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Abstract: Drought severity and impact assessments are necessary to effectively monitor droughts
in semi-arid contexts. However, little is known about the influence land use-land cover (LULC)
has—in terms of the differences in annual sizes and configurations—on drought effects. Coupling
remote sensing and Geographic Information System techniques, drought evolution was assessed
and mapped. During the growing season, drought severity and the effects on LULC were exam-
ined and whether these differed between areas of land change and persistence. This study used
areas of economic importance to Botswana as case studies. Vegetation Condition Index, derived
from Normalised Difference Vegetation Index time series for the growing seasons (2000–2018 in
comparison to 2020–2021), was used to assess droughts for 17 constituencies (Botswana’s fourth
administrative level) in the Central District of Botswana. Further analyses by LULC types and land
change highlighted the vulnerability of both human and natural systems to drought. Identified
drought periods in the time series correspond to declared drought years by the Botswana government.
Drought severity (extreme, severe, moderate and mild) and the percentage of land areas affected
varied in both space and time. The growing seasons of 2002–2003, 2003–2004 and 2015–2016 were
the most drought-stricken in the entire time series, coinciding with the El Niño southern oscillation
(ENSO). The lower-than-normal vegetation productivity during these growing seasons was evident
from the analysis. With the above-normal vegetation productivity in the ongoing season (2020–2021),
the results suggest the reversal of the negative vegetation trends observed in the preceding growing
seasons. However, the extent of this reversal cannot be confidently ascertained with the season
still ongoing. Relating drought severity and intensities to LULC and change in selected drought
years revealed that most lands affected by extreme and severe drought (in descending order) were
in tree-covered areas (forests and woodlands), grassland/rangelands and croplands. These LULC
types were the most affected as extreme drought intersected vegetation productivity decline. The
most impacted constituencies according to drought severity and the number of drought events
were Mahalapye west (eight), Mahalapye east (seven) and Boteti west (seven). Other constituencies
experienced between six and two drought events of varying durations throughout the time series.
Since not all constituencies were affected similarly during declared droughts, studies such as this
contribute to devising appropriate context-specific responses aimed at minimising drought impacts
on social-ecological systems. The methodology utilised can apply to other drylands where climatic
and socioeconomic contexts are similar to those of Botswana.

Keywords: Normalised Difference Vegetation Index (NDVI); Vegetation Condition Index (VCI);
drought; land use-land cover; remote sensing; Botswana

1. Introduction

Drought as a slow-onset event is increasingly an environmental hazard due to its
negative impacts on natural and human systems, including livelihoods [1–4]. Drought
conditions are initiated by precipitation shortfall in comparison to the climatological normal
in the focus context and amplified by concurrent heatwaves and extreme high-temperature
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events [5,6]. Impacts relate to insufficient availability of water to meet human and nature’s
needs, seasonal moisture deficit including soil moisture and extensive evaporation resulting
in a decline in vegetation greenness and health, plant mortality, reduced water levels in
dams and other adverse ecological and/or socioeconomic conditions [7–10]. Studies have
found and are forecasting increasing drought duration, severity and frequency in different
world regions [11–16].

Drylands, which by their very nature are water deficient due to limited rainfall and
water supplies [17], are particularly vulnerable to droughts. In African drylands, the
occurrence of droughts is not unusual. Some studies have found increasing drought events
in African drylands [4,18], whereas other studies project future increases in droughts and
other high-temperature events [19,20]. In the arid regions of South Africa, extreme high-
temperature events in parks are increasing in frequency [18]. In Botswana, where this study
was conducted, there is public awareness on issues relating to drought due to its negative
impacts, particularly on agriculture, which is largely rainfed [21]. Studies have found
observable changes of varying magnitudes in rainfall, temperature trends and drought
over Botswana [21–24]. With future global warming, droughts are projected to increase in
frequency and severity in this region based on regional climate model simulations [5,25]. In
the face of climate variability and change, it is increasingly important to assess and monitor
droughts because of the need to adapt and minimise impacts on the social-ecological
systems in African drylands.

The need to monitor and assess droughts in drylands calls for the use of Remote
Sensing (RS)-based data and methods as complementary to meteorological gauge data
and climatological indices due to the drawbacks of using only ground-based data, such as
inadequate spatial and temporal coverage of meteorological station data. RS image data
and vegetation indices are widely used in drought monitoring [26–29]. With the increasing
availability of free satellite image datasets of good temporal and spatial resolution, RS
affords rapid and cost-effective assessment and monitoring of droughts. Drought effects on
vegetation and ecosystem services were examined in the Bobirwa sub-district, Botswana
using RS-based indices [30]. Although the drought situation is increasingly assessed in
Botswana, the use of RS in examining droughts in Botswana is still very limited. Moreover,
how drought severity differs between land systems to further exacerbate impacts in this
region is not clear.

Using Normalised Difference Vegetation Index (NDVI) image time series datasets, this
study contributes to the understanding of the spatial and temporal variations of droughts
and the effects across LULC types and change. It integrated remote sensing with spatial
statistics in Geographic Information System (GIS) for the analysis and mapping of drought.
Variability and vegetation trends over 18 years for the growing seasons between 2000–2001
to 2017–2018 were assessed and afterwards compared to the ongoing growing season
(2020–2021). Thus, this study better captured the seasonality of vegetation growth when
considering drought severity as this relates to rainfall in dryland contexts. The spatial and
temporal evolution of drought severity was assessed and mapped for each year in the time
series. We provided an improved methodology for the examination of drought evolution
and severity by incorporating indices of LULC change. Transitions in areas of LULC change
and persistence, i.e., areas where no changes occurred, are useful indices to understand the
processes, especially anthropogenic, driving the observed trends in vegetation productivity
and how these relate to drought severity. Most RS-based studies on drought have not
evaluated the effects according to LULC types and change. For the examination of drought
severity by LULC and change to be meaningful, we further considered the differences
in annual LULC configurations and sizes. Considering that both configuration and size
differ from year to year, we utilised the annual LULC time series for analysis in each year
identified as drought-stricken. Moreover, drought impacts on land-based resources upon
which much of livelihoods are dependent would either be exacerbated or ameliorated
depending on how the land is put to use and the land management practices. To better
demonstrate RS capabilities for assessing drought severity at a finer, sub-national scale, the
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assessment was conducted in 17 constituencies (a constituency is the fourth administrative
level in Botswana).

2. Materials and Methods
2.1. Description of the Study Location

Seventeen constituencies in the Central District of Botswana (CDB) in the eastern
part of the country were used as case studies (Figure 1). The CDB is the largest amongst
the nine districts of Botswana both in terms of population and geographic size (Table S1
details the population and geographic area of the 17 constituencies). The district has
576,064 inhabitants (29% of Botswana’s population) as of the 2011 census. With 26% of
Botswana’s land area, it covers an area of approximately 147,730 km2. With a semi-arid,
hot steppe climate (Koppen’s BSh classification), rains occur in the summer months with
peak rainfall in January (71–142 mm). Annual average rainfall at the constituencies ranged
from 321 mm to 430 mm. Temperature ranges from 32 to 39 ◦C and can occasionally exceed
40 ◦C [21]. As in most parts of Botswana, the annual evaporation rate of about 2000 mm
year−1 far exceeds that of the rainfall (475–525 mm year−1) [4].
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Figure 1. Study location: (a) Central District in eastern Botswana; (b) Land use-land cover for 2018; (c) Peak distribution of
rainfall in the 17 constituencies examined in the study.

The district is of great economic importance to Botswana, with 23% (31,634 holdings)
of all traditional agricultural holdings in Botswana [31]. Moreover, the majority of the mines
in Botswana are located in the CDB, such as the Morupule coal mine and the diamond
mines in Lerala, Orapa and Letlhakane.

2.2. Data Sources

Variability in vegetation condition and drought severity in the CDB were examined
over 18 years using the 1 km Normalised Difference Vegetation Index (NDVI) decadal
(i.e., 10-day composite) image time series from the Copernicus Land Monitoring Service
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(https://land.copernicus.eu/global/products/ndvi, accessed on 8 January 2021). These
images were made available through the European Union–African Union-funded project on
Monitoring for environment and security in Africa (MESA). The MESA was implemented
for the Southern African Development Community (SADC) region comprising 15 countries
and included Madagascar and the Democratic Republic of Congo. The dekadal NDVI
datasets from October 2000 to 2014 were derived from SPOT VGT, and data from June 2014
to 2018 are from the PROBA-V [32]. These long-term, 1-km NDVI datasets from the two
sensors have been pre-processed at the source to ensure compatibility and continuity [33].

The land cover datasets were from the European Space Agency (ESA-LC) Climate
Change Initiative (CCI-LC v.2.0.7) ESA CCI and Copernicus Climate Change Service (C3S-
LC Mv52 https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=
form, accessed on 8 January 2021). These datasets are a consistent series of multi-sensor an-
nual maps from 1992 to 2018 [34]. The land categories in the ESA-LC were aggregated into
six categories for compatibility with previous studies in Botswana [35]—tree-covered areas,
grassland, cropland, water bodies, artificial surfaces (settlement including infrastructure)
and otherland (Table S2). Tree-covered areas comprise forests and woodlands. In Botswana,
forested areas are defined as comprising multi-layered tree canopies with over 10% cover,
a minimum size of 0.5 ha and heights of more than 5 m [36]. Grassland incorporated
shrubland and other sparse vegetation, whereas the otherland category combines bareland,
rock outcrops and dunes [35].

2.3. Methods
2.3.1. Indicators of Vegetation Variability

Indices used for measuring vegetation variability and drought severity are based on
the NDVI. NDVI is widely utilised for assessing and monitoring vegetation greenness,
net primary productivity, plant phenology and land degradation in natural and human
systems [35]. NDVI is calculated as in Equation (1), where NIR and R are the near infrared
and visible red portions, respectively, of the electromagnetic spectrum. Photosynthetically
active plants absorb more incident radiation in the visible red portion but reflect more in
the near infrared portion [37].

NDVI =
NIR − R
NIR + R

(1)

Three indicators of vegetation variability utilised in this study were derived from
NDVI—NDVI difference, NDVI anomaly and NDVI trends. Other derived metrics to gauge
seasonal vegetation productivity include the NDVI mean, maximum and cumulative values
computed for each month in the growing season within the time series.

NDVI Difference

To analyse the variability of vegetation during the vegetation growing season over
the 18-year study period, the NDVI Difference (NDVIdiff) function implemented in the
MESA Drought Monitoring Services (DMS) software was utilised. NDVIdiff is widely used
to get an indication of vegetation state over a specific period by comparing vegetation
productivity between two dekads or relative to the long-term average for the same period.
This indicator highlights areas where vegetation is under stress as well as those performing
well. For this study, seasonal NDVIdiff was calculated for every growing season (i.e.,
annually) as the difference between the start dekad (i.e., first 10-day period) in October (D1)
in a certain year i to the end dekad (i.e., last 10-day period) in March (D3) of the following
year i + 1 in the time series data of 2000 to 2018 (Equation (2)):

NDVIdiff (i,i+1) = NDVID1i − NDVID3i+1 (2)

Standardised NDVI Anomalies

NDVI anomaly captures how vegetation productivity for a certain period deviates
from the long-term average dynamics. It is calculated by subtracting the considered
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month NDVI from the month’s long-term average and dividing it by the monthly standard
deviation for that period. By distinguishing areas that are normal from those that are above
or below normal vegetation productivity, NDVI anomaly is helpful to identify outliers,
isolate the variability in the vegetation signal and consider the reviewed period within a
meaningful historical context [26].

NDVI Trend

Using the NDVI time series of 2000 to 2020 as input, we computed vegetation change
as trends and their significance based on the Mann-Kendall (MK) non-parametric test.
Non-parametric approaches estimate trends in a time series by quantifying the rate of
change in vegetation greenness for each pixel and characterises trends in the data using the
median slope [38]. MK tau (τ) coefficient ranges from −1 to +1 with values greater than 0
indicating a continually increasing (greening) trend, and values less than 0 indicating a
continually decreasing (browning) trend [39]. NDVI trends were reclassified into increase
(>0), decrease (<0) and stable (0). The MK is useful to determine the significance of changes
in vegetation productivity over time and is robust to outliers [40]. The reclassified NDVI
trends were afterwards assessed by LULC type. In conjunction with LULC types, NDVI
trends are useful in detecting land areas that are potentially degraded if significant negative
trends are found over time [35].

2.3.2. Drought Indicators
Vegetation Condition Index

Drought severity during the growing season was measured using the NDVI-based
Vegetation Condition Index (VCI) as in Equation (3) [27]. VCI compares the NDVI of a
given period j (NDVIj) with the long-term minimum NDVI (NDVIltmin) and long-term
maximum NDVI (NDVIltmax) computed over a 10-year time series for the same period.

VCIj =

(
NDVIj − NDVIltmin

NDVIltmax − NDVIltmin

)
× 100 (3)

VCI is particularly useful for agriculture, as it assesses changes in NDVI through time
since vegetation is water-stressed due to water deficiency such as during drought. VCI for
the vegetation growing season was calculated between 2000–2001 and 2017–2018 starting
with the first dekad of October in the previous year to the third dekad in March of the
following year. VCI is measured as a percentage with values ranging between 0 (lowest)
and 100 (highest), with values equal to or below 40% considered as drought to varying
degrees of severity (Table 1). The two VCI-based indicators used for characterising drought
are drought intensity and drought frequency.

Table 1. Vegetation Condition Index (VCI) -based drought severity classes (Adapted from [41]).

Drought Severity VCI

Extreme 0 ≤ VCI < 10
Severe 10 ≤ VCI < 20

Moderate 20 ≤ VCI ≤ 30
Mild 30 ≤ VCI ≤ 40

No drought 40 < VCI ≤ 100

Drought Intensity

Drought intensities for each growing season were calculated through the 18-year
study period. These are percentages of pixels (a proxy for the surface land area) whose
VCI values fell within the different drought severity and non-drought categories [41]. The
evolution of the drought hazard was examined for each year in the time series based on
the VCI.
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Drought Frequency

To relate the pixel-level VCI to each of the 17 constituencies in the CDB, the zonal
statistics function in GIS was used. The median VCI value within each constituency was
utilised because there is the tendency for more years in drylands to have rainfall below the
mean, with the median value deviating more from the mean. Due to the sensitivity of the
mean to outliers, the median is a better data distribution measure to gain further insight
regarding the frequency of droughts in each constituency. Drought severity was compared
to the official declarations of drought years by the government. Drought frequency was
computed as the count of the number of drought years in the entire time series (growing
seasons 2000–2001 to 2017–2018). A year with an annual VCI value of 40 or less is identified
as drought-stricken and the sum of such drought years per constituency in the entire time
series amounts to the frequency of drought [26].

2.3.3. Land Use-Land Cover Change

In addition to vegetation trends, drought severity was examined according to LULC
types. It was also examined at the constituency level, to take into cognisance the environ-
mental and administrative basis of drought impacts, respectively. For each drought year,
drought severity effects on each LULC type were assessed based on the intersection of VCI
and LULC values for that particular year. Drought intensity is expressed as a percentage
of the area under each LULC type affected by varying drought severity and non-drought
conditions. Percentages of the surface land area affected were then normalised by the
size of the LULC type for each year. Since LULC configurations and sizes vary from one
year to another, the annual LULC map for each identified drought year was utilised. Only
for the land change analysis aspect was the maps of the years 2000 and 2018 used for
post-classification change detection.

3. Results
3.1. Vegetation Variability and Trend

The spatial and temporal variations in vegetation productivity were presented based
on analyses during the growing seasons, i.e., October to March, of the 18 years. Providing
insights regarding each growing season throughout the entire time series, NDVIdiff maps
(Figure 2) depict limited vegetation productivity in the CDB in years 2000–2001, 2003–
2004, 2005–2006, 2007–2009, 2013–2014 and 2015–2018. In other years, such as 2002–2003
and 2010–2011, vegetation productivity was low mostly in the northern and the eastern
parts of the district. Improvement in vegetation performance occurred during 2005–2006,
2009–2010, 2010–2011 and 2014–2015.

Figure 3a,b compared maximum, mean and cumulative NDVI in the entire time series
(2000–2018) with those of the drought years (2002–2003 and 2003–2004) and non-drought
year (2009–2012). Vegetation productivity for 2020–2021 as the ongoing growing season is
also depicted. Vegetation productivity during the 2009–2010 non-drought growing season
was higher than the mean of the entire time series for most months, except in mid-February
to March, whereas, for this current growing season (2020–2021), vegetation productivity
is well above the mean of the entire time series from mid-October 2020 to February 2021.
NDVI anomalies (Figure 3c) captured lower or higher than normal vegetation productivity
in the time series. There were some extended periods of very low vegetation productivity
over multiple growing seasons. Examples are the period from the middle of the 2002–2004
growing seasons and 2004–2005 to the start of 2005–2006 growing seasons. The improved
vegetation productivity during the growing seasons of 2005–2006, 2009–2010, 2010–2011
and 2014–2015 was further confirmed by the NDVI anomaly (Figure 3c). NDVI anomalies
(Figure 3c) captured lower or higher than normal vegetation productivity in the time series.
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The NDVI trend was analysed as an indicator of vegetation productivity change.
Areas of negative trends amounted to about 90% of the land area in the CDB (Figure 4).
Decreasing NDVI trends mostly occurred in the north-east (Nkange, Shashe west, Tonota)
and to the south (e.g., Sefhare-Ramokgonami, Mahalapye east). Decreasing vegetation
trends imply that these areas experienced an overall decline in vegetation cover and
biomass. Increasing NDVI trends (4% of CDB’s land area), implying an improvement in
vegetation productivity, were most pronounced in the north-west (e.g., Boteti west) and the
eastern tip along the Motloutse River (Bobonong). Areas of stable vegetation productivity
(6%) were mostly in the western parts around Serowe west, Shoshong, Palapye and Serowe
north. The direction of these trends and the extent of land area affected are generally in
line with the overall national vegetation productivity dynamics [35].
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3.2. Spatio-Temporal Evolution of Drought Severity during Vegetation Growing Seasons

Drought negatively impacts vegetation growth, the supply of water for nature’s
needs (e.g., to sustain wildlife) and human needs (e.g., for livelihoods and food security).
Seasonal maps depicting spatial and temporal variations in drought severity for the CDB
were produced (Figure 5a). The growing seasons of the years 2002–2004 and 2015–2016
were the worst drought periods in the entire series. The growing seasons of 2004–2007,
2012–2013 and 2016–2018 were also affected but to a lesser extent. During droughts, the
most affected areas were towards the west, south and the eastern tip of the district except
for 2002–2004, when the entire district was affected by drought. Land areas most affected
by drought were in Mahalapye west and east, Boteti west, Shoshong, Shashe west, Palapye
and Bobonong. The magnitude of the drought hazard varied between the years considered
in the time series (Figure 5b). The highest percentages of extreme, severe, moderate and
mild droughts were recorded during 2002–2005. These years corresponded to drought
years declared by the government [31]. Drought severity ranged from extreme to mild
as lower than normal, erratic rainfall amounts were recorded in the CDB, similar to most
parts of Botswana during these years.
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3.3. Area of Land Use-Land Cover Change and Persistence

In the CDB, areas of LULC persistence, i.e., unchanged, between 2000 to 2018 amounted
to 88% (130,166 km2). Figure 6a depicts the spatial distribution of areas of persistence
as well as losses where LULC types have been displaced, i.e., transitioned to other land
uses. Figure 6b shows the share of land under each persistent and transitioned land uses
between the year 2000 and 2018 as a percentage of the surface land area (Table S3 provides
the LULC transition matrix in km2 between 2000–2018). Land transitions in the matrix
are to be interpreted as ‘from-to’ changes, whereby a particular LULC type in 2000 (initial
year) transitions to another LULC type in 2018 (target year). For example, 37% and 2%
of tree-covered areas were derived from grasslands and croplands, respectively. Thus,
tree-covered areas increased from 11.5% of the total land area of the CDB in 2000 to 14.5%
in 2018. Other notable transitions are the expansion of artificial surfaces such as settlements,
with 60% derived from grassland, 1.6% from tree-covered, 1.4% from cropland and 1.8%
from otherland areas. Thus, artificial surfaces increased from 0.05% in 2000 to 0.13% in
2018. The main gains by grassland were from tree-covered areas (2.8%) and cropland (1%).
The main gains by cropland were derived from tree-covered (8%) and grassland (~28%).
Although cropland expanded over time (increased from 6.3% of the total land area in 2000
to 8% in 2018), it lost 2.3% through its conversion to tree-covered areas, 1% to grassland
and 1.4% to artificial surfaces.
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3.3.1. Land Change and Associated Vegetation Trends

With about 90% of the land area in the CDB experiencing negative vegetation trends,
we investigated how changes in vegetation productivity (i.e., increasing, stable and de-
creasing) are associated with land change. The focus is on major LULC types (tree-covered
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area, cropland, otherland and grassland), as these made up over 95% of the study area
as of 2018. Figure 7a–d depict the spatial distribution of vegetation trends found in these
major LULC types. Figure 7e shows the percentage of land area by vegetation productivity
change (direction and magnitude). By LULC categories as of 2018, vegetation productivity
decreased in about 98% and 94% of tree-covered areas (such as forests and woodlands)
and croplands, respectively, and 94% of grasslands. In other words, the majority of tree-
covered, cropland and grassland areas experienced decreasing vegetation productivity as
of 2018. Seventeen percent (17%) of wetlands and settlement areas, respectively, and 12%
of otherland experienced increasing trends, signifying improved vegetation productivity.
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Between years 2000 and 2018 in the loss areas, the greatest percentage of decreasing
vegetation productivity (above 90%) were found in tree-covered, settlement and cropland
areas. Areas with increasing trends in loss areas are otherland (34%), wetlands (137%) and
grasslands (2%). In areas of persistence, vegetation productivity declined mostly in the
same LULC types as in loss areas, whereas it improved in 27% of settlement areas, 17%
of wetlands, 11% of otherlands and 4% of grasslands. Minimum and maximum values of
NDVI trends in areas of land loss varied between forests (−0.3, 0.21), grassland (−0.28,
0.70), cropland (−0.27, 0.24), wetland (−0.26, 0.54), settlement (−0.24, 0.02) and otherland
(−0.23, 0.35).

3.3.2. Drought Severity by Land Use-Land Cover Type

Focusing on the drought years identified earlier in the time series analysis of vegetation
variability and drought severity (refer to Figures 2 and 5), we examined how drought
severity differed between the major LULC types. The 2002–2003 drought-stricken growing
season was used as an example because it was the worst drought experienced in the entire
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time series (Figure 8a–d). For example, land areas most impacted by extreme and severe
droughts, respectively, in 2003–2004 are: over otherland (32%, 31%), grassland (19%, 39%)
and cropland (12%, 37%). Drought intensities for areas under each LULC type for the
identified drought years are shown in percentages alongside drought severity classes
(Figure 8e).
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Figure 8. Distribution of drought severity for major land use-land cover types: (a) Tree-covered area;
(b) Cropland; (c) Otherland; (d) Grassland, during the growing season of 2002–2003 (a drought year);
(e) Percentage of land area under varying drought severity and non-drought conditions based on
VCI for selected drought years by land use-land cover types (T = Tree-covered areas, G = Grassland,
C = Cropland, W = Wetlands/Waterbodies, S = Settlement, O = Otherland).
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4. Characterising Drought in the Constituencies
Drought Severity in Constituencies in Comparison with Drought Declaration

Drought and household food security vulnerability assessments are conducted annu-
ally during the mid-growing season in Botswana [42]. Since assessment and interventions
are conducted at local levels, we further examined the severity of the drought in the 17 con-
stituencies (Figure 9). The drought frequency and heatmap reveal how the constituencies
were affected by droughts of differing magnitudes throughout the entire time series.
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Figure 9. Heatmap of drought severity at constituency level during the growing seasons of 2000–2001 to 2017–2018. The
years with dashed lines across were declared drought years by the Botswana government [31].

Figure 9 depicts drought intensities for each year’s growing season and drought
frequency per constituency in the entire time series. This heatmap is based on the median
VCI value for each constituency (heatmaps of drought severity using the minimum and
mean VCI values are shown in Figures S1 and S2, respectively). The prolonged drought
during the multiple seasons of 2002–2004 is evident in the heatmap. Based on the count of
drought occurrences, irrespective of severity classes between 2000–2018, constituencies with
the most frequent droughts in descending order are Mahalapye west (eight), Mahalapye
east (seven), Boteti west (seven), Shoshong (six), Bobonong (five), Boteti east (five) and
Palapye (five). Other constituencies experienced between two and four drought occurrences
with lesser severity. Of the 16 declared drought years by the government (the years with
dashed lines in Figure 9), eight were evident in the time series, whereas the other years
were favourable for the CDB.
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5. Discussion
5.1. Vegetation Condition Change and Drought Severity

There was high spatial and temporal variability in vegetation productivity during the
growing seasons in the 18-year study period. This is typical of dryland ecosystems which
are often non-equilibrium and dynamic in response to both climatic and anthropogenic
perturbations [43]. Recovery of vegetation during the start of the time series (2000–2001)
after the prolonged droughts of the 1990s was evident. This finding is corroborated by [21],
which noted above-normal rainfall in the CDB in the year 2000. For example, analysing
rainfall amount between 1960–2015 for Palapye, the authors in [32] noted that vegetation
condition improved in 1999–2000 after 649 mm rainfall was recorded that year, which was
well above the long-term average of 351 mm.

Comparing vegetation productivity in the CDB during drought and non-drought
years with the mean for the entire time series revealed the impacts droughts have on
vegetation. For example, when compared to the mean, vegetation productivity was very
limited in 2002–2003 (the worst drought episode in the time series). Drought occurrence
was evident during the growing seasons of eight declared drought years in line with [21,30].
FAO special alert for Southern Africa in 2015 noted the retarded growth of early-planted
crops as soil moisture was very low at the beginning of the growing season in most parts
of the southern African region, including Botswana [44]. The drought and household food
security outlook report of 2017 [45] attributed the decrease in vegetation productivity in
most parts of Botswana to negative drought impacts on vegetation.

The lower than normal vegetation productivity during some of the drought-stricken
growing seasons can be attributed to droughts linked to El Niño southern oscillation
(ENSO). For example, the prolonged droughts in the growing seasons of 2002–2004 and
2015–2016 coincided with the El Niño years in the recent records [4]. Relating the association
of ENSO to drought severity during the growing season as utilised in this study, the authors
of [4] found the highest statistically significant correlations in January, February and March
in Botswana, whereas they found negative non-significant correlations at the start of the
season in October. At the regional level in southern Africa, the authors of [46] associated
droughts with anomalies of negative Standardised Precipitation Evaporation Index and
positive Sea Surface Temperature. At the global level, studies have also documented the
effects of ENSO on drought severity, such as [46].

Comparing the ongoing growing season (2020–2021) with the mean for the entire
time series, we found above-normal vegetation productivity after mid-October 2020 until
February 2021. Thus, this suggests the full recovery of vegetation productivity during
this season from the impacts of the prolonged droughts in the last couple of growing
seasons. However, this observation is somewhat fraught with uncertainty judging from
the below-normal vegetation productivity at the start of the season. Moreover, the growing
season has not ended yet. The growing season spanning the first dekad in October to the
third dekad in March was chosen to align the cropping and the raining season in Botswana,
which enabled the exclusion of the dry season from the drought analyses.

5.2. Vegetation Trend and Drought Severity by Land Use-Land Cover and Change

Many studies on droughts have not examined how drought effects differ between
LULC types. For those that have land use incorporated, little is known of the influence of
drought severity on LULC—in terms of the differences in annual sizes and configurations—
either in changing and/or persistent areas. Processes driving decreasing vegetation trends,
either climatic or anthropogenic, are better identified when LULC and change are incorpo-
rated in the examination of drought severity. For example, in CDB between 2000 and 2018,
vegetation productivity declined in most forests, woodlands, croplands and grasslands.
In land change areas, the trend of declining vegetation was equally high. In areas of
persistence, the greatest percentage of improved vegetation productivity was in wetlands,
settlements, and otherlands. Minimal improvement of vegetation trends in forested areas
can be attributed to the overall increase in tree-covered areas during the study period.
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Previous studies in dryland contexts such as Botswana and elsewhere associate the im-
provement in vegetation productivity partly to bush-encroachment which remote sensing
vegetation indices capture as vegetation greening but bush-encroachment is undesirable in
cattle-based systems [32,47,48].

Relating LULC change to land degradation, conversion of tree-covered areas to grass-
land, otherland and cropland, is degrading. This is because these land transitions drive
the removal of vegetation cover and contribute to land degradation processes. Similarly
considered as degrading land transitions are those involving the conversion of grasslands
into croplands, artificial surface areas and otherlands. For example, in Palapye, the au-
thors of [32,49] found increases in barelands and rock outcrops with limited vegetation
growth because of prolonged droughts. This bareland condition due to drought-induced
vegetation decline is further exacerbated by human activities, such as overgrazing. In
some instances, such as in Bobonong, researchers [30] found increases in bareland patches
in communal grazing areas. Despite declining vegetation conditions during a four-year
prolonged drought (2002–2005), livestock overgrazed and natural pastures degraded, as
pastoralists had no incentive to destock or sell their cattle because of the slump in prices due
to the prevalence of Foot-and-Mouth cattle disease during the drought. In other dryland
instances, such as in the Sahel, bareland areas with minimal vegetation growth alternate
with grasslands in response to rainfall variability and drought [50].

Drought impacts on grasslands, forests and wetlands imply negative impacts on
the cattle system and biodiversity, including wildlife in savannas with the associated
tourism and hospitality sector, whereas effects on croplands impact food production. For
example, the water crisis of 2015–2016 resulting from relatively low, erratic rainfalls reduced
water levels and water inflows into dams drastically across the country [51]. Regarding
drought impacts on agriculture, for example, maize production in Botswana declined
from 35,322 tons in 2011 to 13,911 tons in 2017 mainly due to drought constraints. This
necessitated an expenditure of about P389 Million (~36 Million American Dollars) on
maize import to meet cereal requirements not met through domestic crop production [31].
Other changes in LULC, such as the changes in the extent of settlements, as observed
between 2000 and 2018 in this study, are not drought-related. Settlement expansion is more
a reflection of the increasing land demand for human habitation and infrastructure due to
the population growth experienced in the CDB.

5.3. Drought Severity in the Constituencies

Relating drought severity to the years declared as drought-stricken by the government,
the results reveal that not all constituencies were equally affected by drought, as severity
differed from severe to mild drought. Moreover, drought severities in some declared
drought years were not as widespread in the CDB as in other parts of the country. For
example, the growing season of the year 2009–2010 had improved vegetation productivity
in response to above-normal rainfall recorded in previous months, which resulted in flood-
ing events in five sub-districts in the CDB (Serowe/Palapye, Tutume, Boteti, Mahalapye
and Bobirwa) [52]. In other drought-prone contexts in southern Africa, such as Zimbabwe,
researchers [53] found that a drought’s distribution and effects differed geographically and
from season to season.

Drought severity was further gauged by the frequency at the constituency level.
Over the study period, the constituencies experienced between eight to two drought
events. Examples are Mahalapye west and east, with eight and seven drought occurrences,
respectively, ranging from moderate to mild drought. Boteti west experienced seven
drought events with severity ranging from severe to mild. Confirming these drought
frequencies in the CDB, the authors of [30] found an average drought frequency of two to
four (depending on the index) in the Bobonong region between 2000 and 2015. This is in
line with our finding of five drought occurrences in Bobonong as our time series extending
up to 2018 captured more drought events.
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Drought effects on land-based resources and livelihoods will vary depending on the
drought severity, the land use as well as the land management practices. For example,
water use strategy adopted as part of land management practices was found to have
impacted the responses of tree plantations to drought in China [54]. Droughts cannot be
avoided, since these are an integral part of the climate cycle; however, the impacts on
social-ecological systems are better minimised with monitoring as input for the use of both
proactive and reactive measures [4,21].

6. Conclusions

This study proposed a spatial and temporal analysis of drought evolution in the Cen-
tral District in eastern Botswana from 2000 to 2018. The results highlight the usefulness of
incorporating land use-land cover and change in assessing the spatio-temporal variability
of drought severity in drylands. Remote Sensing-based vegetation time series metrics were
used, as complementary to climatological indices. Indicators characterising changes in
vegetation conditions and drought severity during the growing seasons (October to March)
from 2000–2001 to 2017–2018 were used. These indicators are NDVI difference—NDVIdiff,
NDVI anomaly, NDVI trends, Vegetation Condition Index—VCI, Drought intensity and
frequency. The use of these different NDVI-based indicators, which might seem redundant,
are useful as complementary measures since they differ computation-wise. The NDVI
difference as utilised in this study captured the in-season variability in vegetation pro-
ductivity, whereas the VCI compared each growing season with the long-term minimum
and maximum conditions. For example, limited vegetation productivity found during the
growing seasons of 2002–2004 and 2015–2016, which was based on both NDVI difference
and NDVI anomalies, agreed with the heightened levels of drought severity over the same
periods as derived from the VCI.

Results further showed high temporal and spatial variability in vegetation produc-
tivity between drought and non-drought conditions in our case studies. The associated
negative impact of droughts on vegetation resulting in limited vegetation productivity was
further confirmed by results from this study. Drought effects on vegetation productivity
during the study period were characterised by decreasing vegetation trends in most parts
of the district. Although varying intensities of drought severity (severe, moderate and
mild) occurred in the constituencies, the 2002–2003 and 2003–2004 growing seasons were
found to be the worst drought periods in the entire series, as most parts of the district
were affected. Assessing drought severity and intensities by LULC in selected drought
years revealed varying drought effects. We found that drought effects differed between
LULC types as well as whether these were areas of land change or persistence. Further
examination of drought impacts in areas of no change is required, as our understanding
of drought effects in areas with no change is still limited. More empirical studies in this
regard will provide useful insights. Using the example of the 2002–2003 drought-stricken
growing season, the highest percentage of land impacted by extreme and severe droughts
were found in tree-covered areas, croplands and grasslands, whereas improved vegetation
trends were found mostly in wetlands and some instances in otherland areas including
barelands. Moreover, the results suggest that even in declared drought years, droughts
severity varied, and the effects differed between constituencies. A further insight provided
is that the magnitude of drought severity in some declared drought years was not as
widespread in the CDB. For example, no other severe drought levels were recorded in the
CDB after the extended drought which affected the growing seasons of 2002–2004.

Differences in spatial resolution of the datasets utilised and the coarse spatial resolu-
tion of the 1 km NDVI datasets compared to 300 m annual LULC are limitations identified
in this study. With the increasing availability of images of higher spatial resolution, such as
from SENTINEL-2, results from RS-based analysis of drought can be improved. However,
methodological challenges ensue with the need to incorporate the newer images into the
existing NDVI archives. For example, consideration ought to be given on parameterising
across sensors and balancing the trade-offs between taking advantage of the superior
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spatial resolution of the newer satellite missions (e.g., Sentinel-1, 2 and 3) and the temporal
resolution of images from the older missions (e.g., SPOT VGT and PROBA-V). As the 1 km,
NDVI time series datasets extend way back to the 1990s, their use is indispensable for
drought analysis at the current time. Moreover, as drought years were easily detected in
the time series analyses, this is proof of the usefulness of the 1 km NDVI time series. For
example, the lower than normal vegetation productivity during the prolonged drought
periods that negatively impacted the 2002–2004 and 2015–2016 growing seasons coincided
with strong El Niño years. With the above-normal vegetation productivity in the ongoing
season (2020–2021), results suggest the reversal of the negative vegetation trends observed
in the preceding growing seasons. How much these negative trends have been reversed
remain uncertain, as the season is still ongoing. For clarity, future studies should examine
the usefulness of RS-based indices for understanding the ongoing season’s phenology in
dryland contexts such as the CDB.

Remote Sensing-based time series enabled us to extend the analysis up to the ongoing
season, demonstrating its usefulness for better characterisation of drought events. Remote
Sensing-based results such as those obtained in this study, when provided at multiple
administrative scales in a timely and cost-effective manner, have the potential to aid
decision-makers to better plan and respond to drought situations. Scientific evidence is
needed as input into the decision-making process to aid national resource mobilisation
for drought management. Botswana requires both proactive and reactive approaches for
drought management, for which remote sensing-based assessment and monitoring foster
the implementation of drought early warning systems.
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transition matrix in km2 (2000–2018), Figure S1: VCI minimum value heatmap of drought severity
at constituency level during the growing seasons of 2000–2001 to 2017–2018. The years in bold are
declared drought years by the Botswana government (Source: [41]), Figure S2: VCI mean value
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2017–2018. The years in bold are declared drought years by the Botswana government (Source: [41]).
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