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Abstract: Rangeland degradation caused by increasing misuses remains a global concern. Rangelands
have a remarkable spatiotemporal heterogeneity, making them suitable to be monitored with remote
sensing. Among the remotely sensed vegetation indices, Normalized Difference Vegetation Index
(NDVI) is most used in ecology and agriculture. In this paper, we research the relationship of NDVI
with temperature, precipitation, and Aridity Index (AI) in four different arid rangeland areas in
Spain’s southeast. We focus on the interphase variability, studying time series from 2002 to 2019
with regression analysis and lagged correlation at two different spatial resolutions (500 × 500 and
250 × 250 m2) to understand NDVI response to meteorological variables. Intraseasonal phases were
defined based on NDVI patterns. Strong correlation with temperature was reported in phases with
high precipitations. The correlation between NDVI and meteorological series showed a time lag
effect depending on the area, phase, and variable observed. Differences were found between the two
resolutions, showing a stronger relationship with the finer one. Land uses and management affected
the NDVI dynamics heavily strongly linked to temperature and water availability. The relationship
between AI and NDVI clustered the areas in two groups. The intraphases variability is a crucial
aspect of NDVI dynamics, particularly in arid regions.

Keywords: biometeorology; agrometeorological information; data analysis; grassland; MODIS

1. Introduction

Rangelands cover almost 33% of ice-free land globally. Monitoring rangeland is a
key aspect of stopping its degradation. Severe degradation is causing the disappearance
of 5–10 million hectares of agricultural lands every year [1,2]. Rangelands management
is complex as rangelands are not spatially homogeneous; those with erodible soils and
palatable vegetation are more prone to degrade than others. Arid and semiarid rangelands
tend to have erodible soils and variable precipitation regimes, making them more sensitive
to degradation [3,4]. In addition, different types of rangeland depend on land use, plant
communities, soil, and climatic conditions. These include grazed wastelands such as
stubble from mainly rainfed cereal crops, other croplands and fallow lands, grasslands,
scrublands, and open woodlands [5]. Using remote sensing to monitor these areas and
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improving the land’s management practices can aid in preventing the degradation and
reinforcing the sustainability of these ecosystems [2].

Remote sensing techniques are increasingly used by ecologists and agriculturalists [6–9],
as a cost-effective means to measure the characteristics, biomass, and extent of vegeta-
tion [10]. Normalized Difference Vegetation Index (NDVI) is the most widely used vegeta-
tion index by rangeland ecologists [11]. It can be obtained at different spatial resolutions,
the most common at 500 × 500 m2 and 250 × 250 m2, named Low and Medium Resolution
(LR and MR). NDVI shows a good correlation with biomass of different vegetation types
in arid and semiarid areas [12,13]. Another useful index is the NDVI anomaly (ZNDVI).
This index has shown robust results to identify damaged vegetation, and therefore it is
especially suited to analyze the status of semiarid and arid areas [14].

Temperature and precipitation are mostly studied as drivers of NDVI [15–23]. How-
ever, the interactions among them and with other factors are still not fully compre-
hended [24]. Temperature effects on NDVI are significant when water is available in
the ecosystem; in these circumstances, precipitation plays a minor role. However, this
relationship grows more assertive in arid regions, where water availability seems to be
one of the main drivers of NDVI [25–27]. Furthermore, some authors [28] suggest study-
ing additional climatic factors further to understand thermal and hydric stress effects
on NDVI patterns. Other climatic variables that have been reviewed are soil moisture,
evapotranspiration, and land use cover [16,22,23]. The relationships of NDVI with these
climatic variables differ by season and vegetation type and biome. Another factor that
makes it more difficult to disentangle the interactions is the effect of human activities on
both NDVI and the ecosystem itself, especially when it comes to overexploitation such as
overgrazing or water overuse [29]. Therefore, it is essential to deeply understand NDVI
and meteorological variables’ relationship, especially accounting for the differences in this
relationship between seasons and across types of land management. This is particularly
relevant for agrometeorological indexes that should be calculated during the year, as it is
in the case of rangelands [30].

NDVI and its relationship with meteorological variables have reported different results
depending on the analyzed spatial scale. Tarnavsky et al. (2008) [31] in Arizona (USA)
and Stefanov et al. (2005) [32] in different locations worldwide, described differences in
spatial heterogeneity. Peng et al. (2017) [33] studied different spatial scales in China, which
exhibited different correlations depending on coarser or finer scales; all were performed
at monthly or annual temporal scale. On the other hand, human activities negatively
correlated with NDVI at a Medium Resolution (MR) while it exerted a positive correlation
at a lower resolution. Therefore, considering different spatial scales to identify the causes
of NDVI patterns remains a challenging task.

The Aridity Index (AI) represents water availability, and different expressions have
been developed [34]. We used a modified version of a widely accepted ratio of annual
precipitation to the annual potential evapotranspiration in this work, developed by the
United Nations Environment Programme in 1992 [35,36]. This index has been used to
quantify droughts and estimate possible changes in climate regimes [37,38], and manage
afforestation and reforestation projects and prioritize and assess future conservation efforts
in rangelands [39,40]. It has also been previously compared to vegetation indexes [41].

The objective of the study was to evaluate the responses of the rangeland NDVI to
temporal dynamics of temperature and precipitation for an arid environment. To evaluate
it, NDVI series from four areas, corresponding to different types of rangeland in Murcia
(southeast of Spain), were acquired for 2002 to 2019, at two spatial resolutions (LR and
MR). The correlation between the NDVI and the climatic variables and the AI was used to
gain better insight into the patterns of rangelands to monitor and characterize them and
optimize the management accordingly.
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2. Materials and Methods
2.1. Area of Study

The area selected is located in Murcia province, in the southeast of Spain. The area
has a Mediterranean arid climate with annual precipitation less than 300 mm, although
there are regional variations [42]. Four square areas with 2.5 km sides were selected for
this study. They are situated in the vicinity of a meteorological station, covering three
different agricultural regions of Murcia: Northeast, Segura River, and Northwest (Figure 1,
Table A1 in Appendix A). The average temperature varies amongst the four areas from
14.7 to 17.3 ◦C, and the average accumulated precipitation per eight-day period ranges
from 262 to 348 mm.
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Figure 1. Location of the study area. (a) Autonomous Community of Murcia. (b) Agricultural regions
of Murcia. (c) Selected areas in three agricultural regions of Murcia province. Numbers refer to the
sampling areas. Source base map: Invierno 2020. Gobierno de España y Comunidad Autónoma de
Murcia. CC-BY 4.0 scne.es 2020.

All the areas are used as rangeland, two predominantly herbaceous (A1 and A2) and
two mainly covered by trees (A3 and A4). Area 1 (A1) is mostly covered by stubble from
cereal crops. Area 2 (A2) is almost entirely covered by mixed croplands used for stubble
grazing with some grassland and scrubland. Area 3 (A3) has a top grassy area mixed with
shrubs and with few forested areas surrounded by tree crops with irrigation. Concerning
Area 4 (A4), it is mainly covered by coniferous woodland with mixed crops on small
patches (Figure 2). For the following analyses, 11 and 61 pixels corresponding to rainfed
areas were selected for A3 LR and MR, respectively, to eliminate the effects of irrigation in
the NDVI dynamics. The other areas are mainly conformed by rainfed crops, grasslands,
and reforestation that do not present irrigation [43]. Therefore, all their pixels were used
since no irrigation could affect their NDVI dynamics. The selection was made based on
each pixel’s average NDVI for summer months (June, July, and August). Pixels with a
summer average below 30 and did not have peaks over 40 in its original time series, were
selected to be analyzed, and these pixels match the grassy patch that crosses A3 from the
top center to the right bottom corner.
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i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User 
Community. 
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Figure 2. The four areas studied: (a) Area 1 with mostly stubble; (b) Area 2 with mixed crops and
grasslands; (c) Area 3, with scrublands and mixed crops; (d) Area 4 with open woodland. In yellow,
the area used for Low Resolution (LR); in black, the area used for Medium Resolution (MR) and
orange, the selected pixels without irrigation. Source base map: Esri, DigitalGlobe, GeoEye, i-cubed,
USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

2.2. NDVI and Meteorological Data Collection

To study spatial resolution effects, the target areas were studied using 500 × 500 m2,
25 pixels for each area, and 250× 250 m2, implying a set of 132 pixels (Figure 2). MOD09Q1.006
(LR) and MOD09A1.006 (MR) were collected from AppEEARS [44], downloading the RED
(band 1) and NIR (band 2) values for the target areas at these spatial scales. Both had an
8-day temporal resolution from the beginning of 2002 through 2019, a total of 18 years
of data. A maximum temporal resolution among the cited literature was found to be
biweekly [16], and more commonly by month [15,17–21]. For each pixel series, R was
used to calculate the Normalized Difference Vegetation Index (NDVI), using the following
formula:

NDVI = 100 × NIR− RED
NIR + RED

(1)

The possible NDVI values range from 0 to 100. The NDVI obtained values were then
checked for quality. If the data were not categorized as ideal quality in the quality band
from AppEEARS, less than 0.01% was deleted for every area. The gaps were filled using
running averages with a gap interval of seven dates. The time series were then smoothed
using the Savitzky–Golay method [45], with a window size of nine selected, based on the
best-fitted outputs. The NDVI anomaly (ZNDVI) was calculated by applying a z-score by
date [46]:

ZNDVI =
NDVI− µNDVI

σNDVI
(2)

where µNDVI is the average of all data in all available years that were measured in the
same calendar date and σNDVI is the corresponding standard deviation. In this new series,
the seasonal variations of NDVI were eliminated. Daily meteorological data from the
closest meteorological stations (Table A1) were also used [47]. Average temperature and
accumulated precipitation were calculated for every eight days to match the NDVI dates.

To examine the variation of NDVI during the year, boxplots of NDVI and meteorologi-
cal variables were used. Different phases were defined based on NDVI pattern during the
year as this region presents harshness and aridity. These phases (i) were based on the trend
of NDVI values: increasing, decreasing, or constant. A Chow test [48] of NDVI and time
was used to confirm whether NDVI phases presented structural differences at the selected
breaking points.
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2.3. Correlations of NDVI with Meteorological Variables

The NDVI data were based on eight-day compound images. The image was selected
based on criteria such as clouds and solar zenith. The temperature was the average for
every eight days. Precipitation was accumulated every eight days, being coherent with the
time scale of NDVI series. For exploring the existence of temporal patterns, we focused on
two types of correlations:

Pearson’s correlation coefficient of the NDVI values with Temperature (Temp) and
Precipitation (Pp) at different phases (i) is:

ρNDVI,Temp,i =
cov(〈NDVIi(t)〉, 〈Tempi(t)〉)

σ〈NDVIi(t)〉σ〈Tempi(t)〉
(3)

ρNDVI,Pp,i =
cov(〈NDVIi(t)〉, 〈Ppi(t)〉)

σ〈NDVIi(t)〉σ〈Ppi(t)〉
(4)

where 〈Vi(t)〉 is the average of the 18 years of the variable V (NDVI, Temp or Pp) at time t
belonging to phase i; σ〈Vi(t)〉 is the standard deviation of the 〈Vi(t)〉.

Pearson’s correlation coefficient of the NDVI series belonging to phase i, through the
18 years (j), with each of the climatic variables (Temp and Pp) at different time lags (s) is:

ρNDVI,Temp,i(s) =
cov(NDVIi(j, t), Temp(j, t− s))

σNDVIi(j,t)σTemp(j,t−s)
(5)

ρNDVI,Pp,i(s) =
cov(NDVIi(j, t), Pp(j, t− s))

σNDVIi(j,t)σPp(j,t−s)
(6)

where NDVIi(j, t) are the NDVI values at year j and time t that belong to phase i. The
Temp(j, t− s) are the temperature values at year j and delayed s times the lag time, which
is eight days. Analogously, Pp(j, t− s) can be defined.

2.4. Aridity Index and NDVI

The aridity index was calculated following [35], but instead of accumulating annually,
we used the phases described by the NDVI patterns:

AIi =
Pi

EToi
(7)

where Pi is the summation of the accumulated precipitation of each phase for each year
and was analogously done for the accumulated potential evapotranspiration (EToi). Then,
the average NDVI value for each phase was calculated. The cumulative aridity index and
the cumulative average NDVI for each phase were plotted, and a linear regression was
calculated to compare the four areas. A high slope would indicate an efficient use of its
water resources.

3. Results
3.1. Interannual Variation

When yearly average NDVI, temperature, and precipitation were plotted at the two
resolutions, different behaviors were found in these 18 years (Figures 3 and 4). In all the
areas, NDVI at both resolutions were very similar. In A1 and A3, NDVI presents almost a
constant value (A1 has 20 and NDVI nearly 30) as does temperature (15 ◦C in every area,
except A3 where it reaches 18 ◦C). Precipitation is constant in A1 while in A3 it shows
an increasing trend (A3 presents the lowest precipitation, mostly below 300 mm and the
remaining areas range between 300 and 400 mm). On the other hand, A2 and A4 NDVI
present a slight increase (with values around 20 for A2 and 40 for A4). In both areas,
temperature and precipitation show different trends.
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To study whether these trends, visible in Figures 3 and 4, are statistically significant, a
Mann–Kendall test [49,50] was applied in each area (Table 1). A1 shows a decreasing trend
with NDVI MR and LR, but it is only significant with MR. On the other hand, A2 to A4
show an increasing trend, significant in both resolutions. The temperature increases in A1
to A3 and decreases in A4 and precipitation decreases in A1 and A4 and increases in A2
and A3. However, temperature and precipitation do not present significant trends, except
for precipitation in A4, which decreases significantly (Table 1).
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Table 1. Mann–Kendall test results of the four areas; * means that the trend was found significant.
De: Decreasing; In: Increasing; Temp: Temperature; Precip: Precipitation.

Areas Trend S-Statistics Kendall’s tau p-Value

A1-MR De * −15,213 −0.04 <0.05
A1-LR De −7466 −0.02 0.34

A1-Temp In 8849 0.03 0.03
A1-Precip De −7547 −0.02 0.34

A2-MR In * 89,524 0.26 <0.05
A2-LR In * 98,292 0.28 <0.05

A2-Temp In 9115 0.02 0.25
A2-Precip De −4599 −0.01 0.55

A3-MR In * 18,649 0.05 <0.05
A3-LR In * 42,338 0.12 <0.05

A3-Temp In 9912 0.02 0.21
A3-Precip De −6017 −0.02 0.44

A4-MR In * 29,096 0.08 <0.05
A4-LR In * 24,762 0.07 <0.05

A4-Temp De −126 −0.0004 0.98
A4-Precip De * −17,068 −0.05 <0.05

3.2. Low and Medium Resolution NDVI Series

The average NDVI time series with LR and MR are shown in the left column of
Figures 5 and 6 for the four areas studied. When the averages of all pixels for both reso-
lutions are plotted, they tend to coincide. Nevertheless, we can differentiate them at the
peaks and valleys of most years. In A1 and A2 (Figure 5), the two series are very similar.
However, we can see some peaks where LR is higher for A1 and A2. This effect is more
prominent in the A3 case. On the other hand, in A4, the differences are minor between the
two resolutions. These peaks where LR is higher than MR are due to a few pixels and dates
where the NDVI are much higher in both resolutions. However, because the MR has more
pixels averaged, the smoothing effect is more noticeable. Since not all pixels were used for
A3, this rise of LR is more conspicuous.
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On the right column of Figures 5 and 6, we can observe the ZNDVI. In all areas, there
is a change in trend during 2006–2008. From 2000 until 2018, the year 2006 was one of the
hottest, and after that, 2007 and 2008 were among the coolest years since 1996 [47], as can be
observed in Figures 3 and 4. Looking at Figures 3 and 5, A1 and A2 show ZNDVI values in
different years beyond +2 and−2. In these years, there are hotter temperatures for negative
values with reduced precipitation. When ZNDVI goes above 2, high peaks on precipitation
and temperature are lower than in other years. ZNDVI in A3 only goes above two once, at
the end of 2019, coinciding with a strong peak in precipitation (Figures 4 and 6). Area 4
does not show values beyond these levels, although it shows how the trend rises or drops
with these events. Regarding the resolution in A1 to A3, we can see peaks and valleys
where LR has a higher frequency of extreme values. These differences are smoother for A4.

3.3. NDVI Patterns and Meteorological Variables

The LR and MR NDVI annual evolution and temperature and precipitation are shown
in the following boxplots for each of the studied areas (Figures 7–10). The LR and MR
NDVI values in A1 and A2 are very similar, then A3 presents an increase in these values,
and A4 has much higher NDVI values than the rest. This pattern may be, at least in part,
explained by increasing tree coverage in the areas. In each graph, the year was divided
into different phases as the NDVI average trend changed.

A1 and A2 present a larger dispersion during the spring (March, April, and May).
This dispersion is present but less prominent in A3, probably due to its less abundant
precipitation. A4 exhibits a more consistent dispersion of values throughout the year with
a reduction during the summer (June, July, and August), given by the almost complete
tree coverage of this area. NDVI values decrease during the summer in all areas with a
more visible trend in A4. When comparing NDVI and meteorological variables, the former
shows greater heterogeneity among areas. NDVI and temperature appear to show a delay
between their peak values. The average temperature peaks occur on 28 July in all the
zones. The NDVI peaks on the 20 July in all the areas except A4, which showed it on 12
July (Figures 7 and 9 for A1 and A2, and Figures 8 and 10 for A3 and A4). Area A1 to A3
are more heavily influenced by agricultural practices, which may cause the delay between
NDVI and temperature, which only takes eight days. Area A4, as open forest, does not
have any irrigation regimes that can relate to an earlier peak of NDVI when temperatures
rise. No different trends were found when boxplots were plotted for weeks, fortnight,
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months, or season (data not reported). Meteorological trends remain similar regardless of
the temporal scale.
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Because the NDVI trends did not match the change of climatic seasons, we separated
the NDVI and meteorological variables according to the NDVI trend changes, as shown in
Figures 7–10. Areas 1–3 were split into five phases, whereas A4 was split into four phases
(Table 2).
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Table 2. Division of phases following the behavior of NDVI. The selected phases in which there is an
NDVI trend are shown in bold.

Initial Dates
Area 1 to 3 Area 4

Phases NDVI Trend Phases NDVI Trend

1-Jan Phase 1 Steady
Phase 1 Decreasing

6-Mar
Phase 2 Increasing

30-Mar
Phase 2 Steady

23-Apr
Phase 3 Decreasing

17-May Phase 3 Decreasing

28-Jul Phase 4 Steady
Phase 4 Increasing

6-Sep Phase 5 Increasing

3.4. Intra-Annual Regression by Phases

The regression analysis results between NDVI with temperature and precipitation
by phases using the average of 18 years are shown in Figures A1–A4 (in Appendix B) for
temperature and Figures A5–A8 (in Appendix B) for precipitation. Phases 1 and 4 were
eliminated in A1–A3 and Phase 2 in A4, since their NDVI values were steady (Table 2). The
regression analysis shows that for A1 to A3 (Figures A1–A3, Appendix B) temperature
has a more substantial effect in NDVI in phase 2, 3, and 5, compared to phases 1 and 4,
although phase 5 shows a slightly weaker relationship for A2, and especially A3. In A4,
phases 3 and 4 show a strong relationship in the regression analysis and mild for phase 2
(Figure A4 in Appendix B).

The regression analysis for precipitation shows that for A1 to A3 (Figures A5–A7 in
Appendix B), the herbaceous areas, NDVI in phase 3 is influenced by precipitation, while
the others show a fragile relationship. No strong relationships are found in any phases in
A4 (Figure A8). Due to the use of average values in the regression, differences between the
two resolutions are small, although LR tends to have lower R2 values than MR.

3.5. NDVI and Meteorological Series Correlation

The Chow test confirmed significant structural differences between phases for all areas
(Table 3). Medium- and low-resolution NDVI produced similar results in the previous
analyses. However, there were differences, particularly regarding the lagged responses.
This paragraph describes the results of MR NDVI correlation analysis and discusses the
differences with LR NDVI. The correlation values mentioned are the highest lagged cor-
relation (Tables 4 and 5). NDVI has similar lags in each phase throughout A1 to A3. In
phases 1 and 4, the NDVI values experience little change (with a difference within these
phases between 4 and 10 in NDVI).

Table 3. Chow test of NDVI and time of all areas and phases, given with F-statistic and p-value for each continuous phase
pair: phase 1 (P1), phase 2 (P2), phase 3(P3), and phase 4 (P4).

Phases
A1 A2 A3 A4

F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value

P1–P2 7.05 0.001 7.44 0.001 6.31 0.002 71.16 0.000
P2–P3 4.67 0.010 3.33 0.037 4.54 0.011 108.00 0.000
P3–P4 60.96 0.000 33.81 0.000 22.64 0.000 99.95 0.000
P4–P5 53.44 0.000 34.65 0.000 48.39 0.000
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Table 4. Lagged correlations of medium resolution NDVI and meteorological parameters (Meteo) for A1 and A2. Only
the phases with an increasing or decreasing NDVI trend are included. For each phase, bold values show the strongest
correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A1

Temp
Phase 2 0.23 0.3 0.32 0.29 0.29 0.19 0.13
Phase 3 −0.72 −0.72 −0.72 −0.72 −0.73 −0.7 −0.66
Phase 5 −0.5 −0.52 −0.52 −0.51 −0.52 −0.51 −0.5

Pp
Phase 2 0.11 0.19 0.26 0.24 0.28 0.28 0.2
Phase 3 0.21 0.22 0.21 0.2 0.15 0.12 0.15
Phase 5 0.08 0.08 0.11 0.13 0.17 0.23 0.25

A2

Temp
Phase 2 0.18 0.22 0.25 0.24 0.29 0.21 0.17
Phase 3 −0.58 −0.58 −0.59 −0.59 −0.61 −0.58 −0.55
Phase 5 −0.35 −0.35 −0.34 −0.34 −0.34 −0.33 −0.32

Pp
Phase 2 0.12 0.12 0.15 0.19 0.17 0.15 0.03
Phase 3 0.17 0.19 0.22 0.23 0.19 0.17 0.17
Phase 5 0.23 0.3 0.32 0.29 0.29 0.19 0.13

Average Temperature (Temp) and Accumulated Precipitation (Pp).

Table 5. Lagged correlations of medium resolution NDVI and meteorological parameters (Meteo) for A3 and A4. Only the phases with
an increasing or decreasing NDVI trend are included. For each phase, bold values show the strongest correlations among the different
time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A3

Temp
Phase 2 −0.09 0.04 0.13 0.25 0.25 0.21 0.20
Phase 3 −0.04 −0.06 −0.09 −0.12 −0.11 −0.09 −0.07
Phase 5 −0.02 −0.03 −0.04 −0.04 −0.03 −0.02 −0.01

Pp
Phase 2 0.28 0.22 0.14 0.01 0.07 0.10 0.09
Phase 3 0.06 0.08 0.15 0.19 0.16 0.18 0.17
Phase 5 0.12 0.10 0.10 0.08 0.08 0.13 0.14

A4

Temp
Phase 1 −0.14 −0.11 −0.07 −0.01 −0.04 0.04 0.09
Phase 3 −0.71 −0.72 −0.73 −0.72 −0.73 −0.71 −0.69
Phase 4 −0.31 −0.23 −0.17 −0.07 −0.02 0.00 0.03

Pp
Phase 1 0.02 0.03 0.10 0.08 0.12 0.11 0.11
Phase 3 0.25 0.24 0.25 0.25 0.24 0.21 0.23
Phase 4 0.34 0.34 0.27 −0.05 −0.02 0.06 0.02

Average Temperature (Temp) and Accumulated Precipitation (Pp).

For this reason, temperature and precipitation have a minimal correlation with NDVI
during these phases. Phase 2 shows a positive correlation of NDVI and temperature for
these three areas: 0.32 for A1, 0.28 for A2, and 0.25 for A3. Phase 3 presents a moderate
negative correlation for A1 and A2 (−0.73 and −0.61, respectively) and a low correlation
(−0.12) in A3. Phase 5 has a low negative correlation for A1 (−0.32), A2 (−0.35), and A3
(−0.04). Area 4 always presents a negative correlation between temperature and NDVI,
all lower than −0.4 except in phase 3, which has a stronger negative correlation of −0.73.
Precipitation presents small positive values in all phases and areas, all below 0.35.

Lags on temperature for A1 to A3 in phase 1 and 4 range from 0 to 8 days, except for
phase 4 in A2. All of these have very low values due to the constant behavior of NDVI
values. In phase 2, the highest correlation between NDVI and temperature is found with
a 16-day lag in A1, and 32-day lag in A2 and A3. Phase 3 has lags of 24 and 32 days for
these three areas. Phase 5 differs more between areas, with a lag of 32 days for A1, eight
days for A2, and 24 days in A3. Area 4 only shows a 16-day lag in phase 3, while the
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rest of its phases present no lag. The differences between the areas may be related to two
factors, differences between their vegetation and their hydrological regimes. Precipitation
correlation lags show small similarities between all four areas. The scattered precipitation
of these habitats and water scarcity makes it difficult to find a pattern across the areas.
These disparities appear to be related to differences in heavy rains at specific times in each
phase and area.

Comparing these results with the LR ones (Tables 6 and 7), correlation exhibited one
of our analyses’ significant differences between the two resolutions. The lag presented
by the highest correlation with temperature was similar for MR and LR, except for some
cases where there was an approximate difference of 8-days lag. However, phases 4 and
5 present more significant differences with a lag of 16 and 32 days, in some cases. The
precipitation variable presents an almost constant smaller lag in the LR, ranging from 8
to 48 days. Partial correlation with NDVI, temperature, and precipitation was made, but
no significant differences were found (Tables A2–A5, in Appendix C). They indicated that
water availability is highly affected by temperature in this region.

Table 6. Lagged correlations of Low Resolution (LR) NDVI and meteorological parameters (Meteo)
for A1 and A2. Only the phases with an increasing or decreasing NDVI trend are included. For each
phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A1

Temp
Phase 2 0.2 0.25 0.34 0.25 0.33 0.32 0.16
Phase 3 −0.67 −0.66 −0.66 −0.65 −0.66 −0.64 −0.61
Phase 5 −0.41 −0.43 −0.44 −0.44 −0.44 −0.42 −0.41

Pp
Phase 2 0.18 0.16 0.23 0.26 0.18 0.19 0.18
Phase 3 0.19 0.19 0.19 0.21 0.15 0.13 0.18
Phase 5 0.17 0.1 0.11 0.13 0.16 0.23 0.24

A2

Temp
Phase 2 0.16 0.16 0.23 0.2 0.3 0.33 0.22
Phase 3 −0.45 −0.46 −0.46 −0.46 −0.48 −0.46 −0.46
Phase 5 −0.18 −0.2 −0.19 −0.19 −0.17 −0.16 −0.15

Pp
Phase 2 0.19 0.06 0.16 0.2 0.15 0.03 −0.03
Phase 3 0.13 0.12 0.21 0.27 0.18 0.2 0.15
Phase 5 0.2 0.25 0.34 0.25 0.33 0.32 0.16

Average Temperature (Temp) and Accumulated Precipitation (Pp).

Table 7. Lagged correlations of Low Resolution (LR) NDVI and meteorological parameters (Meteo)
for A3 and A4. Only the phases with an increasing or decreasing NDVI trend are included. For each
phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A3

Temp
Phase 2 0.09 0.12 0.12 0.12 0.01 0.05 0.09
Phase 3 −0.40 −0.41 −0.41 −0.42 0.41 −0.39 −0.36
Phase 5 −0.28 −0.28 −0.27 −0.26 −0.24 −0.20 −0.16

Pp
Phase 2 0.31 0.29 0.27 0.18 0.15 0.21 0.14
Phase 3 −0.08 −0.02 0.04 0.09 0.08 0.12 0.15
Phase 5 0.16 0.14 0.16 0.15 0.15 0.20 0.19

A4

Temp
Phase 1 −0.17 −0.10 0 0.05 −0.07 0.00 0.02
Phase 3 −0.66 −0.65 −0.67 −0.66 −0.67 −0.64 −0.63
Phase 4 −0.29 −0.14 −0.13 −0.01 0.02 0.05 0.08

Pp
Phase 1 0.14 −0.01 0.03 0.06 0.13 0.09 0.09
Phase 3 0.25 0.25 0.22 0.26 0.22 0.18 0.22
Phase 4 0.41 0.30 0.18 −0.09 −0.07 0.01 −0.02

Average Temperature (Temp) and Accumulated Precipitation (Pp).
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3.6. Aridity Index and NDVI

Figure 11 shows the four areas cluster into two groups. On one side, we find A1 and
A2 intermingling. These two areas present lower cumulative NDVI than A3 and A4, and
higher cumulative values of AI than A4 and A3. The AI for A4 was calculated based on its
four phases, instead of five as was done for the other areas. However, this change does
not affect the pattern and slope of this graphic. In the upper part of Figure 11, we find A3
and A4 showing efficient use of water resources. Their higher slope reflects the increase
of NDVI as AI rises. With more typical Mediterranean vegetation, A3 and A4 have more
efficient water use, particularly A3 with xerophilous shrubs as opposed to less xeric shrub
vegetation, such as rosemary found in A4.
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4. Discussion
4.1. NDVI Series Comparison

The average NDVI values for LR and MR of MODIS display relatively strong sim-
ilarities. However, differences between them on their series’ peaks and valleys can be
detected (Figures 5 and 6). These differential patterns among areas suggest that it is caused
by the difference of the averaged pixels within each area, showing that a finer scale is
more representative of the area. On the other hand, some peaks and valleys are more
pronounced, mainly when extreme meteorological events occur. These differences show a
spatial difference among the pixels, which should be further researched.

These differences are confirmed when we compared the boxplots and the results of
Pearson correlation and regression analysis. We found the significant differences in the
boxplots among resolutions in A4, which is the most heterogeneous landscape, with a
mix of tree-, scrub-, and grassy-dominated pixels. The medium resolution provided more
significant results when studying their tendencies; the Mann–Kendall test for A1 with
MR showed a tendency that was not visible with LR. Regression analysis provided more
robust results for the relationship of NDVI and climatic variables with MR in A2 and A3,
while A1 and A4 had smoother results than A2 and A3. Additionally, MR NDVI had
more delayed lagged correlations. The use of medium or low resolution may depend on
the spatial heterogeneity of the areas of study. This is probably due to a more detailed
depiction of NDVI values in MR, as a smaller pixel size allows us to separate areas that
could be spatially diverse. MR allows emerging a more lagged correlation without being
tampered by the surroundings if an area dries at different times.
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Using both resolutions shows a clearer image of the selected areas, especially high-
lighting those that are more heterogeneous. These results are in agreement with [31]. The
use of ZNDVI and its comparison to the NDVI series also highlights the more significant
changes during the series and the differences between the two resolutions. In particular,
we find that extreme events are more pronounced when using LR as compared to MR.

4.2. NDVI Data and Meteorological Variables

NDVI values are highly related to water availability, as stated by [51]. NDVI responses
are strongly linked to temperature in Mediterranean habitats, although this relationship
weakens when precipitations are high [52]. In Murcia, the precipitations are scarce, with
dry winters and almost no precipitation during the summer months. Furthermore, the
temperature rises to its peak in July and August, leading to decreasing NDVI values. These
values rise when the precipitation begins, and the temperature starts to descend. Our data
show similar trends of higher NDVI values when precipitation increases, as highlighted
by [53,54]. Area 4, located in the northwest county of Murcia, has relatively more water
abundance and larger NDVI values.

Our correlation analysis shows that NDVI data are strongly and negatively correlated
to average temperature when precipitation is strongly limited. The intraseasonal variation
of the relationship of the NDVI and the meteorological variables has been approached by
using different phases based on the NDVI behavior. The patterns of NDVI correlations
with temperature change depending on the land use and the phase selected. Phases 1 and
4 show weak correlation values because the NDVI presents a steady pattern. On the other
hand, phases 2, 3, and 5 have either increasing or decreasing NDVI trends. These phases
present negative values except for phase 2 for A1 to A3 when the spring precipitation
occurs. The correlations for NDVI and precipitation are very low, all below 0.35. However,
the regression analysis highlights a stronger relationship for A1 to A3 for phase 3, when
the precipitation starts high and steadily drops as temperature increases. A4, covered
with trees, does not show a strong relationship between NDVI and precipitation where
its precipitation in phase 2 is more limited than in the other areas. These changes among
phases suggest that one of the critical factors affecting NDVI is water availability, matching
other areas with semiarid and arid climates [55,56].

After characterizing the climatic variables and NDVI dynamics, we approached how
the NDVI was affected by the AI, as a combination of precipitation and potential evapotran-
spiration, reflecting the temperature as well. This relation was established by accumulating
NDVI and AI by the phases defined in each area. This allowed us to see how the different
vegetation types representing each area respond differently to water availability. A3 and
A4 show a more efficient response of NDVI to the rise of AI. Among these two areas, A3
exhibits a better response, in agreement with its more xeric vegetation, particularly in the
selected top half pixels. No trees are found and xerophilous scrubs, such as esparto, inhabit
the area. On the other hand, A1 and A2, representing different types of crops, show a
smaller NDVI in response to a similar AI than A4, and higher than A3.

5. Conclusions

Comparison of the two scales of MODIS MOD09Q1.006 (MR) and MOD09A1.006 (LR)
show that NDVI is scale dependent. These resolutions show differences, particularly when
studying correlation and regression analysis. They are suggesting that medium resolution
is more suited for spatial and lagged temporal patterns. However, when averaged, the
trends are similar between these two resolutions. Lower resolution scales can be used
when the studied areas are not spatially heterogeneous for temporal trend analysis, but
larger resolutions scales are recommended on spatially diverse areas.

Among the climatic variables used, temperature shows the strongest relationship
with average NDVI. Our results reveal that complex interactions of precipitation and
temperature may explain real-time NDVI evolution. However, their behaviors vary across
the phases. The use of phases based on NDVI patterns, instead of seasons, allows us to
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describe a more realistic depiction of the arid environments, based on their vegetation
dynamics. The study shows a strong positive correlation of NDVI with temperature when
high precipitation occurs. Precipitation, however, shows a weak correlation with NDVI.
The behavior of both climatic variables points to water availability as one of the major
drivers of NDVI in Murcia, as it is suggested by the positive correlations of temperature
and NDVI during phases where heavier precipitation occurs.

Aridity index and NDVI allowed us to cluster our four areas into two large groups,
A1 and A2; mainly grazed wastelands showed a low increase of NDVI with a high aridity
index. In contrast, A4 and A3 with a similar or lower aridity index presented a higher NDVI
accumulation, showing more efficient use of available water; A3, especially, presented a
higher slope than A4. However, more rangelands and other ecosystems should be analyzed
to determine whether or not these differences can discriminate and characterize among
other types of rangelands.

Intraseasonal relationship of NDVI with climatic variables was studied by splitting the
analyses according to NDVI patterns. This allowed for viewing NDVI dynamics that were
obscured when the seasonal division was followed. Intraseasonal and interseasonal charac-
teristics should be taken into consideration in the definition of agrometeorological indexes
in rangelands. This study provides a discriminating technique for rangeland management
and policymakers. It is expected that future research will expand the knowledge of NDVI
drivers at different scales, to develop tools and indexes that can help further comprehend
vegetation communities of agricultural lands.
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Appendix A

Table A1. UTM coordinates of each corner of the areas and the coordinate for their respective
meteorological station.

Areas Area 1 Area 2 Area 3 Area 4

Xmin (m) 660,520 635,796 650,064 614,504
Xmax (m) 663,020 638,296 652,564 617,004
Ymin(m) 4,284,420 4,273,396 4,225,985 4,219,731
Ymax (m) 4,286,920 4,275,896 4,228,485 4,222,231

Stations AL-10 (SIAM) AL-06 (SIAR) CI-32 (SIAR) CR-32 (SIAM)

X station (m) 675,585 630,946 652,564 615,466
Y station (m) 4,289,270 4,276,000 4,228,485 4,218,939
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Appendix C

Table A2. Lagged partial correlations of medium resolution NDVI and meteorological parameters
(Meteo) for A1 and A2. Only the phases with an increasing or decreasing NDVI trend are included.
For each phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A1

Temp
Phase2 0.28 0.35 0.37 0.31 0.32 0.25 0.19
Phase3 −0.71 −0.71 −0.71 −0.7 −0.72 −0.69 −0.65
Phase5 −0.5 −0.51 −0.52 −0.51 −0.5 −0.49 −0.47

Pp
Phase2 0.19 0.27 0.32 0.27 0.31 0.32 0.23
Phase3 0.13 0.17 0.16 0.19 0.01 0.08 0.08
Phase5 0.08 0.07 0.09 0.08 0.11 0.15 0.16

A2

Temp
Phase2 0.21 0.24 0.27 0.24 0.3 0.25 0.18
Phase3 −0.57 −0.57 −0.56 −0.57 −0.59 −0.57 −0.53
Phase5 −0.34 −0.35 −0.34 −0.34 −0.32 −0.31 −0.29

Pp
Phase2 0.16 0.16 0.18 0.19 0.19 0.2 0.07
Phase3 −0.1 −0.04 0 0.03 0.02 0.06 0.05
Phase5 0.13 0.13 0.16 0.17 0.18 0.16 0.19

Average Temperature (Temp) and Accumulated Precipitation (Pp).

Table A3. Lagged partial correlations of medium resolution NDVI and meteorological parameters
(Meteo) for A3 and A4. Only the phases with an increasing or decreasing NDVI trend are included.
For each phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A3

Temp
Phase2 0.11 0.18 0.24 0.32 0.32 0.28 0.22
Phase3 −0.48 −0.48 −0.49 −0.5 −0.48 −0.47 −0.43
Phase5 −0.34 −0.34 −0.33 −0.32 −0.3 −0.28 −0.24

Pp
Phase2 0.32 0.31 0.27 0.18 0.18 0.24 0.15
Phase3 −0.09 −0.04 0.05 0.11 0.1 0.14 0.14
Phase5 0.13 0.12 0.14 0.14 0.15 0.2 0.21

A4

Temp
Phase1 −0.14 −0.11 −0.06 0 −0.05 0.02 0.07
Phase3 −0.69 −0.7 −0.71 −0.7 −0.71 −0.69 −0.67
Phase4 −0.23 −0.15 −0.17 −0.07 −0.03 0.03 0.04

Pp
Phase1 −0.01 0.01 0.09 0.08 0.12 0.1 0.09
Phase3 −0.08 −0.02 0 0.02 0.01 0.04 0.05
Phase4 0.26 0.3 0.26 −0.06 −0.02 0.06 0.04

Average Temperature (Temp) and Accumulated Precipitation (Pp).
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Table A4. Lagged partial correlations of low resolution NDVI and meteorological parameters (Meteo)
for A1 and A2. Only the phases with an increasing or decreasing NDVI trend are included. For each
phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A1

Temp
Phase2 0.24 0.30 0.34 0.31 0.37 0.31 0.24
Phase3 −0.07 −0.03 −0.01 −0.04 −0.01 −0.05 −0.04
Phase5 −0.45 −0.46 −0.46 −0.45 −0.45 −0.43 −0.40

Pp
Phase2 0.23 0.27 0.30 0.24 0.27 0.32 0.24
Phase3 0.12 0.18 0.23 0.28 0.06 0.11 0.10
Phase5 0.11 0.09 0.11 0.10 0.12 0.17 0.18

A2

Temp
Phase2 0.20 0.20 0.26 0.25 0.33 0.29 0.24
Phase3 −0.06 −0.01 −0.12 −0.13 −0.11 −0.09 −0.06
Phase5 −0.20 −0.21 −0.20 −0.19 −0.17 −0.15 −0.13

Pp
Phase2 0.17 0.16 0.19 0.19 0.18 0.17 0.04
Phase3 0.05 0.02 0.05 0.10 0.02 0.15 0.13
Phase5 0.14 0.15 0.18 0.18 0.20 0.18 0.20

Average Temperature (Temp) and Accumulated Precipitation (Pp).

Table A5. Lagged partial correlations of low resolution NDVI and meteorological parameters (Meteo)
for A3 and A4. Only the phases with an increasing or decreasing NDVI trend are included. For each
phase, bold values show the strongest correlations among the different time lags tested.

Area Meteo Phase
Lag Time (Days)

0 8 16 24 32 40 48

A3

Tmep
Phase2 0.11 0.18 0.25 0.34 0.36 0.30 0.23
Phase3 −0.15 −0.11 −0.06 −0.04 −0.06 −0.05 −0.03
Phase5 −0.28 −0.28 −0.27 −0.26 −0.24 −0.20 −0.17

Pp
Phase2 0.31 0.30 0.27 0.18 0.15 0.22 0.14
Phase3 0.20 0.23 0.19 −0.06 0.00 −0.04 −0.07
Phase5 0.16 0.14 0.16 0.15 0.15 0.21 0.19

A4

Temp
Phase1 −0.14 −0.08 −0.01 0.03 −0.05 −0.01 0.04
Phase3 −0.68 −0.69 −0.70 −0.70 −0.70 −0.68 −0.66
Phase4 −0.20 −0.14 −0.15 −0.05 −0.02 0.02 0.03

Pp
Phase1 0.01 0.02 0.09 0.08 0.15 0.12 0.08
Phase3 −0.06 0.00 0.01 0.03 0.01 0.04 0.05
Phase4 0.30 0.31 0.27 −0.07 −0.01 0.07 0.04

Average Temperature (Temp) and Accumulated Precipitation (Pp).
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