26.1 60.6 37.6 70.7 45.2 84.0 57.1 43.0 75.9

M2Det320 [42] VGG16 44.0 54.7 61.4 67.1 54.6 16.7 61.6 33.2 60.1 51.7 58.5 60.2 19.6 32.7 31.3 63.0 12.4 71.4 21.5 9.0 38.2

CenterNet [16] Hourglass-104 52.4 50.2 51.2 62.2 62.3 31.7 61.0 38.5 63.1 57.0 57.3 56.6 26.2 41.1 58.3 54.1 49.7 73.6 41.7 40.5 66.8

RICNN [26] VGG16 44.2 39.1 61.0 60.1 66.3 25.3 63.3 41.1 51.7 36.6 55.9 58.9 43.5 39.0 9.1 61.1 19.1 63.5 46.1 11.4 31.5

RICAOD [26] VGG16 50.9 42.2 69.7 62.0 79.0 27.7 68.9 50.1 60.5 49.3 64.4 65.3 42.3 46.8 11.7 53.5 24.5 70.3 53.3 20.4 56.2

RIFD-CNN [26] VGG16 56.1 56.6 53.2 79.9 69.0 29.0 71.5 63.1 69.0 56.0 68.9 62.4 51.2 51.1 31.7 73.6 41.5 79.5 40.1 28.5 46.9

MFPNet320 ResNet50 69.1 73.6 80.6 80.2 80.9 41.1 74.0 69.3 84.2 63.3 76.3 74.6 62.8 58.2 69.9 71.5 55.5 82.3 66.4 38.5 79.1

MFPNet320 VGG16 71.2 76.6 83.4 80.6 82.1 44.3 75.6 68.5 85.9 63.9 77.3 77.2 62.1 58.8 77.2 76.8 60.3 86.4 64.5 41.5 80.2

Comparing with existing approaches, MFPNet can better handle the main problems in
ORSIs including complex background interference, targets scale-differences, and numerous
scattered instances in one image. Figures 12–14 demonstrate the superior performance of
MFPNet. In each case, the first column stands for Faster R-CNN and the second column
shows the results of RetinaNet. The results of MFPNet are shown in the third column.

As shown in Figure 12, there are train stations or playgrounds in the complex back-
ground. Faster R-CNN and RetinaNet miss several targets while MFPNet detects all of
them. In Figure 13, it is hard for Faster R-CNN or RetinaNet to detect huge harbors and
small ships simultaneously. However, MFPNet can achieve better results. As for Figure 14,
MFPNet detects almost all scattered targets such as oil tanks and ships, surpassing other
methods.

Though the results of MFPNet are satisfying in most cases, there are actually some
limitations. False cases are shown in Figure 15. MFPNet generates horizontal anchors.
When facing oriented targets, these anchors may extract features from the background,
misleading the detector and resulting in false detection. In response to this limitation, we
will introduce oriented anchors to MFPNet in the future investigation.
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(a) (b) (c) (d) (e) (f)
Figure 12. The results of images with complex background. Faster R-CNN (a,d) and RetinaNet (b,e) have several false or
missed detection. MFPNet (c,f) gives better results.

(a) (b) (c) (d) (e) (f)
Figure 13. The results of images having targets with scale differences. Comparing with Faster R-CNN (a,d) and RetinaNet
(b,e), MFPNet (c,f) makes better detection.

(a) (b) (c) (d) (e) (f)
Figure 14. The results of images with numerous scattered targets. Faster R-CNN (a,d) and RetinaNet (b,e) have many
missed detection, while MFPNet (c,f) detects almost all objects.
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Figure 15. False cases in DIOR dataset. False detection may occur when facing dense arrays of oriented objects.

4.4. Ablation Study

In order to verify the contribution of all modules, we test each module through
the ablation studies. We construct five different networks. They adopt the same hyper-
parameters and use the same VGG16 as the backbone network. In order to prove the
validity of our method, all experiments were trained and tested on the DIOR dataset.
The results are shown in Table 6.

Multi-Feature Pyramid Module: In order to prove the validity of the Multi-Feature
Pyramid Module, we remove the first cascaded feature pyramid and send Conv3_3,
Conv4_3, Conv5_3 and Conv_fc7 of VGG16 directly to the detection network. The RFB
are retained for context information extraction of Conv3_3. As shown in the forth line
of Table 6, the final mAP is reduced by 6.3% when testing without M-FPM. The decline
indicates that the Multi-Feature Pyramid Module enhances the ability to integrate features.
The object features with different scales are also enhanced. The result indicates that with
the help of the M-FPM, the network itself has a comprehensive improvement in detecting
optical remote sensing objects. The detection results of most classes are higher than those
without the M-FPM. The Floating Point Operations (FLOPs) and Multiply-Adds (MAdd)
drops about a quarter, suggesting that M-FPM is a main part of the network. The favor-
able improvement made by this module demonstrates the importance of multi-scale and
global-local feature fusion for optical remote sensing objects detection.

Receptive Field Block: In order to verify the validity of the Receptive Field Block,
we retain the Multi-Feature Pyramid Module and remove the Receptive Field Block that
extracts context information from the cascaded feature map. As shown in the third line
of Table 6, the final test result is reduced by 0.6%. It is because that the RFB enhances the
context information of the network, and it has a positive effect on both small and large
objects, which improves the performance obviously. As shown in Table 6, when working
without cascaded convolutional map, the feature extraction effect on small objects will be
more obvious. It works better for texture feature extraction when acting on the cascaded
convolutional map, as evidenced by the outstanding result of detecting expressway service
areas, expressway toll stations and ground track fields. The MAdd and FLOPs only drops
about a tenth. It means that the RFP is an efficient module to improve the performance of
the network.

Table 6. Results of ablation experiment. All models are trained on the DIOR trainval set and tested on the DIOR test set.

Cascade
Layers

M-FPM RFB MAdd FLOPs mAP c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

5 X X 200.6 G 99.8 G 71.2 76.6 83.4 80.6 82.1 44.3 75.6 68.5 85.9 63.9 77.3 77.2 62.1 58.8 77.2 76.8 60.3 86.4 64.5 41.5 80.2

4 X X 140.5 G 71.7 G 67.3 70.6 84.1 74.9 81.3 40.9 74.6 70.1 82.2 59.0 77.7 75.2 62.2 58.3 55.8 76.8 45.0 81.3 66.5 32.6 76.3

5 X - 181.4 G 90.2 G 70.6 77.1 81.4 80.6 81.1 43.7 74.3 69.8 84.5 63.0 77.3 76.4 62.2 58.9 76.2 76.8 60.0 86.7 62.2 40.8 79.9

5 - X 153.9 G 76.5 G 64.9 66.7 78.7 71.8 81.0 35.0 74.0 65.2 79.5 53.7 78.5 73.9 61.7 55.6 57.8 79.5 41.2 81.0 59.8 30.8 72.5

5 - - 134.7 G 66.9 G 63.2 60.8 78.1 71.0 80.7 32.7 72.7 62.4 77.8 52.8 75.9 70.1 60.1 53.2 59.5 76.7 40.5 80.5 58.8 29.4 70.2

Feature Map Scale: Experiments are also conducted for verifying the impact of the
number of layers in the M-FPM. The cascade layers in Table 6 refers to the number of
layers in the M-FPM. For the model with five cascade layers, Conv3_3, Conv4_3, Conv5_3,
Conv_fc7 and an extra Conv layer are included in the cascaded feature pyramid. When
the number of cascade layers is four, only Conv4_3, Conv5_3, Conv_fc7 and the extra
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layer are sent to the M-FPM. That is, the model with five layers in the pyramid has larger
size feature maps. As shown in the second line in Table 6, when using four layers in
M-FPM, the final result is reduced by 3.9%. The drop in mAP indicates that local features
of the images contained in Conv3_3 have a positive effect on the detection of ORSIs,
because the distribution of remote sensing objects is dispersed, and the local features have
a greater influence on the detection accuracy of dispersed objects. The increase of local
features is more conducive to detect scattered distribution objects. As shown in Table 6,
the detection result of scattered objects such as airplanes, storage tanks and vehicles has
been greatly improved.

5. Conclusions

Aiming at the problems such as scale-differences between classes, numerous instances
in one image and complex background texture in ORSIs object detection, we propose an
end-to-end network called MFPNet. We construct a Multi-Feature Pyramid Module to
combine the global semantic features and local detailed features. A Receptive Field Block is
designed to increase the receptive field and obtain local context information. Our method
can better extract features of scattered or multi-scale objects with complicated background
in ORSIs, and performs better than current state-of-the-art methods on the Levir benchmark,
achieving 89.8% mAP . On DIOR dataset, the result is 71.2% mAP, which is higher than
other approaches by more than 4.1%. MFPNet has a limitation when detecting oriented
objects. In the future, we will explore the potential of anchor-free or oriented anchor-based
methods for small object detection and hope to more accurately detect oriented objects and
further improve the performance of the network.
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Abbreviations
The following abbreviations are used in this manuscript:

CNNs convolutional neural networks
ORSIs optical remote sensing images
MFPNet Multi-Feature Pyramid Network
RFB Receptive Field Block
ROIs Regions of Interest
RPN Region Proposal Network
IoU Intersection over Union
M-FPM Multi-Feature Pyramid Module
mAP mean average precision
Conv Convolution Layer
TCB Transfer Connection Block
SGD Stochastic Gradient Descent
FLOPs Floating Point Operations
Madd Multiply-Adds
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Notations

The following notations are used in this manuscript:

i the identifier of an anchor box
Ld loss of the first step detection network
Nd the number of true anchors in the first step detection
Lb the classifying loss in the first step detection, which is a cross entropy loss
pi the confidence level of being an object
l∗i the category label
Lr the Smooth-L1 regression loss
xi the position of the anchor box obtained by the first step detection
g∗i the ground truth’s location
Lu loss of the second step detection network
Nu the number of true anchors in the second step detection
Lm the classifying loss in the second step detection, which is a softmax loss
ci the predicted category of the anchor box
ti the final prediction of location
L total loss of MFPNet
K the total number of classes
n the identifier of a category
Rn the recall for a given class n
Pn the precision for a given class n
TP the number of true positives
FN the number of false negatives
FP the number of false positives
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