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Abstract: Education is a human right, and equal access to education is important for achieving sus-
tainable development. Measuring socioeconomic development, especially the changes to education
inequality, can help educators, practitioners, and policymakers with decision- and policy-making.
This article presents an approach that combines population distribution, human settlements, and
nighttime light (NTL) data to assess and explore development and education inequality trajectories
at national levels across multiple time periods using latent growth models (LGMs). Results show
that countries and regions with initially low human development levels tend to have higher levels of
associated education inequality and uneven distribution of urban population. Additionally, the initial
status of human development can be used to explain the linear growth rate of education inequality,
but the association between trajectories becomes less significant as time increases.

Keywords: education inequality; nighttime light; urbanization; sustainable development; human de-
velopment

1. Introduction

Assessing our socioeconomic development in a frequent, rapid, and accurate manner
is important for achieving the United Nations’ Sustainable Development Goals (SDGs) on
various national and global scales [1]. The United Nations’ 2030 Agenda for Sustainable
Development was developed to transform our world by urging countries to solve current
development challenges related to education, poverty, inequality, climate change, etc. [2–5].
Recently, many countries and regional organizations have made significant progress toward
the achievement of these goals. Nevertheless, due to the complexity of socioeconomic
development, many countries are still suffering from these problems, and some of the
actions and policies are not implemented in an effective and efficient way.

To support the 2030 Agenda for Sustainable Development, it is important to monitor
and evaluate the current socioeconomic development status to provide scientific evidence
for facilitating the policy- and decision-making processes. Measuring socioeconomic
development, especially the status of education inequality, in a timely and accurate manner
can help educators, practitioners, scientists, and policymakers compare and evaluate a
variety of key education indicators. Measuring education inequality, for example, can help
us better evaluate the fairness and effectiveness of our education systems and the processes
of current educational development [6]. Since education is the foundation of development
and growth, measuring socioeconomic data related to education inequality also will help
countries achieve many of the SDGs including stable economic growth [7–9], eradication
of poverty [10,11], reduction of inequality and exclusion [12,13], and achievement of
sustainable development [14] in the long-run.
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This paper presents an approach that combines multi-source data (including popu-
lation distribution, human settlement, and artificial light data monitored from space) to
assess changes in trajectories of human development and education inequality at a national
level from 1990 to 2010. This research has utilized nighttime light (NTL) data collected by
the Defense Meteorological Satellite Program (DMSP) and human settlement data from the
Global Human Settlement Layer (GHSL) to measure human development and evaluate
its association with education inequality. Many researchers have demonstrated that NTL
data can be used to assess regional inequality and economic development [15–17]. Studies
also have shown that NTL is capable of capturing regional uneven development [18–20].
Therefore, we use DMSP NTL data to estimate human development [21] and assess the
associations of growth patterns with education inequality.

Education is a human right, and equal access to education is not only crucial for an
individual’s well-being, but also is essential for eradicating poverty, transforming our
society, ensuring long-term prosperity for all, and achieving sustainable development.
Many researchers have proposed that ensuring equal access to education can be achieved
through distributing education resources more equally [6]. Therefore, it is important to
develop indicators that can measure education inequality so we can monitor the changes to
education resource allocation status over time. Nevertheless, unlike many socioeconomic
indicators (e.g., the Gross Domestic Product) that are developed based on a series of sophis-
ticated accounting and statistical methods, it is difficult to measure education inequality
by assigning a monetary value to education accessibility or student achievement and
attainment. Some studies have demonstrated the usage of Gini coefficients for measuring
education inequality. An Education Gini (EG) index [6], for example, is developed based
on education attainment of the concerned population using the following steps:

EL =

(
1
µ

) n

∑
i = 2

i−1

∑
j = 1

pi
∣∣yi − yj

∣∣pj (1)

where EL is the education Gini, µ is the mean years of schooling, pi and pj are the percent-
ages of the population with certain levels of schooling, yi and yj are the years of schooling
at different education attainment levels, and n is the number of levels of the attainment
data for the concerned population.

Thomas et al. [6] also have adopted the Lorenz curve to calculate an education Gini
based on the cumulative proportion of the population with certain years of schooling,
which is similar to the calculation of an income Gini. Generally, although different studies
have proposed different approaches to education Gini calculation, an education Gini
is mainly derived based on the proportion of the population with various education
attainment levels.

Recently, many scientists also have incorporated multi-source data to enhance model
performance for evaluating various socioeconomic indicators that are related to human
development. There are many difficulties associated with collecting traditional socioeco-
nomic data for measuring human well-being. Accurate information about the distribution
of the population, settlements, and even wealth are not available for many less developed
regions, for example, and sometimes these data are of poor quality [22]. Nevertheless,
remote sensing technology and satellite imagery can help us observe, explore, and evaluate
the status of human development on the Earth’s surface [23]. Hence, geospatial data can
be an alternative way for scientists to study and monitor human activities in a timely,
consistent, and affordable way. NTL data is widely used for estimating and evaluating
socioeconomic activities, for instance, since it captures the artificial light at night [24–26].
Based on remotely sensed NTL data, for example, Sutton et al. [27] estimated global mar-
keted and non-marketed economic value from classified satellite images. Elvidge et al. [28]
produced a global poverty map on a subnational scale based on population and DMSP
NTL data. Therefore, the subnational data generated from NTLs can greatly help scientists
measure human activities on various spatial scales.
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Many scientists also have adopted Gini concepts for calculating other socioeconomic
indexes based on the Lorenz curve. Elvidge et al. [21], for example, produced the Nighttime
Light Development Index (NLDI) based on DMSP NTL data and LandScan population
density data to measure human development. NLDI for each country is calculated based on
the Lorenz curve produced from the cumulative proportion of the NTL and the cumulative
proportion of the population. Generally, results show that developed countries tend to have
low NLDI values and less developed countries have high NLDI values. It also shows that
NLDI has a strong correlation with other indicators like the Human Development Index
(HDI), poverty rate, and the proportion of the urban population. Therefore, the NLDI can
be an alternative way for measuring human development using NTL data. Song et al. [29]
also have used the Spatial Lorenz Curve (SLC) and Gini coefficients to measure land use
changes based on an unsupervised land use classification method with cloud-free Landsat
Thematic Mapper (TM) images. Similar to the NLDI, the SLC is calculated based on the
cumulative proportion of land use and the cumulative proportion of land. Therefore,
these studies show that there is great potential for scientists to utilize geospatial data
to monitor the allocation of resources, the distribution of population, and the different
levels of development on various spatiotemporal scales. Added to that, the availability of
geospatial data can help us establish a consistent, objective, and globally applicable method
for characterizing and measuring education inequality that are caused by development
problems like income inequality, urbanization, and resource allocation.

This research utilizes multi-source data to evaluate human development levels and the
uneven distribution of the urban population on various spatiotemporal scales to explore
development trajectories and patterns of human development and education inequality.
The rest of this paper is organized as follows. Section 2 describes data processing procedures
and the development of latent growth models (LGMs) for measuring different development
trajectories and patterns. Section 3 presents the results from LGMs to evaluate the growth
patterns for each factor included in this study. Section 4 discusses the associations between
trajectories. Finally, Section 5 summarizes the results and draws conclusions.

2. Data and Method
2.1. Gini Coefficients for Human Development and Education

During this study, we analyze the relationship between an Education Gini (EG),
Nighttime Light Development Index (NLDI), and population distribution at a national
level in 1990, 2000, and 2010. The NLDI for each county is calculated as a proxy for human
development [21]. Moreover, an urban population Gini (UG) index also is constructed
based on similar procedures [21,29] to measure the levels of urbanization with Lorenz
curves. A higher UG value represents higher levels of rural–urban population distribution
inequality which, in turn, indicates that less of the population are likely to benefit from
improved economic activity, better shared infrastructure, and higher standards of living
due to urbanization [30–32]. The datasets used in this study are described in Table 1. This
study utilizes the Defense Meteorological Satellite Program nighttime light (DMSP NTL)
data (Figure 1a) and the Global Human Settlement Layer (GHSL) population data (Figure 1b)
to construct an NLDI and UG for countries and regions around the world. Due to the data
availability issues, population data from 2015 (rather than 2010) and DMSP NTL data from
1992 (rather than 1990) are used to calculate these indexes.
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Table 1. Datasets for calculating the Nighttime Light Development Index (NLDI) and urbaniza-
tion Gini.

Dataset Description Sources

Global Human Settlement
Layers (GHSL)

Global geospatial dataset for
population distribution on

earth for 1990, 2000, and 2015

GHSL (https:
//ghsl.jrc.ec.europa.eu/,
accessed on 20 May 2020)

Defense Meteorological
Satellite Program

(DMSP) Data

DMSP average stable
nighttime light product from

1992 to 2013

National Oceanic and
Atmospheric Administration

(https://ngdc.noaa.gov/,
accessed on 10 May 2020)

Administrative Boundaries

National and subnational
administrative boundaries
from Database of Global

Administrative Areas (v3.6)

Database of Global
Administrative Areas

(https://gadm.org/, accessed
on 10 June 2020)

Global education Gini Index Gini Coefficients of Education
at the national level [33]

Figure 1. (a) Defense Meteorological Satellite Program (DMSP) nighttime light (NTL) and (b) Global
Human Settlement Layer (GHSL) population distribution data for the year 2000.

Based on the population distribution, NTL intensity, and human settlements, the Gini
coefficients for the NLDI and urbanization are calculated as follows:

G = 1 −
n−1

∑
i = 0

(Ni + Ni−1)(Pi − Pi−1) (2)

where G is the Gini coefficient for the NLDI or urbanization, Ni is the cumulative proportion
of the NTL (for calculating NLDI) or the urban population (for calculating an urbanization
Gini) in the subnational entities, and Pi is the cumulative proportion of the population in
the same subnational entities.

The NLDI and UG at the national level are constructed using level 0 and 1 admin-
istrative units. Level 0 represents national-level administrative boundaries, and level 1
represents state- and provincial-level boundaries. To construct the Lorenz curve for each
country based on the cumulative proportion of the NTL and population, this study uses the
level 1 subdivisions’ administrative boundary layer (state or province) to calculate the sum
of the population and NTL within each subdivision. Based on the cumulative percentage
of the NTL and population data, this study calculates the NLDI value for each country for
that corresponding year. The subnational NLDI at level 1 subdivisions is calculated based
on the level 2 subdivisions’ data using the same procedures. After matching and filtering
the data (i.e., based on the ISO3 country code), a total number of 141 countries and regions
from 1990, 2000, and 2010 are included in this study for trajectory analysis to construct
latent growth models (LGMs) [34] to study the trends of the EG, UG, and NLDI changes
(see Appendix A) on a national scale.

https://ghsl.jrc.ec.europa.eu/
https://ghsl.jrc.ec.europa.eu/
https://ngdc.noaa.gov/
https://gadm.org/
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2.2. Development of Associative Latent Growth Models (LGMs)

To better analyze the developmental trajectories of an Education Gini (EG), Nighttime
Light Development Index (NLDI), and Urban Population Gini (UG) for each country over
time, an unspecified associative latent growth model (LGM) is developed due to its greater
capacity to (1) test the efficiency and adequacy of the hypothesized growth structure, espe-
cially the non-linear growth curve [35–37]; (2) integrate a time-variant and time-varying
covariate [38] so as to estimate their effects on developmental trajectories; (3) identify
growth patterns based on the estimations of individual change, intra-individual differences
from individual change, and within-group error [39]. More importantly, the associative
LGMs allow researchers to explore interrelations among parameters for individual dif-
ferences [40–42]. This model, in other words, is specified to investigate the synchronous
model’s correlation coefficients, which are the correlations of trajectories between factors
that are included in this study [38].

It is suggested that the parallel process of LGM analysis methodology can be im-
plemented to test the research hypotheses [43]. First, three separate unconditional (i.e.,
without covariates) single-factor polynomial LGMs are constructed and evaluated for the
NLDI, UG, and EG, respectively. Second, these three single-factor LGMs are examined
based on their model fits. Three single-factor LGMs then are combined to construct the
unconditional three-factor associative LGM to further explain the associations between the
growth parameters of these three major factors. Third, this study evaluates the model fits
of the associative LGM and examines the growth trajectories between the NLDI, UG, and
EG by interpreting model fit indices and values of growth parameters.

2.3. Latent Growth Model (LGM) Configuration Procedures
2.3.1. Unconditional Latent Growth Model (LGM) Specification for All Factors

MPlus software Version.8 [44] is used to specify, configure, and estimate the latent
growth models (LGMs). To test and determine the growth shape of the Nighttime Light
Development Index (NLDI), a single-factor polynomial LGM with a quadratic growth
factor is specified. Since each major factor has been measured 3 times (i.e., 1990, 2000, and
2010), factor loadings of the latent intercept are all set to 1, and those of the linear latent
slope are set to 0, 1, and 2, respectively. Moreover, the factor loadings for the quadratic
growth factor are set to 0, 1, and 4 [45]. Additionally, the covariances between the latent
intercept, slope, and quadratic factors are set to be freely estimated. To ensure that the
model is overidentified with positive degrees of freedom, the error variances and mean
structures of the latent factors are set to 0.

Similar to the specification of a single-factor polynomial model with a quadratic
growth LGM for the NLDI, the model specifications and constraints for an Urban Popula-
tion Gini (UG) and Education Gini (EG) are set with identical configurations as the LGM
for the NLDI for the purpose of determining the growth shape and model identification.

2.3.2. Unconditional Three-Factor Associative Latent Growth Model (LGM)

The unconditional associative latent growth model (LGM) was developed by combin-
ing three separate single-factor polynomial LGMs to evaluate the associations between the
latent growth factors. To ensure that the model was overidentified, the residual variances
for 9 time points were set to 0 (i.e., t1–t9 since there are 3 factors, and each factor has
3 time points), and the mean structures for the growth factors also were set to 0. When the
three-factor unconditional associative LGM shows an acceptable model fit, further analyses
will be conducted to interpret covariances between growth parameters within and across
latent factors.

2.3.3. Model Estimation and the Fit Indices

Multiple fit indices are used in evaluating the latent growth models (LGMs), including
Chi-square test statistics, a comparative fit index (CFI), a Tucker–Lewis index (TLI), a
root mean square error of approximation (RMSEA), and a standardized root mean square
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residual (SRMR), which are the common fit statistics used for assessing structural equation
models [46]. The thresholds for each fit index to determine if a model is acceptable are as
follows: (1) it is noted that RMSEA values ranging from 0.08 to 0.10 indicate a mediocre
fit [47]. Moreover, they strongly argued that the RMSEA values alone could not accurately
determine the model fit, and it is reasonable to combine RMSEA values with confidence
intervals. Therefore, the p value should be greater than 0.50 to indicate an acceptable model
fit for testing closeness of fit with a 90% confidence interval [48]; (2) Hu et al. [49] suggested
that values of the CFI and TLI greater than 0.95 can indicate an acceptable model fit; (3) a
smaller value of the SRMR indicates a better model fit and a SRMR value of 0 indicates a
perfect model fit [50].

2.3.4. Model Parameter Estimation and Interpretation

Regarding either unconditional or associative latent growth models (LGMs), the
variances of intercepts indicate the differences of countries on human development and
educational status at the baseline. The variations in latent growth factors (such as the
slope and quadratic rates of change) can indicate differences of individual countries in
the probability of progressing in a linear or quadratic rate of change over time. Moreover,
in the associative model, the direction and magnitude of the covariances among growth
factors can indicate the directions and strengths of the relationships between the growth
trajectories for human development and education factors.

3. Result
3.1. Model Configuration Results

Separate unconditional single-factor polynomial latent growth models (LGMs) are
constructed for each factor. Shown in Table 2, the single-factor polynomial LGMs fit
the Education Gini (EG) and Urban Population Gini (UG) adequately. However, for
the Nighttime Light Development Index (NLDI), although the model does not yield an
acceptable fit (root mean square error of approximation (RMSEA) = 0.335), the single-
factor polynomial LGM with a quadratic growth parameter still demonstrates a better
fit over those with a constant and linear growth. Therefore, all factors show quadratic
change patterns. During the next step, a three-factor associative LGM is constructed to
explore the associations of developmental trajectories between factors, following the model
configuration procedures described in Section 2.

Table 2. Model fit indices including root mean square error of approximation (RMSEA), comparative
fit index (CFI), Tucker–Lewis index (TLI), and standardized root mean square residual (SRMR) for
latent growth models (LGMs) based on Education Gini (EG) and Urban Population Gini (UG), and
Nighttime Light Development Index (NLDI).

Model χ2 df RMSEA CFI/TLI SRMR

Single-factor LGM with NLDI 16.828 *** 1 0.335 0.967/0.902 0.029
Single-factor LGM with EG 2.486 1 0.103 0.998/0.995 0.015
Single-factor LGM with UG 2.155 1 0.091 0.998/0.993 0.037

Three-factor associative LGM 2.486 1 0.103 0.999/0.975 0.007
*** p-value < 0.001 with two-tailed test.

3.2. Associative Growth Trends

Based on the results in Table 2, it is found that the three-factor associative latent growth
model (LGM) yields an acceptable model fit for the dataset used in this study. Therefore,
for the rest of Section 3, we use this associative model to investigate the interrelationships
between the growth patterns of factors. First, to interpret how each factor is changing over
time, statistically significant growth parameter estimates within each factor are presented as
follows: (1) for the Nighttime Light Development Index (NLDI), the association between its
initial status and linear slope growth is statistically significant (Covariant (Cov.)1 = −0.435,
Standard Error (S.E.) = 0.068, p < 0.001), and the association between the linear slope
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growth and quadratic growth also is statistically significant (Cov2 = −0.869, S.E. = 0.021,
p < 0.001). Countries with lower NLDI values tend to have a higher linear growth but a
lower quadratic growth, in other words. However, countries with higher NLDI values
show a lower linear growth but a higher quadratic growth. (2) Regarding the Education
Gini (EG), the association between the initial EG status and the linear slope growth is
statistically significant (Cov3 = –0.307, S.E. = 0.076, p < 0.001), indicating that countries with
a greater initial education inequality tended to have a slower linear rate of change. The
association between the linear slope growth factor and the quadratic growth factor also is
statistically significant (Cov4 = –0.845, S.E. < 0.024, p < 0.001), which means that countries
with a higher linear rate of change to education inequality tend to have a slower quadratic
rate of change. Therefore, the EG exhibits a similar growth pattern to the NLDI where
countries with higher EG values at the initial stage demonstrate a slower linear growth,
but a higher quadratic growth. Whereas, for countries that have lower EG values at the
initial stage, they tend to have a higher linear growth, but a lower quadratic growth. (3)
Regarding the Urban Population Gini (UG), the linear slope and quadratic growth factor
covary significantly (Cov5 = –0.978, S.E. = 0.004, p < 0.001), indicating that countries with a
higher linear growth in population show a slower quadratic growth.

The associative LGM allows us to explore growth parameters across factors that are
statistically significant (Table 3): (1) countries with lower NLDI values also have a lower UG
(Cov6 = 0.293, S.E. = 0.077, p < 0.001); (2) countries with lower NLDI values also have lower
EG values (Cov7 = 0.566, S.E. = 0.057, p < 0.001); (3) countries with higher education Gini
tend to demonstrate a slower linear rate of change in the UG (Cov8 = –0.644, S.E. = 0.049,
p < 0.001). However, as time increases, countries with higher EG values show a higher
quadratic growth in the UG (Cov9 = 0.645, S.E. = 0.049, p < 0.001).

Table 3. Standardized model estimates for Education Gini (EG), Urban Population Gini (UG), and
Nighttime Light Development Index (NLDI) based on intercept (INT), slope (SLP), and quadratic
(QUA) growth parameters.

Covariance (Cov) Estimate Standard Error (S.E.) p-Value

Cov1 (INTNLDI, SLPNLDI) −0.435 0.068 <0.001
Cov2 (SLPNLDI, QUANLDI) −0.869 0.021 <0.001

Cov3 (INTEG, SLPEG) −0.307 0.076 <0.001
Cov4 (SLPEG, QUAEG) −0.845 0.024 <0.001
Cov5 (SLPUG, QUAUG) −0.978 0.004 <0.001
Cov6 (INTNLDI, INTUG) 0.293 0.077 <0.001
Cov7 (INTNLDI, INTEG) 0.566 0.057 <0.001
Cov8 (INTEG, SLPUG) −0.644 0.049 <0.001

Cov9 (INTEG, QUAUG) 0.645 0.049 <0.001
p-value: two-tailed.

The LGM trajectory analysis results also are reflected in Figure 2 (plotted based on
data in Appendix A). Figure 2 shows that both the EG and NLDI experience downward
trends from 1990 to 2010, which means that most of the countries included in this study
have less education inequality and higher human development levels. Nevertheless, the
urbanization Gini decreases from 1990 to 2000, and then increases from 2000 to 2010.
Therefore, there is a greater uneven urban population distribution in recent years. During
1990, there were positive associations between the initial status of the EG, UG, and NLDI.
This indicates that the countries with initially lower levels of human development also
had a higher education inequality and a greater uneven urban population distribution.
Considering 1990–2000, all factors experienced decreasing trends, and the EG demonstrated
a higher decreasing rate. Considering 2000–2010, the quadratic change rates of the UG and
NLDI showed a less significant change, whereas the quadratic change rate of the EG still
demonstrated a decreasing trend.
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Figure 2. Growth trajectories of the Nighttime Light Development Index (NLDI), Education Gini
(EG), and Urban Population Gini (UG) from 1990, 2000, and 2010 for all 141 countries with a 95%
confidence interval.

4. Discussion

Although nighttime light (NTL) is not measuring human activities directly, results
from previous studies have shown that NTL is capable of estimating socioeconomic devel-
opment accurately on different spatial scales [27,28]. Therefore, we calculate the Nighttime
Light Development Index (NLDI), Urban Population Gini (UG), and Education Gini (EG)
at the country level based on the Defense Meteorological Satellite Program (DMSP) NTL,
and the Global Human Settlement Layer (GHSL) population distribution. When analyzing
the results from the associative latent growth model (LGM), we are able to identify the
different growth trajectory patterns across multiple years, which can further inform us
about the associations between development and education inequality.

Considering 1990–2010, we see a significant drop in education inequality. Considering
1990–2000, that drop is accompanied by similar drops in the NLDI (related to Human
Development). However, from 2000 to 2010 the gains in the NLDI have ceased while
improvements to educational inequality have continued. This bifurcation raises some
interesting questions. Theory suggests that human development will correlate with higher
levels of education, which appears to be true from 1990 to 2000 [51]. Therefore, those
trends lead to a series of questions that need to be explored: (1) Is the departure from these
correlated trajectories due to exogenous or endogenous forces? (2) Could the departure
be related to fundamental resource constraints such as the availability of adequate food,
water, and energy? (3) Will improved educational outcomes occurring simultaneously with
slowed changes to human development foster increased levels of social unrest?

5. Conclusions

Here, we analyzed the trajectories of human development, urban population distribu-
tion, and education inequality using multi-source data on multiple spatiotemporal scales.
Generally, the overall trend for human development levels is increasing and for education
inequality is decreasing in most of the countries. However, there is a greater uneven urban
population distribution over time. Different development patterns are identified through
latent growth models (LGMs). To provide an example, (1) countries with low initial human
development levels tend to have greater associated education inequality; (2) countries with
higher initial human development levels tend to show higher linear and lower quadratic
rates of changes in human development over time; (3) education inequality changes show
a stronger association with the trajectories of urban population distributions than those of
human development levels. To be more specific, countries with a greater initial education
inequality are associated with a slower linear rate of change in the uneven distribution
of the urban population. However, as time increases, the countries with a greater initial
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education inequality also are associated with a greater quadratic rate of change in the un-
even distribution of the urban population; (4) however, the growth patterns of the human
development levels and education inequality show less significant associations.

It has been demonstrated that the Defense Meteorological Satellite Program (DMSP)
nighttime light (NTL) can support the estimation of socioeconomic data, especially at the
country level, as some of the outlier effects are minimized with data aggregation [52].
Nevertheless, due to its own limitations, it may not be able to capture the human activities
at smaller regional levels (e.g., city or town levels). Therefore, there is a potential for
using the Visible Infrared Imaging Radiometer Suite (VIIRS) NTL data for estimating
socioeconomic development in the future. VIIRS has outperformed DMSP in many ways,
including its better resolution and higher sensitivity for capturing artificial lights [53], and
the results derived from VIIRS NTL are more accurate [54,55]. Thus, VIIRS can help us
better capture the spatial heterogeneity of economic development on a finer scale (e.g.,
a provincial level). VIIRS data also can help us better assess and explore disparities in
education not only across countries but between urban and rural areas within countries and
regions. Accompanying more accurate subnational socioeconomic data, there is a potential
for us to develop advanced models (e.g., multi-level models) to capture the within-cluster
and between-cluster variations to better analyze education disparities.

Upcoming, there are several important steps that can take this research to the next
level: (1) using more accurate education Gini data to estimate education inequality as the
current data is developed based on a few indicators and may not reflect the true education
inequality on various scales; (2) collecting more historical data, including socioeconomic
data and geospatial data to monitor and forecast education inequality changes to build
LGMs with greater complexity to characterize the commonalities of trajectories; (3) de-
veloping suitable statistical models such as hierarchical linear models to cluster countries
and their subnational entities in terms of their levels of development to better compare
intra-group growth patterns; (4) using the VIIRS NTL data for future studies.

Author Contributions: Conceptualization, B.Q. and X.W.; methodology, B.Q. and X.W.; investigation,
P.S., B.Q., X.W.; writing—review and editing, P.S., B.Q., X.W.; supervision, P.S. All authors have read
and agreed to the published version of the manuscript.
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Appendix A

Table A1. Nighttime Light Development Index (NLDI) and Urban Population Gini results for
141 countries and regions.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Afghanistan 0.745 0.650 0.481 0.213 0.162 0.471
Albania 0.366 0.140 0.148 0.165 0.180 0.103

United Arab Emirates 0.225 0.341 0.339 0.055 0.054 0.018
Argentina 0.194 0.224 0.281 0.042 0.039 0.053
Armenia 0.242 0.240 0.333 0.143 0.154 0.084
Australia 0.101 0.145 0.143 0.036 0.031 0.013
Austria 0.233 0.241 0.248 0.231 0.225 0.008
Burundi 0.945 0.813 0.715 0.084 0.064 0.637
Belgium 0.104 0.118 0.153 0.061 0.065 0.003
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Benin 0.446 0.366 0.415 0.158 0.125 0.323
Bangladesh 0.108 0.074 0.126 0.041 0.039 0.136

Bulgaria 0.201 0.174 0.198 0.148 0.184 0.047
Bahrain 0.447 0.478 0.577 0.030 0.021 0.033
Belize 0.196 0.178 0.213 0.136 0.141 0.096
Bolivia 0.326 0.251 0.240 0.046 0.036 0.090
Brazil 0.136 0.112 0.132 0.104 0.094 0.108

Barbados 0.180 0.186 0.296 0.174 0.158 0.048
Brunei Darussalam 0.056 0.109 0.216 0.146 0.136 0.008

Botswana 0.320 0.256 0.233 0.124 0.107 0.199
Central African Republic 0.751 0.681 0.506 0.209 0.190 0.614

Canada 0.277 0.289 0.342 0.076 0.067 0.011
Switzerland 0.192 0.226 0.230 0.123 0.115 0.016

Chile 0.221 0.276 0.289 0.063 0.061 0.064
China 0.336 0.264 0.262 0.068 0.072 0.130

Cote d’Ivoire 0.436 0.249 0.301 0.178 0.156 0.237
Cameroon 0.446 0.403 0.383 0.075 0.073 0.281

Congo, Rep. 0.456 0.402 0.719 0.120 0.127 0.267
Colombia 0.179 0.196 0.220 0.036 0.035 0.087
Costa Rica 0.157 0.256 0.318 0.136 0.120 0.029

Cuba 0.195 0.268 0.241 0.065 0.069 0.067
Cyprus 0.140 0.135 0.148 0.106 0.082 0.032

Czech Republic 0.159 0.185 0.208 0.147 0.155 0.011
Germany 0.117 0.166 0.208 0.113 0.112 0.007
Denmark 0.141 0.200 0.247 0.158 0.163 0.006

Dominican Republic 0.300 0.302 0.257 0.108 0.096 0.065
Algeria 0.594 0.496 0.376 0.095 0.076 0.059
Ecuador 0.281 0.227 0.235 0.113 0.102 0.096

Egypt, Arab Rep. 0.299 0.306 0.349 0.041 0.033 0.013
Spain 0.147 0.223 0.256 0.093 0.096 0.016

Estonia 0.311 0.190 0.254 0.180 0.195 0.040
Finland 0.166 0.214 0.208 0.109 0.110 0.018

Fiji 0.314 0.180 0.260 0.480 0.453 0.128
France 0.143 0.180 0.199 0.151 0.158 0.013
Gabon 0.691 0.723 0.616 0.138 0.129 0.177

United Kingdom 0.052 0.082 0.119 0.018 0.019 0.003
Ghana 0.388 0.234 0.215 0.116 0.090 0.276

Gambia, The 0.547 0.392 0.368 0.270 0.193 0.429
Greece 0.212 0.284 0.282 0.174 0.170 0.027

Guatemala 0.355 0.199 0.203 0.091 0.088 0.121
Guyana 0.418 0.301 0.309 0.205 0.188 0.210

Hong Kong SAR, China 0.493 0.512 0.505 0.007 0.006 0.118
Honduras 0.408 0.280 0.164 0.289 0.273 0.142

Croatia 0.242 0.192 0.245 0.197 0.212 0.048
Haiti 0.415 0.415 0.314 0.107 0.081 0.279

Hungary 0.163 0.150 0.207 0.162 0.171 0.046
Indonesia 0.335 0.224 0.245 0.072 0.076 0.147

India 0.313 0.323 0.338 0.064 0.057 0.124
Ireland 0.258 0.289 0.313 0.322 0.322 0.028

Iran, Islamic Rep. 0.519 0.327 0.295 0.061 0.049 0.032
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Iraq 0.387 0.454 0.443 0.043 0.038 0.050
Iceland 0.297 0.464 0.570 0.354 0.289 0.071
Israel 0.371 0.425 0.446 0.067 0.054 0.020
Italy 0.130 0.159 0.176 0.099 0.094 0.006

Jamaica 0.120 0.192 0.201 0.105 0.097 0.018
Jordan 0.235 0.303 0.348 0.102 0.075 0.023
Japan 0.295 0.367 0.398 0.051 0.054 0.010

Kazakhstan 0.296 0.410 0.300 0.055 0.050 0.074
Kenya 0.639 0.523 0.544 0.378 0.319 0.508

Kyrgyz Republic 0.312 0.260 0.251 0.114 0.111 0.046
Cambodia 0.705 0.672 0.521 0.230 0.193 0.469

Korea, Rep. 0.417 0.465 0.499 0.080 0.075 0.015
Kuwait 0.593 0.637 0.665 0.030 0.035 0.013

Lao PDR 0.769 0.569 0.386 0.567 0.519 0.389
Liberia 0.663 0.599 0.421 0.352 0.328 0.555
Libya 0.645 0.483 0.458 0.095 0.094 0.037

Sri Lanka 0.208 0.194 0.218 0.389 0.362 0.049
Lesotho 0.414 0.392 0.330 0.170 0.178 0.246

Lithuania 0.110 0.060 0.111 0.049 0.060 0.033
Luxembourg 0.143 0.159 0.234 0.179 0.188 0.007

Latvia 0.064 0.140 0.148 0.096 0.108 0.057
Macao 0.419 0.431 0.518 0.003 0.002 0.013

Morocco 0.169 0.188 0.190 0.114 0.109 0.063
Moldova 0.274 0.214 0.194 0.228 0.244 0.127
Mexico 0.209 0.212 0.222 0.138 0.120 0.029

Mali 0.593 0.362 0.247 0.140 0.135 0.388
Malta 0.344 0.340 0.345 0.039 0.036 0.042

Myanmar 0.550 0.328 0.353 0.132 0.122 0.280
Mongolia 0.523 0.466 0.352 0.247 0.277 0.356

Mozambique 0.515 0.478 0.443 0.121 0.112 0.392
Mauritania 0.761 0.647 0.635 0.304 0.244 0.541
Mauritius 0.220 0.228 0.261 0.134 0.122 0.033

Malawi 0.531 0.437 0.370 0.569 0.545 0.420
Malaysia 0.181 0.232 0.248 0.097 0.089 0.063
Namibia 0.587 0.464 0.431 0.620 0.531 0.361

Niger 0.595 0.458 0.432 0.153 0.155 0.434
Nicaragua 0.393 0.247 0.237 0.056 0.055 0.254

Netherlands 0.152 0.167 0.225 0.081 0.082 0.010
Norway 0.331 0.347 0.341 0.209 0.211 0.028
Nepal 0.326 0.276 0.133 0.086 0.173 0.196

New Zealand 0.140 0.178 0.206 0.155 0.144 0.058
Pakistan 0.082 0.054 0.088 0.086 0.062 0.065
Panama 0.274 0.195 0.232 0.263 0.234 0.150

Peru 0.281 0.288 0.317 0.142 0.134 0.199
Philippines 0.497 0.374 0.314 0.315 0.295 0.206

Papua New Guinea 0.580 0.529 0.467 0.151 0.133 0.538
Poland 0.126 0.085 0.124 0.098 0.098 0.011

Portugal 0.215 0.295 0.325 0.226 0.215 0.019
Paraguay 0.294 0.198 0.220 0.139 0.148 0.176

Qatar 0.463 0.447 0.588 0.117 0.091 0.021
Russian Federation 0.346 0.359 0.412 0.058 0.063 0.061
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Rwanda 0.820 0.696 0.641 0.064 0.079 0.486
Saudi Arabia 0.222 0.162 0.215 0.038 0.039 0.021

Sudan 0.506 0.467 0.427 0.059 0.050 0.401
Senegal 0.368 0.292 0.308 0.109 0.100 0.373

Singapore 0.224 0.189 0.210 0.001 0.001 0.025
Sierra Leone 0.503 0.534 0.479 0.216 0.198 0.556
El Salvador 0.237 0.166 0.156 0.098 0.092 0.041

Serbia 0.150 0.153 0.172 0.130 0.133 0.051
Slovak Republic 0.136 0.071 0.107 0.081 0.082 0.039

Slovenia 0.102 0.108 0.135 0.201 0.212 0.025
Sweden 0.279 0.341 0.313 0.125 0.134 0.011
Eswatini 0.202 0.168 0.115 0.219 0.179 0.156

Syrian Arab Republic 0.504 0.316 0.222 0.103 0.087 0.045
Togo 0.388 0.366 0.374 0.090 0.075 0.303

Thailand 0.496 0.358 0.294 0.234 0.232 0.124
Tajikistan 0.125 0.135 0.094 0.060 0.048 0.061

Tonga 0.338 0.112 0.111 0.279 0.318 0.099
Trinidad and Tobago 0.220 0.225 0.328 0.093 0.091 0.051

Tunisia 0.302 0.249 0.248 0.060 0.062 0.051
Turkey 0.265 0.288 0.221 0.122 0.116 0.087

Tanzania 0.575 0.491 0.407 0.197 0.182 0.499
Uganda 0.845 0.726 0.703 0.180 0.133 0.634
Ukraine 0.183 0.255 0.192 0.101 0.105 0.061
Uruguay 0.283 0.345 0.377 0.114 0.087 0.063

United States 0.204 0.259 0.279 0.142 0.128 0.005
Venezuela, RB 0.237 0.293 0.320 0.044 0.037 0.040

Vietnam 0.488 0.285 0.251 0.078 0.084 0.111
Yemen, Rep. 0.534 0.508 0.509 0.174 0.145 0.165
South Africa 0.269 0.190 0.187 0.237 0.191 0.110

Zambia 0.576 0.454 0.393 0.062 0.070 0.450
Zimbabwe 0.324 0.194 0.311 0.196 0.196 0.479
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