
remote sensing

Article

Automated Machine Learning for High-Throughput
Image-Based Plant Phenotyping

Joshua C. O. Koh 1, German Spangenberg 2,3 and Surya Kant 1,4,*

����������
�������

Citation: Koh, J.C.O.; Spangenberg,

G.; Kant, S. Automated Machine

Learning for High-Throughput

Image-Based Plant Phenotyping.

Remote Sens. 2021, 13, 858. https://

doi.org/10.3390/rs13050858

Received: 29 January 2021

Accepted: 22 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia;
joshua.koh@agriculture.vic.gov.au

2 Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia;
german.spangenberg@agriculture.vic.gov.au

3 School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
4 Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and

Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
* Correspondence: Surya.kant@agriculture.vic.gov.au

Abstract: Automated machine learning (AutoML) has been heralded as the next wave in artificial
intelligence with its promise to deliver high-performance end-to-end machine learning pipelines with
minimal effort from the user. However, despite AutoML showing great promise for computer vision
tasks, to the best of our knowledge, no study has used AutoML for image-based plant phenotyping.
To address this gap in knowledge, we examined the application of AutoML for image-based plant
phenotyping using wheat lodging assessment with unmanned aerial vehicle (UAV) imagery as an
example. The performance of an open-source AutoML framework, AutoKeras, in image classification
and regression tasks was compared to transfer learning using modern convolutional neural network
(CNN) architectures. For image classification, which classified plot images as lodged or non-lodged,
transfer learning with Xception and DenseNet-201 achieved the best classification accuracy of 93.2%,
whereas AutoKeras had a 92.4% accuracy. For image regression, which predicted lodging scores
from plot images, transfer learning with DenseNet-201 had the best performance (R2 = 0.8303, root
mean-squared error (RMSE) = 9.55, mean absolute error (MAE) = 7.03, mean absolute percentage
error (MAPE) = 12.54%), followed closely by AutoKeras (R2 = 0.8273, RMSE = 10.65, MAE = 8.24,
MAPE = 13.87%). In both tasks, AutoKeras models had up to 40-fold faster inference times compared
to the pretrained CNNs. AutoML has significant potential to enhance plant phenotyping capabilities
applicable in crop breeding and precision agriculture.

Keywords: automated machine learning; neural architecture search; high-throughput plant pheno-
typing; wheat lodging assessment; unmanned aerial vehicle

1. Introduction

High-throughput plant phenotyping (HTP) plays a crucial role in meeting the in-
creasing demand for large-scale plant evaluation in breeding trials and crop management
systems [1–3]. Concurrent with the development of various ground-based and aerial
(e.g., unmanned aerial vehicle (UAV)) HTP systems is the rise in use of imaging sensors
for phenotyping purposes. Sensors for colour (RGB), thermal, spectral (multi- and hyper-
spectral), and 3D (e.g., LiDAR) imaging have been applied extensively for phenotyping
applications encompassing plant morphology, physiology, development, and postharvest
quality [3–6]. Consequently, the meteoric rise in big image data arising from HTP systems
necessitates the development of efficient image processing and analytical pipelines. Con-
ventional image analysis pipelines typically involve computer vision tasks (e.g., wheat
head counting using object detection), which are addressed through the development of
signal processing and/or machine learning (ML) algorithms. However, these algorithms
are sensitive to image-quality (e.g., illumination, sharpness, distortion) variations and do

Remote Sens. 2021, 13, 858. https://doi.org/10.3390/rs13050858 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6178-7036
https://doi.org/10.3390/rs13050858
https://doi.org/10.3390/rs13050858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13050858
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/5/858?type=check_update&version=2

Remote Sens. 2021, 13, 858 2 of 17

not tend to generalise well across datasets with different imaging conditions [4]. Although
traditional ML approaches have, to some degree, improved upon algorithm generalisation,
most of them still fall short of the current phenotyping demands and require significant
expert guidance in designing features that are invariant to imaging environments. To this
end, deep learning (DL), a subset of ML has emerged in recent years as the leading answer
to meeting these challenges. One key benefit of DL is that features are automatically learned
from the input data, thereby negating the need for laborious manual feature extraction,
and allow well-generalised models to be trained using datasets from diverse imaging
environments. A common DL architecture is deep convolutional neural networks (CNNs),
which have delivered state-of-the-art (SOTA) performance for computer vision tasks such
as image classification/regression, object detection, and image segmentation [7–9]. The
progress of transfer learning, a technique that allows the use of pretrained SOTA CNNs
as base models in DL, and the availability of public DL libraries have contributed to the
exponential adoption of DL in plant phenotyping. Deep CNN approaches for image-
based plant phenotyping have been applied for plant stress evaluation, plant development
characterisation, crop postharvest quality assessment, and fruit detection and yield eval-
uation [4,10–15]. However, not all modern CNN solutions can be readily implemented
for plant phenotyping applications and adoption will require extra efforts, which may be
technically challenging [4]. In addition, the process of building a high-performance DL
network for a specific task is time-consuming, resource expensive, and relies heavily on
human expertise through a trial-and-error process [4,7].

Following the exponential growth of computing power and availability of cloud
computing resources in recent years, automated machine learning (AutoML) has received
tremendous attention in both industry and academia. AutoML provides an attractive alter-
native to the manual ML practice as it promises to deliver high-performance end-to-end
ML pipelines covering data preparation (cleaning and preprocessing), feature engineering
(extraction, selection, and construction), model generation (selection and hyperparam-
eter tuning), and model evaluation requiring minimal effort or intervention from the
user [16–18]. AutoML services have become a standard offering in many technology com-
panies, for example Cloud ML by Google and SageMaker by Amazon. Early work by
Zoph et al. [19] highlighted the potential of AutoML in which a recurrent network was
trained with reinforcement learning to automatically search for the best-performing ar-
chitecture. Since then, research interest in AutoML has exploded, with a primary focus
on neural architecture search (NAS), which seeks to construct well-performing neural
architectures through the selection and combination of various basic modules from a
predefined search space [16,20,21]. NAS algorithms can be categorised based on three
dimensions: the search space, the search strategy, and the performance estimation strat-
egy [20,21] (Figure 1). The search space defines the type of models that can be designed,
this may include simple blocks or modules stacked on each other, or more complicated
structures that include skipping connections and submodules. Common NAS structure
types are entire structures [19,22], cell-based structures [23,24], progressive structures [25],
and morphism-based structures [26,27]. As the search space is often exponentially large
or even unbounded, a search strategy that typically consists of a hyperparameter optimi-
sation algorithm such as Bayesian optimisation [17,28,29], evolutionary algorithm [30,31],
reinforcement learning [19,32], or gradient descent [33] is used to explore the search space.
Once an architecture is selected, it is evaluated using a performance estimation strategy,
which speeds up performance evaluation through the use of either proxy metrics [24,34],
extrapolation of performance via learning curve [35,36], or shortening of model training
times by inheriting [30,37] or sharing weights [38–40] between architectures.

Remote Sens. 2021, 13, 858 3 of 17Remote Sens. 2021, 13, 858 3 of 18

Figure 1. Diagram showing neural architecture search methods. An architecture s from a prede-
fined search space S is selected using a search strategy. The architecture is evaluated using a per-
formance estimation strategy, which returns the estimated performance of s to the search strategy.
Source: adapted from [20].

NAS-generated models have achieved SOTA performance and outperformed man-
ually designed architectures on computer vision tasks such as image classification [41],
object detection [42], and semantic segmentation [43]. However, despite AutoML showing
great promise for computer vision tasks, to the best of our knowledge, no study has used
AutoML for image-based plant phenotyping. To address this gap in knowledge, we ex-
amined the application of AutoML for image-based plant phenotyping using wheat lodg-
ing assessment with UAV imagery as an example. The performance of an open-source
AutoML system, AutoKeras, was compared to transfer learning using pretrained CNN
architectures on image classification and image regression tasks. For image classification,
plot images were classified as either non-lodged or lodged; for image regression, lodged
plot images were used as inputs to predict lodging scores. The merits and drawbacks of
AutoML compared to transfer learning for image-based plant phenotyping are discussed.
This study presents general methodology and workflows for the implementation of Au-
toKeras for image classification and regression applicable to the plant phenotyping task.
In addition, specific methodology and workflows, including the use of a customised lodg-
ing score for UAV-based high-throughput wheat lodging assessment via AutoML and/or
transfer learning are also provided.

2. Materials and Methods
2.1. Field Experiment

A wheat breeding experiment was conducted at Agriculture Victoria, Horsham, Aus-
tralia during the winter–spring cropping season of 2018 (Lat: 36°44’35.21” S Lon:
142°6’18.01” E) (Figure 2). Seeds were sown to a planting density of 150 plants/m2 in indi-
vidual plots measuring 5 m long and 1 m wide (5 m2), with a total of 1248 plots. Severe
wind events towards the end of the cropping season (30th November–9th December) re-
sulted in significant lodging of wheat plots across the experiment. Ground-truth labels for
“lodged” and “non-lodged” were provided by an experienced field technician and a plant
scientist.

Figure 2. Wheat field experiment. Ground control points (GCPs) indicated in figure.

Figure 1. Diagram showing neural architecture search methods. An architecture s from a predefined
search space S is selected using a search strategy. The architecture is evaluated using a performance
estimation strategy, which returns the estimated performance of s to the search strategy. Source:
adapted from [20].

NAS-generated models have achieved SOTA performance and outperformed man-
ually designed architectures on computer vision tasks such as image classification [41],
object detection [42], and semantic segmentation [43]. However, despite AutoML showing
great promise for computer vision tasks, to the best of our knowledge, no study has used
AutoML for image-based plant phenotyping. To address this gap in knowledge, we exam-
ined the application of AutoML for image-based plant phenotyping using wheat lodging
assessment with UAV imagery as an example. The performance of an open-source AutoML
system, AutoKeras, was compared to transfer learning using pretrained CNN architectures
on image classification and image regression tasks. For image classification, plot images
were classified as either non-lodged or lodged; for image regression, lodged plot images
were used as inputs to predict lodging scores. The merits and drawbacks of AutoML com-
pared to transfer learning for image-based plant phenotyping are discussed. This study
presents general methodology and workflows for the implementation of AutoKeras for
image classification and regression applicable to the plant phenotyping task. In addition,
specific methodology and workflows, including the use of a customised lodging score
for UAV-based high-throughput wheat lodging assessment via AutoML and/or transfer
learning are also provided.

2. Materials and Methods
2.1. Field Experiment

A wheat breeding experiment was conducted at Agriculture Victoria, Horsham,
Australia during the winter–spring cropping season of 2018 (Lat: 36◦44′35.21′′ S Lon:
142◦6′18.01′′ E) (Figure 2). Seeds were sown to a planting density of 150 plants/m2 in
individual plots measuring 5 m long and 1 m wide (5 m2), with a total of 1248 plots. Se-
vere wind events towards the end of the cropping season (30th November–9th December)
resulted in significant lodging of wheat plots across the experiment. Ground-truth labels
for “lodged” and “non-lodged” were provided by an experienced field technician and a
plant scientist.

Remote Sens. 2021, 13, 858 3 of 18

Figure 1. Diagram showing neural architecture search methods. An architecture s from a prede-
fined search space S is selected using a search strategy. The architecture is evaluated using a per-
formance estimation strategy, which returns the estimated performance of s to the search strategy.
Source: adapted from [20].

NAS-generated models have achieved SOTA performance and outperformed man-
ually designed architectures on computer vision tasks such as image classification [41],
object detection [42], and semantic segmentation [43]. However, despite AutoML showing
great promise for computer vision tasks, to the best of our knowledge, no study has used
AutoML for image-based plant phenotyping. To address this gap in knowledge, we ex-
amined the application of AutoML for image-based plant phenotyping using wheat lodg-
ing assessment with UAV imagery as an example. The performance of an open-source
AutoML system, AutoKeras, was compared to transfer learning using pretrained CNN
architectures on image classification and image regression tasks. For image classification,
plot images were classified as either non-lodged or lodged; for image regression, lodged
plot images were used as inputs to predict lodging scores. The merits and drawbacks of
AutoML compared to transfer learning for image-based plant phenotyping are discussed.
This study presents general methodology and workflows for the implementation of Au-
toKeras for image classification and regression applicable to the plant phenotyping task.
In addition, specific methodology and workflows, including the use of a customised lodg-
ing score for UAV-based high-throughput wheat lodging assessment via AutoML and/or
transfer learning are also provided.

2. Materials and Methods
2.1. Field Experiment

A wheat breeding experiment was conducted at Agriculture Victoria, Horsham, Aus-
tralia during the winter–spring cropping season of 2018 (Lat: 36°44’35.21” S Lon:
142°6’18.01” E) (Figure 2). Seeds were sown to a planting density of 150 plants/m2 in indi-
vidual plots measuring 5 m long and 1 m wide (5 m2), with a total of 1248 plots. Severe
wind events towards the end of the cropping season (30th November–9th December) re-
sulted in significant lodging of wheat plots across the experiment. Ground-truth labels for
“lodged” and “non-lodged” were provided by an experienced field technician and a plant
scientist.

Figure 2. Wheat field experiment. Ground control points (GCPs) indicated in figure. Figure 2. Wheat field experiment. Ground control points (GCPs) indicated in figure.

Remote Sens. 2021, 13, 858 4 of 17

2.2. Image Acquisition and Processing

High-resolution aerial imaging of wheat plots with different lodging grades was
performed on 11 December 2018. Aerial imagery was acquired on a DJI Matrice M600 Pro
(Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China) UAV with a Sony A7RIII
RGB camera (35.9 mm × 24.0 mm sensor size, 42.4 megapixels resolution) mounted on a
DJI Ronin MX gimbal. Flight planning and automatic mission control was performed using
DJI’s iOS application Ground Station Pro (GS Pro). The camera was equipped with a 55 mm
fixed focal length lens and set to 1 s interval shooting with JPEG format in shutter priority
mode. Images were geotagged using a GeoSnap Express system (Field of View, Fargo,
ND, USA). The flight mission was performed at an altitude of 45 m with front and side
overlap of 75% under clear sky conditions. Seven black and white checkered square panels
(38 cm × 38 cm) were distributed in the field experiment to serve as ground control points
(GCPs) for the accurate geo-positioning of images (Figure 1). A real-time kinematic global
positioning system (RTK-GPS) receiver, EMLID Reach RS (https://emlid.com, accessed on
28 January 2021) was used to record the centre of each panel with <1 cm accuracy.

Images were imported into Pix4Dmapper version 4.4.12 (Pix4D, Prilly, Switzerland) to
generate an orthomosaic image, with the coordinates of the GCPs used for geo-rectification.
The resulting orthomosaic had a ground sampling distance (GSD) of 0.32 cm/pixel. Individ-
ual plot images were clipped and saved in TIFF format from the orthomosaic using a field
plot map with polygons corresponding to the experimental plot dimension of 5 m × 1 m
in ArcGIS Pro version 2.5.1 (Esri, Redlands, CA, USA).

2.3. Lodging Assessment

A two-stage assessment of lodging was performed in this study, and the results were
used as the basis for image classification and image regression tasks (see Section 2.4)
(Figure 3). The image classification task corresponded to the first stage of assessment in
which the lodging status, i.e., whether the plot is lodged (yes) or non-lodged (no) was
provided by the ground truth data and this could be verified easily from visual inspection
of the high-resolution plot images (Figure 4). The image regression task corresponded to
the second stage of assessment where plots identified as lodged were evaluated using a
modified lodging score based on the method of Fischer and Stapper [44]:

Lodging score =
Lodging severity

3
× Lodged area (%) (1)

Lodging severity values of 1 to 3 were assigned to three main grades of lodging based
on the inclination angle between the wheat plant and the vertical line as follows: light
lodging (severity 1; 10◦–30◦), moderate lodging (severity 2; 30◦–60◦), and heavy lodging
(severity 3; 60◦–90◦) (Figure 3) [45]. The Lodged area (%) was determined visually from
the plot images as the percentage of area lodged in the plot in proportion to the total plot
area. The derived lodging score ranged between values of 1 and 100, with a score of 100
indicating that the entire plot was lodged with heavy lodging.

https://emlid.com

Remote Sens. 2021, 13, 858 5 of 17Remote Sens. 2021, 13, 858 5 of 18

Figure 3. Experimental workflow for wheat lodging assessment.

Figure 4. Different wheat lodging severities. Wheat plot images were first classified as non-lodged
or lodged using ground-truth data. Plots identified as lodged were assessed visually and divided
into three lodging severities (light, moderate, and heavy) based on lodging angles.

2.4. Deep Learning Experiments
Deep learning experiments were conducted in Python 3.7. The performance of the

open-source AutoML framework, AutoKeras [28] version 1.0.1, in image classification and
image regression was compared to that of a manual approach using transfer learning with
pretrained modern CNN architectures implemented in Keras, Tensorflow-GPU version
2.1. For the image classification task, a binary classification scheme assigning individual
plot images to either non-lodged (class 0) or lodged (class 1) was performed. For the image
regression task, lodged plot images were used as inputs to predict the lodging score.
Training and evaluation of the models were performed on an NVIDIA Titan RTX GPU (24
GB of GPU memory) at SmartSense iHub, Agriculture Victoria.

2.4.1. Training, Validation, and Test Datasets
For image classification, the image dataset consisted of 1248 plot images with 528

plots identified as non-lodged (class 0) and 720 plots identified as lodged (class 1). Images
were first resized (downsampled) to the dimensions of 128 width × 128 height × 3 channels

Figure 3. Experimental workflow for wheat lodging assessment.

Remote Sens. 2021, 13, 858 5 of 18

Figure 3. Experimental workflow for wheat lodging assessment.

Figure 4. Different wheat lodging severities. Wheat plot images were first classified as non-lodged
or lodged using ground-truth data. Plots identified as lodged were assessed visually and divided
into three lodging severities (light, moderate, and heavy) based on lodging angles.

2.4. Deep Learning Experiments
Deep learning experiments were conducted in Python 3.7. The performance of the

open-source AutoML framework, AutoKeras [28] version 1.0.1, in image classification and
image regression was compared to that of a manual approach using transfer learning with
pretrained modern CNN architectures implemented in Keras, Tensorflow-GPU version
2.1. For the image classification task, a binary classification scheme assigning individual
plot images to either non-lodged (class 0) or lodged (class 1) was performed. For the image
regression task, lodged plot images were used as inputs to predict the lodging score.
Training and evaluation of the models were performed on an NVIDIA Titan RTX GPU (24
GB of GPU memory) at SmartSense iHub, Agriculture Victoria.

2.4.1. Training, Validation, and Test Datasets
For image classification, the image dataset consisted of 1248 plot images with 528

plots identified as non-lodged (class 0) and 720 plots identified as lodged (class 1). Images
were first resized (downsampled) to the dimensions of 128 width × 128 height × 3 channels

Figure 4. Different wheat lodging severities. Wheat plot images were first classified as non-lodged or
lodged using ground-truth data. Plots identified as lodged were assessed visually and divided into
three lodging severities (light, moderate, and heavy) based on lodging angles.

2.4. Deep Learning Experiments

Deep learning experiments were conducted in Python 3.7. The performance of the
open-source AutoML framework, AutoKeras [28] version 1.0.1, in image classification and
image regression was compared to that of a manual approach using transfer learning with
pretrained modern CNN architectures implemented in Keras, Tensorflow-GPU version 2.1.
For the image classification task, a binary classification scheme assigning individual plot
images to either non-lodged (class 0) or lodged (class 1) was performed. For the image
regression task, lodged plot images were used as inputs to predict the lodging score.
Training and evaluation of the models were performed on an NVIDIA Titan RTX GPU
(24 GB of GPU memory) at SmartSense iHub, Agriculture Victoria.

2.4.1. Training, Validation, and Test Datasets

For image classification, the image dataset consisted of 1248 plot images with 528 plots
identified as non-lodged (class 0) and 720 plots identified as lodged (class 1). Images were
first resized (downsampled) to the dimensions of 128 width × 128 height × 3 channels
(Section 2.4.2) and these were split 80:20 (seed number = 123) into training (998 images) and
test (250 images) datasets. For image regression, the 720 resized plot images identified as

Remote Sens. 2021, 13, 858 6 of 17

lodged were split 80:20 (seed number = 123) into training (576 images) and test (144 images)
datasets. Images were fed directly into AutoKeras without preprocessing as this was done
automatically by AutoKeras. In contrast, images were preprocessed to the format required
by the corresponding pretrained CNN using the provided preprocess_input function
in Keras. For model training on both image classification and regression, the training
dataset was split further 80:20 (seed number = 456) into training and validation datasets.
The validation dataset was used to evaluate training efficacy, with lower validation loss (as
defined by the loss function, Section 2.4.2) indicating a better-trained model. Performance
of trained models was evaluated on the test dataset (Section 2.4.4).

2.4.2. AutoML with AutoKeras

AutoKeras is an open-source AutoML framework built using Keras, which imple-
ments state-of-the-art NAS algorithms for computer vision and machine learning tasks [28].
It is also the only open-source NAS framework to offer both image classification and
regression abilities at the time of this study. In our study, we experienced great difficulty
in getting AutoKeras to stably complete experiments in default settings due to errors
relating to graphics processing unit (GPU) memory usage and model tuning. This is not
entirely unexpected as the beginning version 1.0, AutoKeras has undergone significant
application programming interface (API) and system architecture redesign to incorporate
KerasTuner ver. 1.0 and Tensorflow ver. 2.0. This change was necessary for AutoKeras to
capitalise on recent developments in NAS and the DL framework, Tensorflow, in addition
to providing support for the latest graphics processing unit (GPU) hardware. To partly
circumvent the existing issues, we had to implement two approaches for the DL exper-
iments to stably complete up to 100 trials, which is the number of models evaluated by
AutoKeras (i.e., 100 trials = 100 models). Firstly, all images were resized to the dimensions
of 128 × 128 × 3, and secondly, for image classification, we had to implement a custom
image classifier using the provided AutoModel class in AutoKeras. We were not successful
in completing experiments beyond 100 trials, and as such, only results up to 100 trials were
presented in this study.

For image classification, a custom image classifier was defined using the AutoModel
class, which allows the user to define a custom model by connecting modules/blocks in
AutoKeras (Figure 5). In most cases, the user only needs to define the input node(s) and
output head(s) of the AutoModel, as the rest is inferred by AutoModel itself. In our case,
the input nodes were first an ImageInput class accepting image inputs (128 × 128 × 3),
which in turn was connected to an ImageBlock class that selects iteratively from either a
ResNet [46], ResNext [47], Xception [48], or simple CNN building blocks to construct neural
networks of varying complexity and depth. The input nodes were joined to a single output
head, the ClassificationHead class, which performed the binary classification (Figure 5a).
The AutoModel was fitted to the training dataset with the tuner set as “Bayesian”, loss
function as “binary_crossentropy”, evaluation metrics as “accuracy”, and 200 training
epochs (rounds) for 10, 25, 50, and 100 trials with a seed number of 10. For image regression,
the default AutoKeras image regression class, ImageRegressor, was fitted to the training
dataset with the loss function as mean squared error (MSE), evaluation metrics as mean
absolute error (MAE), and mean absolute percentage error (MAPE), and 200 training epochs
for 10, 25, 50, and 100 trials with a seed number of 45 (Figure 5b).

The performances of the best models from 10, 25, 50, and 100 trials were evaluated on
their respective test datasets (Section 2.4.4) and exported as Keras models to allow neural
network visualisation using the Netron software (https://github.com/lutzroeder/netron,
accessed on 28 January 2021).

https://github.com/lutzroeder/netron

Remote Sens. 2021, 13, 858 7 of 17Remote Sens. 2021, 13, 858 7 of 18

Figure 5. Automated machine learning with AutoKeras. (a) AutoModel for image classification. (b) ImageRegressor for
image regression.

The performances of the best models from 10, 25, 50, and 100 trials were evaluated
on their respective test datasets (Section 2.4.4) and exported as Keras models to allow neu-
ral network visualisation using the Netron software
(https://github.com/lutzroeder/netron, accessed on 28 January 2021).

2.4.3. Transfer Learning with Pretrained CNNs
Transfer learning is a popular approach in DL, where a pretrained model is reused

as the starting point for a model on a second task [4]. This allows the user to rapidly deploy
complex neural networks, including state-of-the-art DL architectures without incurring
time and computing costs. In this study, transfer learning was performed using VGG net-
works [49], residual networks (ResNets) [46], InceptionV3 [50], Xception [48], and densely
connected CNNs (DenseNets) [51] pretrained on the ImageNet dataset. These networks
were implemented in Keras as a base model using the provided Keras API with the fol-
lowing parameters: weights = “imagenet”, include_top = False and input_shape = (128,
128, 3) (Figure 6). Output from the base model was joined to a global average pooling 2D
layer and connected to a final dense layer, with the activation function set as either “sig-
moid” for image classification or “linear” for image regression. The model was compiled
with the batch size as 32, optimiser as “Adam”, and corresponding loss functions and
evaluation metrics as described in Section 2.4.2. Model training occurred in two stages for
both image classification and regression tasks: in the first stage (100 epochs), weights of
the pretrained layers were frozen, and the Adam optimiser had a higher learning rate (1
× 10−1 or 1 × 10−2) to allow faster training of the top layers; in the second stage (200 epochs),
weights of the pretrained layers were unfrozen, and the Adam optimiser had a smaller
learning rate (1 × 10−2 to 1 × 10−5) to allow fine-tuning of the model. Learning rates were
optimised for each CNN and the values that provided the best model performance are
provided in Table 1. Performance of the trained models was evaluated on their respective
test datasets (Section 2.4.4).

Figure 5. Automated machine learning with AutoKeras. (a) AutoModel for image classification. (b) ImageRegressor for
image regression.

2.4.3. Transfer Learning with Pretrained CNNs

Transfer learning is a popular approach in DL, where a pretrained model is reused as
the starting point for a model on a second task [4]. This allows the user to rapidly deploy
complex neural networks, including state-of-the-art DL architectures without incurring
time and computing costs. In this study, transfer learning was performed using VGG
networks [49], residual networks (ResNets) [46], InceptionV3 [50], Xception [48], and
densely connected CNNs (DenseNets) [51] pretrained on the ImageNet dataset. These
networks were implemented in Keras as a base model using the provided Keras API with
the following parameters: weights = “imagenet”, include_top = False and input_shape
= (128, 128, 3) (Figure 6). Output from the base model was joined to a global average
pooling 2D layer and connected to a final dense layer, with the activation function set
as either “sigmoid” for image classification or “linear” for image regression. The model
was compiled with the batch size as 32, optimiser as “Adam”, and corresponding loss
functions and evaluation metrics as described in Section 2.4.2. Model training occurred in
two stages for both image classification and regression tasks: in the first stage (100 epochs),
weights of the pretrained layers were frozen, and the Adam optimiser had a higher learning
rate (1 × 10−1 or 1 × 10−2) to allow faster training of the top layers; in the second stage
(200 epochs), weights of the pretrained layers were unfrozen, and the Adam optimiser
had a smaller learning rate (1 × 10−2 to 1 × 10−5) to allow fine-tuning of the model.
Learning rates were optimised for each CNN and the values that provided the best model
performance are provided in Table 1. Performance of the trained models was evaluated on
their respective test datasets (Section 2.4.4).

Remote Sens. 2021, 13, 858 7 of 18

Figure 5. Automated machine learning with AutoKeras. (a) AutoModel for image classification. (b) ImageRegressor for
image regression.

The performances of the best models from 10, 25, 50, and 100 trials were evaluated
on their respective test datasets (Section 2.4.4) and exported as Keras models to allow neu-
ral network visualisation using the Netron software
(https://github.com/lutzroeder/netron, accessed on 28 January 2021).

2.4.3. Transfer Learning with Pretrained CNNs
Transfer learning is a popular approach in DL, where a pretrained model is reused

as the starting point for a model on a second task [4]. This allows the user to rapidly deploy
complex neural networks, including state-of-the-art DL architectures without incurring
time and computing costs. In this study, transfer learning was performed using VGG net-
works [49], residual networks (ResNets) [46], InceptionV3 [50], Xception [48], and densely
connected CNNs (DenseNets) [51] pretrained on the ImageNet dataset. These networks
were implemented in Keras as a base model using the provided Keras API with the fol-
lowing parameters: weights = “imagenet”, include_top = False and input_shape = (128,
128, 3) (Figure 6). Output from the base model was joined to a global average pooling 2D
layer and connected to a final dense layer, with the activation function set as either “sig-
moid” for image classification or “linear” for image regression. The model was compiled
with the batch size as 32, optimiser as “Adam”, and corresponding loss functions and
evaluation metrics as described in Section 2.4.2. Model training occurred in two stages for
both image classification and regression tasks: in the first stage (100 epochs), weights of
the pretrained layers were frozen, and the Adam optimiser had a higher learning rate (1
× 10−1 or 1 × 10−2) to allow faster training of the top layers; in the second stage (200 epochs),
weights of the pretrained layers were unfrozen, and the Adam optimiser had a smaller
learning rate (1 × 10−2 to 1 × 10−5) to allow fine-tuning of the model. Learning rates were
optimised for each CNN and the values that provided the best model performance are
provided in Table 1. Performance of the trained models was evaluated on their respective
test datasets (Section 2.4.4).

Figure 6. Transfer learning with pretrained convolutional neural network (CNN) architectures.
Output from a pretrained CNN was joined to a global average pooling 2D layer and connected to
a final dense layer, with the activation function set as either “sigmoid” for image classification or
“linear” for image regression.

Remote Sens. 2021, 13, 858 8 of 17

Table 1. Adam optimiser learning rates used in transfer learning.

Network Task 1st Training * 2nd Training *

VGG16 classification 1 × 10−2 1 × 10−4

VGG19 classification 1 × 10−1 1 × 10−4

ResNet−50 classification 1 × 10−1 1 × 10−4

ResNet−101 classification 1 × 10−2 1 × 10−4

InceptionV3 classification 1 × 10−1 1 × 10−4

Xception classification 1 × 10−1 1 × 10−4

DenseNet−169 classification 1 × 10−2 1 × 10−3

DenseNet−201 classification 1 × 10−2 1 × 10−3

VGG16 regression 1 × 10−1 1 × 10−4

VGG19 regression 1 × 10−2 1 × 10−5

ResNet−50 regression 1 × 10−2 1 × 10−3

ResNet−101 regression 1 × 10−1 1 × 10−3

InceptionV3 regression 1 × 10−1 1 × 10−3

Xception regression 1 × 10−2 1 × 10−3

DenseNet−169 regression 1 × 10−1 1 × 10−3

DenseNet−201 regression 1 × 10−2 1 × 10−3

* Adam optimiser was applied with the indicated learning rate and decay = learning rate/10.

2.4.4. Model Evaluation Metrics

For image classification, model performance on the test dataset was evaluated using
classification accuracy and Cohen’s kappa coefficient [52]. For image regression, in addition
to the mean absolute error (MAE) and the mean absolute percentage error (MAPE) provided
by AutoKeras and Keras, the coefficient of determination (R2) and the root mean-squared
error (RMSE) were also calculated to determine model performance on the test dataset.
Models were also evaluated based on total model training time (in minutes, min) and
inference time on the test dataset presented as mean ± standard deviation per image in
milliseconds (ms).

• Accuracy: accuracy represents the proportion of correctly predicted data points over
all data points. It is the most common way to evaluate a classification model and
works well when the dataset is balanced.

Accuracy =
tp + tn

tp + f p + tn + f n
× 100 (2)

where tp = true positives, fp = false positives, tn = true negatives, and fn = false
negatives.

• Cohen’s kappa coefficient: Cohen’s kappa (κ) expresses the level of agreement between
two annotators, which in this case, is the classifier and the human operator on a
classification problem. The kappa score ranges between −1 to 1, with scores above 0.8
generally considered good agreement.

κ =
(po − pe)

(1− pe)
(3)

where po is the empirical probability of agreement on the label assigned to any sample
(the observed agreement ratio), and pe is the expected agreement when both annotators
assign labels randomly.

• Root mean-squared error (RMSE): root mean-squared error provides an idea of how
much error a model typically makes in its prediction, with a higher weight for large

Remote Sens. 2021, 13, 858 9 of 17

errors. As such, RMSE is sensitive to outliers, and other performance metrics may be
more suitable when there are many outlier districts.

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(4)

where ŷi . . . ŷn are predicted values, yi . . . yn are observed values, and n is the number
of observations.

• Mean absolute error (MAE): mean absolute error, also called the average absolute
deviation is another common metric used to measure prediction errors in a model
by taking the sum of absolute value of error. Compared to RMSE, MAE gives equal
weight to all errors and as such may be less sensitive to the effects of outliers.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

where ŷi . . . ŷn are predicted values, yi . . . yn are observed values, and n is the number
of observations.

• Mean absolute percentage error (MAPE): mean absolute percentage error is the per-
centage equivalent of MAE, with the errors scaled against the observed values. MAPE
may be less sensitive to the effects of outliers compared to RMSE but is biased to-
wards predictions that are systematically less than the actual values due to the effects
of scaling.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (6)

where ŷi . . . ŷn are predicted values, yi . . . yn are observed values, and n is the number
of observations.

• Coefficient of determination (R2): the coefficient of determination is a value between
0 and 1 that measures how well a regression line fits the data. It can be interpreted
as the proportion of variance in the independent variable that can be explained by
the model.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y) 2 (7)

where ŷi . . . ŷn are predicted values, yi . . . yn are observed values, y is the mean of
observed values, and n is the number of observations.

3. Results
3.1. Image Classification

Both transfer learning with pretrained CNNs and AutoKeras performed strongly in
the image classification task (Table 2). Transfer learning’s performance with pretrained
CNNs ranged from 91.6% to 93.2% classification accuracy, with Xception (accuracy =
93.2%, kappa = 0.8612) and DenseNet-201 (accuracy = 93.2%, kappa = 0.8599) giving
the best overall accuracy (Table 2). Among the pretrained CNNs, InceptionV3 had the
fastest training (5.42 min) and inference (0.4022 ± 0.0603 ms per image) times, whereas
DenseNet-201 had the slowest training (11.79 min) and inference (0.7524 ± 0.0568 ms
per image) times. In comparison, AutoKeras’ (AK) performance ranged from 86.8% to
92.4% accuracy, with performance improving as more models (trials) were evaluated
(Table 2). The best AutoKeras model was discovered from 100 trials and had the same
92.4% accuracy as the ResNet-50 (Table 2). Impressively, AutoKeras was able to achieve
this result using a simple two-layer CNN (43,859 parameters) consisting only of a single
2D convolutional layer (Figure 7) as opposed to the 50-layer deep ResNet-50 architecture
(~23.6 million parameters). The two-layer CNN had the fastest overall inference time
(0.0228 ± 0.0005 ms per image) on the test dataset compared to other models, which was

Remote Sens. 2021, 13, 858 10 of 17

~18-fold faster compared to the InceptionV3 and up to ~33-fold faster compared to the
DenseNet-201 (Table 2). However, model training times for AutoKeras were significantly
higher compared to those of the transfer learning approaches, with the longest training time
of 251 min recorded for 100 trials, which was ~21-fold higher compared to the DenseNet-
201 (Table 2). Confusion matrices of the test set for the best models from transfer learning
and AutoML for image classification are presented in Table 3. Examination of the model
architectures returned by AutoKeras revealed that the best model architecture resulting
from the 10 and 25 trials was a deep CNN model comparable in depth and complexity to
the ResNet-50 (Supplementary Figure S1), highlighting the ability of AutoKeras to explore
deep CNN architectures even in a small model search space. Subsequently, when the model
search space was extended to 50 and 100 trials, the best model architecture discovered by
AutoKeras was the two-layer CNN model (Figure 7).

Remote Sens. 2021, 13, 858 10 of 18

compared to other models, which was ~18-fold faster compared to the InceptionV3 and up to
~33-fold faster compared to the DenseNet-201 (Table 2). However, model training times for
AutoKeras were significantly higher compared to those of the transfer learning approaches,
with the longest training time of 251 min recorded for 100 trials, which was ~21-fold higher
compared to the DenseNet-201 (Table 2). Confusion matrices of the test set for the best models
from transfer learning and AutoML for image classification are presented in Table 3. Exami-
nation of the model architectures returned by AutoKeras revealed that the best model archi-
tecture resulting from the 10 and 25 trials was a deep CNN model comparable in depth and
complexity to the ResNet-50 (Supplementary Figure S1), highlighting the ability of AutoKeras
to explore deep CNN architectures even in a small model search space. Subsequently, when
the model search space was extended to 50 and 100 trials, the best model architecture discov-
ered by AutoKeras was the two-layer CNN model (Figure 7).

Figure 7. A simple two-layer CNN model with 43,895 parameters was the best architecture discov-
ered in 50 and 100 trials. The best AutoKeras classification performance was provided by the
model from 100 trials.

Table 2. Model performance metrics for image classification.

Network Parameters Training (min) Inference (ms) Accuracy (%) Kappa
VGG16 14,715,201 6.03 0.5868 ± 0.0821 92.0 0.8355
VGG19 20,024,897 7.01 0.6468 ± 0.1035 91.6 0.8269

ResNet-50 23,589,761 5.89 0.4776 ± 0.0621 92.4 0.8449
ResNet-101 42,660,225 9.88 0.7469 ± 0.1046 92.8 0.8524
InceptionV3 21,804,833 5.42 0.4022 ± 0.0603 92.8 0.8521

Xception 20,863,529 9.06 0.5928 ± 0.0831 93.2 0.8612
DenseNet-169 12,644,545 9.23 0.6113 ± 0.0917 92.8 0.8528
DenseNet-201 18,323,905 11.79 0.7524 ± 0.0568 93.2 0.8599
AK-10_trials 23,566,856 16.06 0.4094 ± 0.0573 86.8 0.7484
AK-25_trials 23,566,856 29.18 0.4418 ± 0.0533 88.4 0.7595

Figure 7. A simple two-layer CNN model with 43,895 parameters was the best architecture discovered
in 50 and 100 trials. The best AutoKeras classification performance was provided by the model from
100 trials.

Table 2. Model performance metrics for image classification.

Network Parameters Training (min) Inference (ms) Accuracy (%) Kappa

VGG16 14,715,201 6.03 0.5868 ± 0.0821 92.0 0.8355
VGG19 20,024,897 7.01 0.6468 ± 0.1035 91.6 0.8269

ResNet-50 23,589,761 5.89 0.4776 ± 0.0621 92.4 0.8449
ResNet-101 42,660,225 9.88 0.7469 ± 0.1046 92.8 0.8524
InceptionV3 21,804,833 5.42 0.4022 ± 0.0603 92.8 0.8521

Xception 20,863,529 9.06 0.5928 ± 0.0831 93.2 0.8612
DenseNet-169 12,644,545 9.23 0.6113 ± 0.0917 92.8 0.8528
DenseNet-201 18,323,905 11.79 0.7524 ± 0.0568 93.2 0.8599
AK-10_trials 23,566,856 16.06 0.4094 ± 0.0573 86.8 0.7484
AK-25_trials 23,566,856 29.18 0.4418 ± 0.0533 88.4 0.7595
AK-50_trials 43,859 102.43 0.0233 ± 0.0026 89.6 0.7901
AK-100_trials 43,859 251.80 0.0228 ± 0.0005 92.4 0.8457

Remote Sens. 2021, 13, 858 11 of 17

Table 3. Confusion matrices for the test set for the best models from transfer learning and AutoML.

Model Classes Non-Lodged Lodged

Xception Non-lodged 98 3
Lodged 14 135

DenseNet-201 Non-lodged 95 6
Lodged 11 138

AK-100_trials Non-Lodged 99 2
Lodged 17 132

3.2. Image Regression

For the image regression task, transfer learning with DenseNet-201 gave the best
overall performance (R2 = 0.8303, RMSE = 9.55, MAE = 7.03, MAPE = 12.54%), followed
closely by AutoKeras (AK) with the model from 100 trials (R2 = 0.8273, RMSE = 10.65,
MAE = 8.24, MAPE = 13.87%) (Table 4). The CNN models varied in regression performance,
with R2 ranging between 0.76 and 0.83. Within the pretrained CNNs, DenseNet-201 had the
slowest model training (7.01 min) and per image inference (0.8141 ± 0.1059 ms) times, with
ResNet-50 having the fastest training (3.55 min) time, with a per image inference time of
0.5502 ± 0.0716 ms. For AutoKeras, performance generally improved from 10 to 100 trials
(Table 4). AutoKeras was able to achieve the second-best performance using an eight-
layer CNN resembling a truncated mini Xception network with 207,560 total parameters
(Figure 8). Two prominent features of the original 71-layer deep Xception network, namely
the use of depthwise separable convolution layers and skip connections were evident in the
AutoKeras model (Figure 8). Notably, the mini Xception network outperformed the original
pretrained Xception network (R2 = 0.7709, RMSE = 11.08, MAE = 8.22, MAPE = 13.51%)
(Table 4). Not surprisingly, the mini Xception network had the fastest per image inference
time (0.0199 ± 0.0008 ms) compared to the other models, which was ~27-fold faster com-
pared to the ResNet-50 and up to 41-fold faster compared to the DenseNet-201 (Table 4).
However, model training times for AutoKeras was again significantly higher compared to
the transfer learning approaches, with the longest training time of 325 min recorded for
100 trials, which was ~46 fold higher compared to the DenseNet-201 (Table 4). Examination
of the model architectures returned by AutoKeras revealed that the best model architecture
resulting from the 10 and 25 trials was a deep CNN model (Supplementary Figure S2),
whereas the best model architecture discovered from 50 and 100 trials was the eight-layer
mini Xception model (Figure 8).

Table 4. Model performance metrics for image regression.

Network Parameters Training (min) Inference (ms) R2 RMSE MAE MAPE (%)

VGG16 14,715,201 3.71 0.6310 ± 0.0883 0.7590 11.37 8.97 14.02
VGG19 20,024,897 4.32 0.7213 ± 0.1141 0.7707 11.03 9.19 16.01

ResNet-50 23,589,761 3.55 0.5502 ± 0.0716 0.7844 10.79 8.28 15.51
ResNet-101 42,660,225 5.85 0.7977 ± 0.1117 0.7730 11.10 8.38 15.67
InceptionV3 21,804,833 3.32 0.4318 ± 0.0648 0.7642 11.09 8.07 13.90

Xception 20,863,529 5.33 0.6452 ± 0.0903 0.7709 11.08 8.22 13.51
DenseNet-169 12,644,545 6.65 0.6545 ± 0.0982 0.7985 10.31 7.68 13.63
DenseNet-201 18,323,905 7.01 0.8141 ± 0.1059 0.8303 9.55 7.03 12.54
AK-10_trials 23,566,856 32.25 0.5574 ± 0.0009 0.7568 12.43 9.54 14.55
AK-25_trials 23,566,856 123.08 0.5719 ± 0.0008 0.7772 12.28 8.62 14.38
AK-50_trials 207,560 184.91 0.0198 ± 0.0008 0.8133 10.71 8.31 13.92

AK-100_trials 207,560 325.62 0.0199 ± 0.0008 0.8273 10.65 8.24 13.87

Remote Sens. 2021, 13, 858 12 of 17

Remote Sens. 2021, 13, 858 12 of 18

AK-100_trials 207,560 325.62 0.0199 ± 0.0008 0.8273 10.65 8.24 13.87

Figure 8. An eight-layer mini Xception model with 207,560 parameters was the best architecture
discovered in 50 and 100 trials. Three main parts (entry, middle, and exit flows) and two key fea-
tures (indicated by green boxes), namely the depthwise separable convolutional layers and skip
connections from the original Xception network [48] can be discerned. The best performance was
provided by the model from 100 trials.

4. Discussion
Using wheat lodging assessment as an example, we compared the performance of an

open-source AutoML framework, AutoKeras, to transfer learning using modern CNN ar-
chitectures for image classification and image regression. As a testament to the power and
efficacy of modern DL architectures for computer vision tasks, both AutoKeras and trans-
fer learning approaches performed well in this study, with transfer learning exhibiting a
slight performance advantage over AutoKeras.

For the image classification task, plot images were classified as either non-lodged or
lodged. The best classification performance of 93.2% was jointly achieved by transfer
learning with Xception and DenseNet-201 networks. This is not entirely surprising as both

Figure 8. An eight-layer mini Xception model with 207,560 parameters was the best architecture
discovered in 50 and 100 trials. Three main parts (entry, middle, and exit flows) and two key
features (indicated by green boxes), namely the depthwise separable convolutional layers and skip
connections from the original Xception network [48] can be discerned. The best performance was
provided by the model from 100 trials.

4. Discussion

Using wheat lodging assessment as an example, we compared the performance of
an open-source AutoML framework, AutoKeras, to transfer learning using modern CNN
architectures for image classification and image regression. As a testament to the power
and efficacy of modern DL architectures for computer vision tasks, both AutoKeras and
transfer learning approaches performed well in this study, with transfer learning exhibiting
a slight performance advantage over AutoKeras.

For the image classification task, plot images were classified as either non-lodged
or lodged. The best classification performance of 93.2% was jointly achieved by transfer
learning with Xception and DenseNet-201 networks. This is not entirely surprising as both
Xception [48] and DenseNet [51] were developed later as improved architectures compared
to the other CNNs in this study. In contrast, the best AutoKeras model (from 100 trials)

Remote Sens. 2021, 13, 858 13 of 17

achieved an accuracy of 92.4%, which is the same as those obtained by transfer learning
with ResNet-50. Classification results in this study are comparable to those reported
in a smaller study which classified 465 UAV-acquired wheat plot multispectral images
(red, green, blue channels used in models) as either non-lodged/lodged with a hand-
crafted deep neural network, LodgedNet (97.7% accuracy) and other modern DL networks
(97.7–100.0% accuracies) via transfer learning [53]. The higher classification accuracies
reported in that study may be due to the use of image data augmentation (i.e., increasing
training dataset via image transformations) which generally improves model performance
and that images were acquired prematurity (plants were still green) allowing variations in
colour to potentially contribute more informative features for modelling [45,53]. Results
in our study suggest that NAS-generated models can provide competitive performance
compared to modern, human-designed CNN architectures, with transfer learning using
pretrained CNNs exhibiting a slight performance advantage (~1% improvement) over
AutoML models. A recent survey comparing the performance of manually designed
models against those generated by NAS algorithms on the CIFAR-10 dataset, a public
dataset commonly used for benchmarking in image classification, found that the top two
best-performing models were both manually designed models [16]. However, the gap
between the manual and AutoML models was very small (<1% accuracy difference). In
our study, AutoKeras was able to achieve results comparable to those of the 50-layer deep
ResNet-50 model (~25 million parameters) using only a simple two-layer CNN model
(43,859 parameters). The two-layer CNN had the fastest inference time (0.0228 ± 0.0005 ms
per image) compared to the other models, which was up to 33-fold faster compared to the
DenseNet-201, which had the slowest inference time. As such, the two-layer CNN could
prove useful for real-time inferencing, although its simple or shallow architecture raises
concern about its generalisability across different datasets. This can be addressed in future
studies by using datasets derived from multiple trials or imaging conditions for AutoML
training to obtain a solution generalised across different environments.

For the image regression task, lodged plot images were used as inputs to predict the
lodging score. The best performance (R2 = 0.8303, RMSE = 9.55, MAE = 7.03, MAPE = 12.54%)
was obtained using transfer learning with DenseNet-201, followed closely by AutoKeras
(R2 = 0.8273, RMSE = 10.65, MAE = 8.24, MAPE = 13.87%) with the model discovered from
100 trials. In both image classification and regression tasks, transfer learning with DenseNet-
201 achieved the best results. DenseNet can be considered as an evolved version of the
ResNet [46], where the outputs of the previous layers are merged via concatenation with
succeeding layers to form blocks of densely connected layers [51]. However, similarly for
image classification, the DenseNet-201 had the slowest inference time (117.23 ± 15.25 ms)
on the test dataset in image regression, making it less suitable for time-critical applica-
tions such as real-time inferencing. In comparison, the AutoKeras model resembled a
mini eight-layer Xception model (207,560 parameters) and had the fastest inference time
(0.0199 ± 0.0008 ms per image) on the test dataset, which was ~41-fold faster compared to
the DenseNet-201. In its original form, the Xception network is 71 layers deep (~23 million
parameters) and consists of three parts: the entry flow, middle flow, and exit flow [48].
These three parts and two key features of the Xception network, namely the depthwise
separable convolutions and skip connections originally proposed in ResNet, were dis-
cernible from the mini Xception model. Research in the area of network pruning, which
compresses deep neural network through the removal/pruning of redundant parame-
ters showed that it is possible to have equally performant models with up to 97% of the
parameters pruned [54]. Although dissimilar to network pruning, as evidenced in our
study, AutoKeras can discover efficient and compact model architectures through the NAS
process. However, NAS-generated models are typically limited to variants or combinations
of modules derived from existing, human-designed CNN architectures [16,20,21]; although
recent innovations in NAS have uncovered novel CNN architectures such as SpineNet for
object detection [55].

Remote Sens. 2021, 13, 858 14 of 17

The lodging score originally proposed by Fischer and Stapper [44] is calculated from
the lodging angle and lodged area (lodging score = angle of lodging from vertical po-
sition/90 × % lodged area). In our study, the angle of lodging is replaced by lodging
severity, which is a score of 1 to 3 assigned to light, moderate, and heavy lodging grades as
determined by visual assessment of lodged plot images. Consequently, under- or overesti-
mation of lodging scores may happen for plots within the same lodging severity grade. For
example, plots with 100% lodged area and lodging angle of 65◦ (lodging severity 3) and
90◦ (lodging severity 3) will have the same lodging score of 100 in this study as opposed
to scores of 72 and 100 according to the original method. This may partly account for the
model prediction errors in the image regression task. Nonetheless, the modified lodging
score allowed a rapid evaluation of wheat lodging based on visual assessments of UAV
imagery and was useful as a target for image regression. For detailed assessment of lodging
and model performance in lodging score prediction, future studies should incorporate
manual ground-truthing of the lodging angle and lodged area to enable a more accurate
calculation of lodging scores. The current AutoML and transfer learning workflows pre-
sented for wheat lodging assessment based on UAV imagery have the potential to replace
manual observations, which are time-consuming and prone to human error. However,
further research and data are required to train and validate a robust model applicable
across different field environments, including at various crop growth stages.

One of the challenges in this study was getting AutoKeras to perform stably and
complete the DL experiments. Initial attempts were often met with an out of memory
(OOM) error message, arising from AutoKeras trying to load models too large to fit in the
GPU memory. Prior to version 1.0, AutoKeras had a GPU memory adaptation function
that limits the size of neural networks according to the GPU memory [28]. However,
beginning with version 1.0, this function is no longer implemented in AutoKeras (personal
communication with Haifeng Jin, author of AutoKeras) and may partially account for the
OOM errors. To partly circumvent this issue, we had to resize all input images (1544 × 371)
to a smaller size of 128 × 128, which allowed AutoKeras to complete experiments up to
100 trials. The impact of the downsized images on AutoKeras model performance would
need to be ascertained in future studies, although the 128 × 128 image size is within
common ranges observed in DL models, for example, LodgedNet (64 × 128) [53] and
established modern CNN architectures (224 × 224) [46,49,51]. As AutoKeras is undergoing
active development, we are hopeful that issues encountered in our study will be resolved
in future releases. It will be interesting to explore AutoKeras’ performance with larger
model search space (>100 trials) using higher-resolution input images coupled with image
data augmentation where appropriate in future studies.

Transfer learning using existing modern CNN architectures achieved better results
compared to AutoML in both image classification and regression tasks in this study. How-
ever, a major limitation is that these CNN models have been trained using three-channel
RGB images and this prevents direct application of these models for image sources be-
yond three channels, such as multispectral and hyperspectral images [53]. In addition,
existing CNN architectures may not always provide the best performance compared to
custom-designed models. However, modification of existing CNN architectures or man-
ually designing CNN models are time-consuming and technically challenging. In this
regard, AutoML provides an attractive alternative as it can deliver CNN models with good
performance out-of-the-box and can accept inputs of varying sizes and dimensions, making
it ideal for use on diverse sensor-derived data including multispectral and hyperspectral
imagery. Furthermore, an added benefit of AutoML is its potential through NAS to dis-
cover compact model architectures that are ideal for real-time inferencing. However, to
ensure generalisability of the NAS-generated models across datasets, it is vital to use a
training dataset representative of the diverse trial environments and imaging conditions
in future studies. At first glance, a downside of AutoML appears to be the long training
times (hours as opposed to minutes) required to achieve models with competitive perfor-
mance compared to transfer learning, even when using modern GPU hardware. However,

Remote Sens. 2021, 13, 858 15 of 17

model training times alone do not provide a complete picture of the total experimental or
operational time (including manual hours) spent on each of the approaches. For example,
transfer learning in this study entailed countless man-hours necessary to select, compare,
and fine-tune pretrained CNN models. In that regard, the hours incurred in AutoML would
not differ much and may even compare favourably to the total operational time spent on
transfer learning. The significant GPU computational costs associated with AutoML hinder
it from being widely adopted by DL practitioners for now. However, this is expected to
be offset in time by the rapid growth in GPU computing power and the concurrent rise in
GPU affordability. Another concern relating to AutoML is the reproducibility of results
owing to the stochastic nature of NAS [56]. This concern can largely be addressed through
making available all datasets, source codes (including exact seeds used), and best models
reported in the NAS study—a practice embraced in this study (see Data Availability).

5. Conclusions

Results in our study demonstrate that transfer learning with modern CNNs performed
better compared to AutoML, although the performance differences were minimal, and the
current AutoML performance observed may not be at its full potential due to technical
issues. For most computer vision tasks using RGB image datasets, transfer learning
with existing CNNs will provide a good starting point and should yield satisfactory
results in most cases with minimal effort and time. However, for plant phenotyping
applications that are time critical and generate image datasets beyond the standard RGB
three channels, AutoML is a good alternative to manual DL approaches and should be in the
toolbox of both novice and expert users alike. For field-based crop phenotyping, portable
multispectral and hyperspectral sensors are becoming common on ground-based and aerial
HTP platforms [3], providing ample avenues for AutoML application. Moving forward,
with the exponential rise in GPU computing power and strong interests in NAS research,
AutoML systems are expected to become more ubiquitous. In tandem with existing
DL practices, they can contribute significantly towards the streamlined development of
image analytical pipelines for HTP systems integral to improving breeding program and
crop management efficiencies. Results in our study provide a basis for the adoption and
application of AutoML systems for high-throughput image-based plant phenotyping.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/5/858/s1, Figure S1: Best AutoKeras model architecture discovered from 10 and 25 trials for
image classification, Figure S2: Best AutoKeras model architecture discovered from 10 and 25 trials
for image regression.

Author Contributions: Conceptualisation, J.C.O.K., G.S., and S.K.; methodology, software, valida-
tion, formal analysis, data curation, and writing—original draft preparation, J.C.O.K.; investigation,
resources, writing—review and editing, and supervision, S.K.; project administration and funding
acquisition, S.K. and G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Datasets containing 1248 digital images (1544 × 371 pixels) of individ-
ual wheat plots with varying grades of lodging and corresponding lodging data are available on
Zenodo [57]. Ground-truth data for lodging status and calculated lodging scores are provided as a
comma-separated values (CSV) file. Source codes required to replicate the analyses in this article and
the best performing models reported for AutoKeras are provided in a GitHub repository [58].

Acknowledgments: We thank Dennis Ward and Emily Thoday-Kennedy for technical support in
conducting the field experiment.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2072-4292/13/5/858/s1
https://www.mdpi.com/2072-4292/13/5/858/s1

Remote Sens. 2021, 13, 858 16 of 17

References
1. Ninomiya, S.; Baret, F.; Cheng, Z.-M.M. Plant Phenomics: Emerging Transdisciplinary Science. Plant Phenom. 2019, 2019, 1–3.

[CrossRef] [PubMed]
2. Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant Phenomics, From Sensors to Knowledge. Curr. Biol. 2017, 27,

R770–R783. [CrossRef] [PubMed]
3. Mir, R.R.; Reynolds, M.; Pinto, F.; Khan, M.A.; Bhat, M.A. High-throughput phenotyping for crop improvement in the genomics

era. Plant Sci. 2019, 282, 60–72. [CrossRef] [PubMed]
4. Jiang, Y.; Li, C. Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review. Plant Phenom.

2020, 2020, 1–22. [CrossRef]
5. Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Huang, Z.; Zhou, H.; Wang, C.; Lian, G. Three-dimensional perception of orchard banana

central stock enhanced by adaptive multi-vision technology. Comput. Electron. Agric. 2020, 174, 105508. [CrossRef]
6. Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of consumer RGB-D cameras for fruit detection and localization

in field: A critical review. Comput. Electron. Agric. 2020, 177, 105687. [CrossRef]
7. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
8. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A

Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]
9. Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [CrossRef]
10. Balasubramanian, V.N.; Guo, W.; Chandra, A.L.; Desai, S.V. Computer Vision with Deep Learning for Plant Phenotyping in

Agriculture: A Survey. Adv. Comput. Commun. 2020. Epub ahead of printing. [CrossRef]
11. Watt, M.; Fiorani, F.; Usadel, B.; Rascher, U.; Muller, O.; Schurr, U. Phenotyping: New Windows into the Plant for Breeders. Annu.

Rev. Plant Biol. 2020, 71, 689–712. [CrossRef] [PubMed]
12. Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking

Robots: A Review. Front. Plant Sci. 2020, 11, 510. [CrossRef] [PubMed]
13. Chen, Y.; Lee, W.S.; Gan, H.; Peres, N.; Fraisse, C.; Zhang, Y.; He, Y. Strawberry Yield Prediction Based on a Deep Neural Network

Using High-Resolution Aerial Orthoimages. Remote Sens. 2019, 11, 1584. [CrossRef]
14. Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R–CNN-based apple detection in dense-foliage fruiting-wall trees

using RGB and depth features for robotic harvesting. Biosyst. Eng. 2020, 197, 245–256. [CrossRef]
15. Chen, S.; Tang, M.; Kan, J. Predicting Depth from Single RGB Images with Pyramidal Three-Streamed Networks. Sensors 2019, 19,

667. [CrossRef]
16. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 106622. [CrossRef]
17. Truong, A.; Walters, A.; Goodsitt, J.; Hines, K.; Bruss, C.B.; Farivar, R. Towards Automated Machine Learning: Evaluation and

Comparison of AutoML Approaches and Tools. In Proceedings of the 31st International Conference on Tools with Artificial
Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1471–1479.

18. Zöller, M.-A.; Huber, M.F. Benchmark and Survey of Automated Machine Learning Frameworks. J. Artif. Intell. Res. 2021, 70,
409–472. [CrossRef]

19. Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578.
20. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. arXiv 2019, arXiv:1808.05377.
21. Wistuba, M.; Rawat, A.; Pedapati, T. A Survey on Neural Architecture Search. arXiv 2019, arXiv:1905.01392.
22. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient Neural Architecture Search via Parameters Sharing. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4095–4104.
23. Zhong, Z.; Yan, J.; Liu, C. Practical Network Blocks Design with Q-Learning. arXiv 2017, arXiv:1708.05552.
24. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings

of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 8697–8710.

25. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical Representations for Efficient Architecture Search.
arXiv 2018, arXiv:1711.00436.

26. Chen, T.; Goodfellow, I.J.; Shlens, J. Net2Net: Accelerating Learning via Knowledge Transfer. arXiv 2016, arXiv:1511.05641.
27. Wei, T.; Wang, C.; Rui, Y.; Chen, C.W. Network Morphism. In Proceedings of the 33rd International Conference on Machine

Learning, New York, NY, USA, 20–22 June 2016; pp. 564–572.
28. Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 3–7 August 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 1946–1956.

29. Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J.T.; Urban, M.; Burkart, M.; Dippel, M.; Lindauer, M.; Hutter, F. Towards
Automatically-Tuned Deep Neural Networks. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L.,
Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 135–149. [CrossRef]

30. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution of Image Classifiers.
arXiv 2017, arXiv:1703.01041.

http://doi.org/10.34133/2019/2765120
http://www.ncbi.nlm.nih.gov/pubmed/33313524
http://doi.org/10.1016/j.cub.2017.05.055
http://www.ncbi.nlm.nih.gov/pubmed/28787611
http://doi.org/10.1016/j.plantsci.2019.01.007
http://www.ncbi.nlm.nih.gov/pubmed/31003612
http://doi.org/10.34133/2020/4152816
http://doi.org/10.1016/j.compag.2020.105508
http://doi.org/10.1016/j.compag.2020.105687
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1109/TPAMI.2021.3059968
http://www.ncbi.nlm.nih.gov/pubmed/33596172
http://doi.org/10.1016/j.neucom.2020.01.085
http://doi.org/10.34048/ACC.2020.1.F1
http://doi.org/10.1146/annurev-arplant-042916-041124
http://www.ncbi.nlm.nih.gov/pubmed/32097567
http://doi.org/10.3389/fpls.2020.00510
http://www.ncbi.nlm.nih.gov/pubmed/32508853
http://doi.org/10.3390/rs11131584
http://doi.org/10.1016/j.biosystemseng.2020.07.007
http://doi.org/10.3390/s19030667
http://doi.org/10.1016/j.knosys.2020.106622
http://doi.org/10.1613/jair.1.11854
http://doi.org/10.1007/978-3-030-05318-5_7

Remote Sens. 2021, 13, 858 17 of 17

31. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef]

32. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing Neural Network Architectures using Reinforcement Learning. arXiv 2017,
arXiv:1611.02167.

33. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. arXiv 2019, arXiv:1806.09055.
34. Zela, A.; Klein, A.; Falkner, S.; Hutter, F. Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperpa-

rameter Search. arXiv 2018, arXiv:1807.06906.
35. Klein, A.; Falkner, S.; Springenberg, J.T.; Hutter, F. Learning Curve Prediction with Bayesian Neural Networks. In Proceedings of

the 5th International Conference on Learning Representations (ICRL 2017), Toulon, France, 24–26 April 2017.
36. Swersky, K.; Snoek, J.; Adams, R. Freeze-Thaw Bayesian Optimization. arXiv 2014, arXiv:1406.3896.
37. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution. arXiv 2019,

arXiv:1804.09081.
38. Bender, G.; Kindermans, P.; Zoph, B.; Vasudevan, V.; Le, Q.V. Understanding and Simplifying One-Shot Architecture Search. In

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
39. Cai, H.; Zhu, L.; Han, S. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. arXiv 2019,

arXiv:1812.00332.
40. Xie, S.; Zheng, H.; Liu, C.; Lin, L. SNAS: Stochastic Neural Architecture Search. arXiv 2019, arXiv:1812.09926.
41. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.
42. Wang, N.; Gao, Y.; Chen, H.; Wang, P.; Tian, Z.; Shen, C.; Zhang, Y. NAS-FCOS: Fast Neural Architecture Search for Object

Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 11940–11948.

43. Weng, Y.; Zhou, T.; Li, Y.; Qiu, X. NAS-Unet: Neural Architecture Search for Medical Image Segmentation. IEEE Access 2019, 7,
44247–44257. [CrossRef]

44. Fischer, R.A.; Stapper, M. Lodging effects on high-yielding crops of irrigated semidwarf wheat. Field Crops Res. 1987, 17, 245–258.
[CrossRef]

45. Sun, Q.; Sun, L.; Shu, M.; Gu, X.; Yang, G.; Zhou, L. Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral
Image. Plant Phenom. 2019, 2019, 1–16. [CrossRef]

46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 770–778.

47. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 1492–1500.

48. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1800–1807.

49. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
50. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2818–2826.

51. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA,
2017; pp. 2261–2269.

52. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
53. Mardanisamani, S.; Maleki, F.; Kassani, S.H.; Rajapaksa, S.; Duddu, H.; Wang, M.; Shirtliffe, S.; Ryu, S.; Josuttes, A.; Zhang, T.;

et al. Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented with Handcrafted
Texture Features. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Long Beach, CA, USA, 16–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2657–2664.

54. Salama, A.I.; Ostapenko, O.; Klein, T.; Nabi, M. Pruning at a Glance: Global Neural Pruning for Model Compression. arXiv 2019,
arXiv:1912.00200.

55. Du, X.; Lin, T.-Y.; Jin, P.; Ghiasi, G.; Tan, M.; Cui, Y.; Le, Q.V.; Song, X. SpineNet: Learning Scale-Permuted Backbone for
Recognition and Localization. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 11589–11598.

56. Li, L.; Talwalkar, A. Random Search and Reproducibility for Neural Architecture Search. In Proceedings of the 35th Uncertainty
in Artificial Intelligence Conference, Tel Aviv, Israel, 22–25 July 2019.

57. Koh, J.; Spangenberg, G.; Kant, S. Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping. Zenodo
2020, preprint. [CrossRef]

58. Koh, J.; Spangenberg, G.; Kant, S. Source Codes for AutoML Manuscript. Available online: https://github.com/AVR-
PlantPhenomics/automl_paper (accessed on 28 January 2021).

http://doi.org/10.1162/106365602320169811
http://doi.org/10.1109/ACCESS.2019.2908991
http://doi.org/10.1016/0378-4290(87)90038-4
http://doi.org/10.34133/2019/5704154
http://doi.org/10.1177/001316446002000104
http://doi.org/10.5281/zenodo.3952422
https://github.com/AVR-PlantPhenomics/automl_paper
https://github.com/AVR-PlantPhenomics/automl_paper

	Introduction
	Materials and Methods
	Field Experiment
	Image Acquisition and Processing
	Lodging Assessment
	Deep Learning Experiments
	Training, Validation, and Test Datasets
	AutoML with AutoKeras
	Transfer Learning with Pretrained CNNs
	Model Evaluation Metrics

	Results
	Image Classification
	Image Regression

	Discussion
	Conclusions
	References

