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Abstract: The Arctic Ocean is one of the most important and challenging regions to observe—it
experiences the largest changes from climate warming, and at the same time is one of the most difficult
to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of
the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived
from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To
examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also
made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model
(Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve
the runoff signal associated with the Yukon River, with high correlation between SMAP products
and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-
submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks
close to 100 km. Based on these encouraging results, future research should focus on improving
derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement
remote sensing observations.

Keywords: sea surface salinity; validation; coastal

1. Introduction

The Arctic is one of the most critical areas for both climate and biodiversity [1,2]. Yet,
it is also one of the most under sampled, due to the difficulty of environmental conditions
and seasonality of sea-ice cover. The western coast of Alaska contains one of the world’s
most productive fisheries, which are influenced by seasonal stratification and interannual
variability in Chlorophyll-a [1,3,4]. One example is the Yukon River estuary, where changes
in stratification are governed by river runoff, sea-ice melt, and precipitation. The mouth
of the river is located at 62◦35′55”N 164◦48′00”W and empties into the Bering Sea at
the Yukon–Kuskokwim (Y-K) Delta. The Y-K Delta is a substantial source of terrestrial
freshwater, which can drive large gradients and temporal variability in sea-surface salinity
(SSS). Thus, part of this paper’s focus is to examine how well SMAP and model-derived SSS
can detect the low-SSS signal from the Y-K Delta shelf, where low- salinity water exits from
the Yukon and other rivers, with secondary inputs from sea-ice melt and net precipitation
minus evaporation. Our analysis should be taken as a preliminary step in the comparison
of observations and models to encourage future research and applications in this region.
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During spring to summer 2019, six deployments of the Saildrone vehicle were con-
ducted off Alaska’s west and northwestern coastline: four funded by NOAA and two by
NASA. This paper will focus on the two NASA deployments, SD1036 and SD1037 (see
Figure 1). Both were launched from Dutch Harbor on 14 May 2019, and recovered on 11
October 2019.

Figure 1. Maps of mean SSS time-averaged over the period of Saildrone deployment. (a) SMAP
JPL V4.3, (b) SMAP RSS 70km, (c) SMAP RSS 40km, (d) LLC270, and (e) LLC4320. Blue values are
indicative of low salinity. Overlaid are tracks of Saildrone 1036 (black) and 1037 (grey) deployments.
White colors indicate satellite data that was masked due to land contamination. The locations
of Saildrones when the two major freshening events occurred (see Figure 2) are indicated by red
diamond symbols. (f) shows a map with the geographical locations of the study area, including the
location of the Yukon River discharge (Y-K delta).

Figure 2. (a) Map of mean SSS derived from RSS70km product over the period of the Saildrone
deployment. (b) Saildrone SSS from SD1036 along the deployment track. Blue arrow shows the
location of Y-K Delta.
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Remote sensing from satellites provides a unique opportunity to monitor this critical
region, but in-situ validation studies also need to be conducted to assess the accuracy of
satellite observations. Recent studies by [5,6] suggest that sea-surface salinity from NASA’s
Soil Moisture Active Passive Mission and ESA’s Soil Moisture Ocean Salinity Mission agree
well in terms of the annual-mean signal. They also found better agreement further from
the Marginal Ice Zone in warmer waters, consistent with decreasing L-Band sensitivity to
salinity in colder waters. Results from [7] showed how sea level data from Jason-2 was
applied to derive water surface height and slope dynamics associated with the Y-K delta.

Here, we build on those results to compare the capability of the SMAP SSS products,
model products, and Saildrone to resolve known features associated with salinity gradi-
ents in the Bering, Chukchi, and Beaufort Seas. In the process, our goal is to quantify
Saildrone-satellite-model comparisons to provide information for future applications in
this challenging but critical region of the world’s oceans.

Comparisons are also shown for the spectra derived from the Saildrone. These com-
parisons reveal possible differences in the different data sets’ resolvability, which depends
on spatial resolution and smoothing. These types of comparisons were used in [8]. Spectral
slopes were consistent with the mesoscale and submesoscale variability associated in the
California Current System. In addition to spectra, coherences are also examined to deter-
mine possible relationships in the wavenumber spectra between the different products and
the Saildrone-derived SSS.

The objectives of this paper are:

(1) Validation and comparison of SMAP salinity products in the Arctic Ocean.
(2) Comparisons with low- and high-resolution numerical ocean models to determine

if high-resolution models are indicative of spatial variability that is not resolved by
remote sensing products.

2. Material and Methods
2.1. Data
2.1.1. Satellite Salinity Data

Three different SMAP SSS data sets were used in the study, all using Level 3 8-day
running means. These include the Jet Propulsion Laboratory Cap Active Passive Version
4.3 (JPLSSS) (https://doi.org/10.5067/SMP43-3TPCS, data set and the Remote Sensing
Systems Version 4.0 40 km (RSS40km) (https://doi.org/10.5067/SMP40-3SPCS) and 70 km
(RSS70km) data sets. Data can be retrieved from the Physical Oceanography Distributed
Active Archive Center (PO. DAAC) at https://podaac.jpl.nasa.gov. All data sets were
accessed on 1 June 2020. All products are distributed in a 0.25◦ rectangular projection,
where the gridding is not indicative of the product’s spatial resolution. The JPLSSS has an
inherent feature resolution of 60 km. The RSS40km has a 40 km feature resolution, and the
RSS70km has a 70 km feature resolution. The RSS70km product is created by smoothing
the RSS40km product. Brief descriptions of data product characteristics are given below.

The JPLSSS v4.3 derives SSS from SMAP data using a JPL-developed algorithm. This
version has an improved land correction, which is useful for our coastal analysis [9].
The RSS v4.0 SSS products include an improved land correction and sea-ice mask, and
consolidation of both 40-km and 70-km SMAP-SSS datasets as variable fields in a single data
product [10]. These two products are derived from the same SMAP brightness temperatures,
but use a methodology different from JPLSSS to connect brightness temperatures to ocean
salinity values.

2.1.2. In-Situ Saildrone Measurements

Saildrones SD1036 and SD1037 were deployed from 15 May 2019, through 11 October
2019. Leaving from Dutch Harbor, AK, the vehicles headed north through the Bering Strait
and continued into the Chukchi Sea. Both deployments were carried out simultaneously,
but did not necessarily follow identical tracks. As the Arctic Ocean sea ice melted, the vehi-
cles explored the Beaufort Sea until decreasing light (Saildrones are solar powered) forced

https://doi.org/10.5067/SMP43-3TPCS
https://doi.org/10.5067/SMP40-3SPCS
https://podaac.jpl.nasa.gov
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them to retreat southward and return to Dutch Harbor. The vehicles had the standard
assortment of instruments onboard, including a Seabird 37 Conductivity, Temperature,
Depth (CTD) and RBR 040805 CTD, IR pyrometer, fluorometer, dissolved oxygen sensor,
anemometer, barometer, and Acoustic Doppler Current Profiler (ADCP). All data, except
the ADCP, was collected continuously at one-minute intervals. Additionally, four RBR
temperature data loggers were also installed along the keel. The data for this cruise is
distributed through the PO. DAAC (https://podaac.jpl.nasa.gov/dataset/SAILDRONE_
ARCTIC?ids=&values=&search=Saildrone). Details and characteristics of the Arctic de-
ployment may be found at the above. For more details on the Saildrone vehicle, and
validation results, please see [11]. Salinity measurements were taken at a depth of ~0.5 m.

Differences in SSS between the Seabird and RBR-derived CTD measurements were
minor for SD1036, but larger differences were seen for SD1037. Based on the large spikes
in the Seabird-derived salinity for the SD1037 deployment, it was decided to use the RBR
data for all the comparisons. Differences between the Seabird- and RBR-derived SSS may
be found in Supplementary Materials associated with this manuscript.

2.1.3. ECCO Numerical Ocean Model

The ECCO LLC270 global-ocean and sea-ice data synthesis [12] builds upon two pre-
vious ECCO efforts, ECCO v4 [13] and ECCO2 [14,15]. Compared to the lower-resolution
ECCO v4 synthesis (nominal 1◦ grid spacing), ECCO LLC270 has finer horizontal grid
spacing (~37 km at the equator and ~18 km at high latitudes). Terrestrial runoff along
coastal boundaries is forced using the monthly climatology of [16]. Since the horizontal
resolution of the model is insufficient to resolve mesoscale eddies, their impact on the
large-scale ocean circulation is parameterized [17,18]. Remotely-sensed data constraints on
the model include daily along-track sea level anomalies from satellite altimetry [19] relative
to a mean dynamic topography [20], monthly ocean bottom pressure anomalies from the
Gravity Recovery and Climate Experiment (GRACE) mission [21], daily mean sea surface
temperature (SST) [22], and sea-ice concentration fields from passive microwave radiome-
try [23]. The primary in-situ data constraints include the global array of Argo floats [24,25],
ship-based hydrography incorporated as monthly climatological temperature and salinity
profiles from the World Ocean Atlas 2009 [26,27], tagged marine mammals [28,29], and
ice-tethered profilers in the Arctic [30]. To fit the above observations, the ECCO LLC270
solution minimizes a weighted quadratic sum of model-data differences. This is done
using the adjoint method, aka 4D-Var [31,32]. The control variables include initial (at the
start of the model run) temperature and salinity fields; time-invariant diapycnal, isopy-
cnal [17], and thickness diffusivities [18]; and 14-day adjustments to the 6-hourly ERA
Interim [33] estimates of downward shortwave and longwave radiation, precipitation, 2-m
air temperature and specific humidity, and 10-m zonal and meridional wind.

We also use LLC4320, which is similar to LLC270 but has increased spatial resolution.
Briefly, the spatial resolution ranges from 0.75 km at the high latitudes to 2.2 km at the
Equator. A major difference relevant to this study is that LLC4320 also includes tidal
forcing. This allows for successful reproduction of shelf-slope dynamics, water mass
modification, and their contribution to global-ocean circulation. Near-surface salinity data
from buoys and other in-situ observations is assimilated into LLC270 within its shallowest
grid cell of thickness 10 m. LLC 4320 has an uppermost grid cell thickness of 1 m and no
assimilation; however, the coarser resolution simulations that provide the initial conditions
are data constrained.

2.2. Collocation Method

To collocate the eight-day gridded satellite data with cruise trajectory data, we used the
open-source software library Xarray [34]. Xarray provides flexible interpolation routines
and support for NetCDF files. We used nearest-neighbor interpolation to first match each
one-minute Saildrone measurements with the gridded data. For each unique gridded
satellite data point, all Saildrone data was averaged within that grid cell, providing a

https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=&search=Saildrone
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=&search=Saildrone
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single matchup Saildrone data point for each single satellite retrieval. The same collocation
methodology was also applied to LLC270 and LLC4320 models. Thus, all Saildrone and
model data have been bin-averaged into the satellite grids. For the SMAP data, being on
the same 0.25◦ grid, the Saildrone matchups will be identical. However, differences because
of missing data due to processing differences in quality flagging may still exist. The same
methodology was applied to the models, but of course will consist of different matchups
due to the differences in gridding and spatial resolution.

3. Results
3.1. Saildrone Tracks SMAP/Model SSS

Figure 1 shows the spatial location of the two Saildrone deployments, overlaid on the
three satellite and two model SSS products i.e., JPLSSS, RSS40km, RSS70km, LLC270, and
LLC4320. Maps of SSS are time means of the SSS over the Saildrone deployment period.

Clearly visible in all the SSS maps are locations of freshening near the coast (Figure 1).
Overall, the largest freshening event is observed at approximately day 150 of year 2019 and
is associated with the Y-K delta discharge (also see Figures 2 and 3). The magnitude of the
freshening depends on the SMAP product; with regard to the models, the LLC270 shows
little or no freshening, while the higher resolution LLC4320 shows similar freshening as the
SMAP products. Freshening is seen at other locations along the deployment, with possible
explanations including sea-ice melt, net precipitation minus evaporation, and dynamics
associated with coastal and shelf currents.

Figure 3. Time series of salinity measured by RBR sensor on (a) Saildrone 1036 and (b) Saildrone 1037
(in original Saildrone sampling rate) and collocated SMAP SSS and model outputs. Dotted vertical
lines indicate the period of two major freshening events (see text).

All SMAP products and models show freshening located at approximately 62◦N, the
location of the Yukon River discharge. White colors indicate missing data due to land
contamination. Missing data close to the coast is different for each of the SMAP products.
Among the three SMAP products, JPLSSS (Figure 1a) provides data closest to the land,
which is an indication of the robustness of land correction implemented in JPL algorithm;
while the smoothing procedures of RSS algorithm results in RSS70km (Figure 1b) having
larger gaps near the coast compared to RSS40km (Figure 1c). It is important to note that
although the JPLSSS provides data closer to land, Root Mean Square Differences (RMSD), as
defined between the product and Saildrone (see Table 1) do not reflect significant differences
between the RSS and JPL products. RMSD differences between the RSS products and JPL
vary between approximately 1.2 PSU and 0.7 PSU. Thus, further work, beyond the scope of
this paper, is needed to examine differences versus distance to land. RSS30km would also
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provide data nearer the coast, but would be inherently noisier than the smoother 70 km
product. Away from the coast in the northeast part of the maps (i.e., north of 75◦N and east
of 150◦W) where the Saildrone tracks ends, JPLSSS also provides data where both RSS70km
and RSS40km are missing, due to the different sea-ice masks applied. The smaller low-SSS
patches in the JPLSSS product (e.g., west of 170◦W around 72◦N) suggests the necessity
of future improvements to this algorithm in order to reduce sea-ice contamination while
allowing for SSS retrieval near the ice edge [35]. Figure 2a,b zooms in on the location of
Yukon River discharge, using the RSS70km. Figure 2a shows mean SSS over the period of
the Saildrone deployments. The arrow points to the location of the Yukon River discharge.
Figure 2b shows the Saildrone-derived values along the deployment track. Between 62◦N
and 63◦N, the Saildrone track crosses the region associated with the Yukon River discharge.
A freshening of >3 PSU is associated with the Saildrone SSS as it crosses this region. This
will be further analyzed in the next subsection.

Table 1. Statistics for Saildrone/SMAP/model comparisons. Rows correspond to the specific SMAP
product and model versus Saildrone comparison for each specific deployment.

Parameter Correlation Bias (PSU) RMSD (PSU)

JPLSSS
1036 0.82 0.66 1.34

JPLSSS
1037 0.84 0.42 1.24

RSS70km
1036 0.95 0.04 0.73

RSS70km
1037 0.92 −0.03 0.89

RSS40km
1036 0.93 0.03 0.88

RSS40km
1037 0.91 −0.005 0.98

LLC270
1036 0.83 0.49 1.11

LLC270
1037 0.79 0.67 1.22

LLC4320
1036 0.82 0.39 1.37

LLC4320
1037 0.97 0.03 1.45

3.2. Time Series

Time series of SSS for all six products: (1) JPLSSS, (2) RSS70km, (3) RSS40km, (4) LCC270,
(5) LLC4320, and (6) Saildrone are shown in Figure 3. (A gap due to a short-period malfunc-
tion of the SMAP satellite occurs from approximately day 165–185.) The most pronounced
feature for both deployments occurs at approximately day 150, with a strong freshening of
approximately 10 PSU from 32–22 PSU. The freshening is clearly visible in the Saildrone
and SMAP products, but to a much lesser extent in both models. There are several possi-
ble explanations for these differences, including a lack of interannual runoff data in the
model [16], unresolved ocean physics including a lack of eddies or overly large mixing,
and imperfect atmospheric forcing. However, this type of analysis is beyond the scope of
this work and should be analyzed in future research.

A major difference in the SMAP products occurs at approximately day 170, where the
JPL product shows another freshening event of approximately 10 PSU. This freshening is
not seen in the RSS products due to no data. This also occurs before SMAP experienced a
data gap. The freshening seen at approximately day 170 is probably attributable to outflow
from the Kasegaluk lagoon, which receives waters from three rivers and communicates with
the ocean through several passes (see reference https://www.jstor.org/stable/40511357).
For SD1037, a freshening event approximately five days later is also seen in the Saildrone

https://www.jstor.org/stable/40511357
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and RSS SMAP products. As SMAP products are averaged over the eight-day repeat, lags
between features associated with large gradients are possibly due to the different times the
Saildrones cross the feature and the averaging time of the SMAP Level 3 product. This issue
was also seen in [36] where the maximum correlation between SSS gradients associated
with Saildrone and SMAP did not occur at zero lag.

Overall, both deployments SD1036 and SD1037 show a large freshening event around
day 150 that is visible in both the Saildrone and SMAP products. The JPLSSS shows good
agreement in comparisons with Saildrone SSS. The RSS40km and RSS70km products do
not contain the freshening seen at approximately day 170. This could be due to several
factors, including differences in the land mask and in the application of quality flags. This
requires future research as both the RSS40km and RSS70km products do not contain data
at approximately day 170.

Qualitatively, there is good agreement between the products. A more quantitative
discussion of the agreement between the products is undertaken in the discussion with
reference to Table 1. The primary difference between the RSS40km and RSS70km product is
the product’s smoothness, with RSS70km being derived directly from the RSS40km product.
Thus, this similarity is expected. The JPLSSS and RSS40km and RSS70 products’ primary
differences appear to be associated with minimum values seen between days 160 and
170 in the JPLSMAP product (refer to Figure 3). A large minimum appears in the JPLSSS
product that is not visible in the RSS products. These differences could be associated with
the different smoothness and feature resolutions of the products. Additionally, different
flagging criteria could be masking out values based on nearness to land. A full explanation
is beyond the scope of this work, but should be examined further in quantifying product
differences based on nearness to land. As the differences in the feature resolution of the
JPLSSS and RSS70km correspond to 60 km and 70 km, it is more likely the differences in
the bias and RMSD are due to flagging of land and/or sea ice.

LLC270 and LLC4320 also agreed well with the SMAP and Saildrone SSS. The primary
difference was in the large freshening events, specifically the one at day 150 associated
with the Yukon River discharge. Neither the LLC270 nor LLC4320 models replicate the
magnitude of the freshening event. The LLC4320 model shows a small freshening, most
likely due to the higher resolution of the model. The differences can be seen in Figure 1,
where the local freshening is seen in both models; however, the models do not fully replicate
the magnitude or spatial extent of the freshening seen in the SMAP observations. The
reduced vertical resolutions of the models could account for the lack of reproducing the
full freshening seen in the SMAP and Saildrone SSS. A possible explanation is the vertical
extent of the SSS signal in the LLC270 could be affected by increased mixing due to the
coarser 10-m vertical resolution.

Figure 4 shows observation-model scatter plots between the 3 SMAP products and
the LLC270 and LLC4320 models. Overall, the scatter plots for both deployments for
the SMAP products, based on the correlations, show good agreement with the Saildrone
SSS. The JPLSSS product show larger biases of >1 PSU. The one significant difference is
seen in the JPLSSS scatter plots which show a significant freshening bias associated with
values near 30 PSU for Saildrone. This is consistent with the time series plots, which show
the JPLSSS has a significantly fresher value at approximately day 170. The freshening
bias is not seen in the scatter plots for either the RSS40km or RSS70km products. Both
LLC270 and LLC4320 scatter plots show clear values of Saildrone that are fresher than the
models by several PSU. These results are also consistent with the time series plots and the
underestimation of freshening events (e.g., at day 150). An analysis of the correlation, bias,
and RMSD associated with the scatter plots is presented as part of the discussion section.



Remote Sens. 2021, 13, 831 8 of 16

Figure 4. Scatterplot of salinity measured by the RBR sensor on (a) Saildrone 1036 and (b) Saildrone 1037 (average of all
Saildrone measurements corresponding to the same satellite/model collocation) and collocated SMAP SSS and model
outputs. Same color code is used for each product as in the time series of Figure 2.

3.3. Spectra and Coherences

To further quantify the results from the time series, spectra and coherence statistics
(inclusive of the spectral slopes) were calculated. The intent is not to determine a “best”
data set, but to present statistics that can guide the best use of and improvement in SMAP
data and models in the Bering, Chukchi, and Beaufort Seas.

Spectra and coherences were derived for the three SMAP SSS products and LLC270/
LLC4320 models, and then compared directly with the Saildrone SSS. The spectra and
coherences were first calculated individually for the SMAP-, model-, and Saildrone-derived
SSS for the two Saildrone deployments, SD1036 and SD1037. Coherences were derived
between each of the SMAP/model products and the Saildrone matchups. The spectra and
coherences were then averaged for the two deployments. Figure 5 shows the spectra for
the three SMAP products (JPLSSS, RSS40km, and RSS70km) compared with the Saildrone-
derived SSS. Figure 5 (red) shows higher values for the JPLSSS spectra, compared to
Saildrone, at wavelengths >300 km. Figure 5 (blue) shows the RSS70km versus Saildrone.
In general, the spectra follow each other except at approximately 100 km. This is most likely
due to resolving of the coastal freshening signal, where the RSS70km provides a smoother
estimate. Figure 5 (green) shows the spectra for the RSS40km and Saildrone. Overall,
the RSS40km spectra follows the Saildrone spectra until approximately 100 km, where
the RSS40km spectral densities are larger than the Saildrones. This would be consistent
with increased noise in the RSS40km over the smoother JPLSSS and RSS70km products.
Figure 6 shows the spectral plots for LLC270 (red) and LLC4320 (green) compared with the
Saildrone SSS. All SMAP observations are gridded at 0.25◦, while LLC4320 is approximately
1 km, which is reflected in the LLC4320 spectra being extended to 1 km.
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Figure 5. Wavenumber spectra for SMAP products and Saildrone.

Figure 6. Wavenumber spectra for LLC270 and LLC4320. Differences between the SMAP/Saildrone
spectra and the model/Saildrone comparisons can be explained by the different model resolutions.

The decreased spectral densities associated with LLC270 are clearly indicative that
lower-resolution LLC270 does not fully resolve the spatial variability/dynamics of the
region. Figure 6 (green) shows the spectral densities for the higher resolution LLC4320
and Saildrones. LLC4320 matches better, but is overall still lower than the Saildrone SSS
spectral density. The difference between the two models clearly shows the importance
of the higher-resolution LLC4320 model in fully resolving the dynamics of the Alaskan
coast, including mesoscale-to-submesoscale variability. Additionally, LLC4320 shows
a white spectrum at ~5 km, while the spectra of Saildrone continues with a consistent
slope. Thus, Saildrone spectral density is indicative of variability that still exists at <5 km
that is not resolved by LLC4320, although the high-resolution model is resolving more
of the variability along the Alaskan coast than either the SMAP products or the lower-
resolution LLC270. The separation of the spectral densities for the RSS40km and RSS70km
products at approximately 100 km would be consistent with a Nyquist wavelength of
approximately 100 km for the SMAP SSS products. Based on the smoothing used for
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the JPLSSS product, the feature resolution is approximately 60 km, leading to a Nyquist
frequency of approximately 120 km. This compares to a feature resolution of 40 km for
the RSS40km product and 70 km for the RSS70km product, consistent with results in [9].
Further comparisons of spectral slopes will be analyzed in the discussion section.

To further examine the statistical relationships between the SMAP/Model SSS and the
Saildrone SSS, coherences were derived. Figure 7a–c shows the coherence between the three
products and the Saildrone. The JPLSSS product shows that coherence of approximately
0.60 exists for wavelengths >1000 km, with a drop off at wavelengths <1000 km, increasing
again at 200 km and remaining statistically significant up through 50 km. Error bars
indicate the statistical significance of the coherence. Highest coherences are seen at 50 and
70 km, with a minimum visible at 60 km. Coherences at <50 km are not shown, as error
bars indicate no statistical significance. Figure 7b shows the coherences for the RSS70km
product. Overall, the coherences follow similar patterns as the JPLSSS product, but with
lower coherences. Coherences peak at roughly 0.8 for RSS70km, 0.7 for JPLSSS, and 0.6 for
RSS40km. The decreased coherences could be due to the RSS70km being the smoothest
of the three SMAP products; this is consistent with RSS40km containing greater noise.
Figure 7c shows the coherence for the RSS40km product. The pattern is similar to the
JPLSSS and RSS70km products, with coherences peaking at approximately 0.7. Coherences
<50 km became statistically insignificant. Overall, the coherences for the three SMAP
SSS products followed similar patterns with maxima coherences seen between 300 and
100 km. Coherences decreased at wavelengths less than 100 km, consistent with the Nyquist
wavelength for the SMAP SSS products.

Figure 7. (a) Coherence for JPLSSS/Saildrone, (b) coherence for RSS40km/Saildrone, and (c) coher-
ence for RSS70km/Saildrone.

Figure 8a,b shows coherences for LLC270 and LLC4320. The smoothness of the
LLC270 coherence is due to the lower resolution of the model. LLC270 shows overall
coherences of 0.6 between 1000–200 km. A peak exists at 100 km before the coherences
become statistically insignificant. Coherences for LLC4320 also show statistically significant
coherences between 300 and 1000 km, peaking at approximately 0.6. The major differences
are three significant peaks found between 100 and 50 km. These significant peaks at
<100 km are most likely due to the higher resolution of LLC4320. The peaks are consistent



Remote Sens. 2021, 13, 831 11 of 16

with those found in the JPLSSS and RSS70km coherences. The similarity in peaks between
the SMAP and model coherences indicates a consistency between the satellite-derived SSS
and model SSS in resolving features off the Alaskan coast. As with the SMAP-derived
values, coherences of < 50 km were found to be statistically insignificant based on the
error bars.

Figure 8. (a) Coherence for LLC270/Saildrone and (b) coherence for LLC4320/Saildrone.

4. Discussion

To further identify and quantify the differences between the datasets, biases, correla-
tions, and RMSD were derived between the SMAP-, model-, and Saildrone-derived SSS.
Slopes of the spectra were also derived for each of the data sets. Table 1 summarizes the
SSS correlations, biases, and RMSD for SMAP, LLC270, and LLC4320 versus Saildrones.

Overall, the RSS70km product performs the best with correlations of 0.95 and 0.92
for SD1037 and SD1038, respectively. Additionally, biases near 0.02 and RMSD of 0.72
and 0.89 indicate good agreement between the RSS70km and Saildrone. RSS40km has
correlations of 0.93 and 0.90 with smaller biases of 0.03 and 0.005. From the correlation
analysis, bias, and RMSD, the RSS40km and RSS70km products performed similarly. Based
on the spectra, the RSS40km product has increased noise at higher wavelengths. This
would be consistent with values closer to the coast and increased land contamination. This
result is encouraging, as it indicates that the higher resolution of the RSS40km does not
significantly degrade the signal off the Alaskan coast. This demonstrates that RSS40km
does not add significant noise when compared to the RSS70km product. This could be a
result of the signal being dominated by the large Yukon River discharge plume and coastal
dynamics of the region. Thus, the smoother RSS70km approach does not significantly
impact the correlations. Overall, the JPLSSS product has lower correlations of 0.82 and 0.84
with biases of approximately 0.6 and 0.4 PSU for SD1036 and SD1037, respectively (RMSD
values were 1.99 and 1.77) Most likely the lower correlations and larger biases and RMSD
are due to the large freshening seen in the JPLSSS at day 170. However, this could be due to
a real signal and should not be considered an indicator that the JPLSSS is underperforming
compared to the other products.

Correlations for LLC270 were 0.83 and 0.79 for SD1036 and SD1037, respectively.
Biases were 0.49 and 0.66 PSU, with RMSD 1.10 and 1.22 PSU. The higher-resolution
LLC4320 shows correlations of 0.82 and 0.97, with biases of 0.38 and 0.03 PSU. RMSD
differences were 1.37 and 1.45. These results indicate that the higher-resolution model,
especially with the 0.97 correlation, resolves additional fine-scale variability not seen with
the lower-resolution LLC270. Additionally, the biases and RMSD of the SMAP products
are consistent with what was found by [5] for comparisons with in-situ data above 65◦N.
RSS70km had correlations greater than 0.9, with JPLSSS being 0.84.
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To compare the spectra, slopes were derived for each of the SMAP/model/Saildrone
spectra. The slopes were derived over a wavelength of 100–1000 km. Table 2 summarizes
the derived slopes for each of the spectra. Previous studies [8] comparing SMAP SSS with
Saildrone off the California/Baja Coast have shown spectral slopes that approximate the
−2 slopes associated with mesoscale-to-submesoscale variability [8,37,38].

Table 2. Corresponding spectral slopes. Parameter/Sail indicates the slope of the Saildrone SSS
collocated with that parameter.

Parameter Slope

JPL/Sail −2.26

JPL −2.96

RSS70km/Sail −2.26

RSS70km −2.67

RSS40km/Sail −2.26

RSS40km −1.93

LLC270/Sail −2.14

LLC270 −1.81

LLC4320/Sail −2.05

LLC4320 −2.32

The spectral slopes of the RSS40km product compared best with those of Saildrone.
The spectral slope for the RSS40km was −1.93, while for Saildrone was −2.26. The JPLSSS
product had the steepest slope of −2.95. The steeper slopes are most likely indicative of the
smoother product and decreased energy associated with scales <100 km. Thus, this would
be consistent with the known feature resolutions of the products, with RSS40km having a
40 km and RSS70km and JPLSSS having 70 km and 60 km feature resolutions, respectively.
The Saildrone SSS spectral slope of −2.26 reflects the slope most closely associated with
mesoscale-submesoscale variability [8].

When compared with Saildrone, the model spectral slopes also approximated the
−2 slopes associated with mesoscale-submesoscale variability. LLC270 had a spectral
slope −1.81, while the co-located Saildrone SSS had a spectral slope of −2.13. The lower
spectral slope of LLC270 is most likely a function of the smoother LLC270 SSS due to the
lower resolution of the model. LLC4320 has a spectral slope of −2.32, while the Saildrone
co-located SSS had a spectral slope of −2.04. Thus, the Saildrone SSS spectra slope co-
located with the high resolution LLC4320 model was the closest to the known slopes of
−2.0 associated with the mesoscale-to-submesoscale dynamics. The steeper −2.32 slope is
consistent with the model slightly underestimating higher-resolution variability.

Overall, the values of the satellite and model spectral slopes are consistent with
the Saildrone slopes, with the differences being consistent with the smoothing levels and
feature resolutions of the products. The comparisons between LLC270 and LLC4320 models
clearly indicate that the higher-resolution LLC4320 model resolves features not obtained
with the lower-resolution SMAP and LLC270 resolutions at wavelengths <10 km.

The fine spatiotemporal resolution of Saildrone provides the ability to directly assess
and validate the monitoring capabilities of satellite-derived SST, SSS, and biogeochem-
ical properties in the critical Arctic regions. The spectra and coherence of the LLC4320
model compared to Saildrone indicates that significant variability exists at scales <100 km,
providing justification for future studies. Additionally, work is already being conducted
comparing biogeochemical Saildrone observations with the ECCO-Darwin global-ocean
biogeochemistry model [39]. The integration of Saildrone and satellite observations is
critical for advancing research in both physical and biological oceanography. These results
also indicate the need to continually improve land correction, with a focus on increasing
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retrievals closer to land. This would lead to a more accurate characterization of river runoff
based on land ice and snow melt.

5. Conclusions and Summary

Two 2019 Saildrone deployments in the Bering, Chukchi, and Beaufort Seas off the
Alaskan coast allowed for direct comparisons between the SSS derived from the onboard
RBR and SSS derived from three SMAP products and two state-of-the-art numerical
ocean models.

The most dominant feature of the time series was a strong freshening event at ap-
proximately day 150 of 2019. This event was visible in all the SMAP products and the
Saildrone SSS. Saildrone was first used to detect discharge associated with the Yukon with
deployments in 2015 [40]. Based on collocation with the Yukon River discharge, it was
determined that the freshening event was associated with river runoff. Figures 1 and 2
clearly show the freshening event along the coast. Figure 2 zooms in on the region of the
river discharge, showing the freshening in the Saildrone SSS as it crosses the region. All
the SMAP SSS products resolve the signal associated with the Yukon River. This result is
essential in motivating future Arctic Ocean research using Saildrone and satellite-derived
SSS for the determination of freshwater fluxes and changes in ocean stratification due
to both sea-ice melt and river runoff. Previous results have used remote sensing [9] to
determine and monitor the discharge of the Yukon River. To our knowledge, this is the
first time satellite-derived SSS has been used to detect the freshening in the Bering Sea
associated with the Yukon River. The results are consistent, appearing on day 150 of 2019,
with the known seasonal discharge of the Yukon River peaking in boreal summer [39]
with 5663 m3 s−1. Thus, these results are encouraging for application of satellite-derived
salinity to monitor changes in the Yukon River discharge plume associated with changes
in sea-ice melt, shelf dynamics, and freshwater discharge. This could prove critical for
understanding future changes in the Arctic and applications to other regions.

Overall, the comparisons showed good agreement between the JPLSSS, RSS40km,
and RSS70km products. Correlations of greater than 0.9 were found for the RSS70km
and RSS40km products. Biases of near 0 PSU were found for the RSS40km and RSS70km
products, with RMSD of < 1.0 PSU. Values were comparable to those found by [5,6], who
compared satellite-derived SSS products in the Arctic using thermosalinograph (TSG) data.
Overall spectral slopes compared well and approximated the −2.0-slope associated with
mesoscale-to-submesoscale processes. Slopes for the JPLSSS and RSS70km were steeper
than Saildrone SSS, most likely indicative of the smoothness of the two SMAP products.
Model spectral slopes compared with Saildrone SSS were also consistent with the feature
resolutions of the LLC270 and LLC4320 models.

Both SMAP/Model showed statistically significant coherences with Saildrone SSS.
Peaks were seen at 100–500 km, as well as 50 km for the SMAP observations; LLC270
showed reduced coherences. The commonality of peaks at approximately 100 km could be
associated with the Yukon River discharge, but confirmation of this is beyond the scope of
this paper and should be a topic for future research.

Validation results should be considered a first step in using SMAP and Saildrone in
the Arctic Ocean. Statistically significant correlations and negligible biases are promising
for future high-latitude applications. Biases were larger for the JPLSSS product, most likely
due to a large freshening event between days 160 and 170. Future work in the Arctic should
include comparisons with additional Saildrone campaigns as well as with data from the
European Space Agency’s Soil Moisture Ocean Salinity mission. The coherences associated
with the high-resolution LLC4320 model indicate that both improvements in resolution and
land contamination are critical for fully resolving ocean variability in the Bering, Chukchi,
and Beaufort Seas. The clear resolution of the Yukon River discharge is promising to
use SMAP to monitor changes in fresh shelf water influence on the large-scale salinity of
the Bering, Chukchi, and Beaufort Seas. Future research should focus on (1) improving
derivations of satellite-derived SSS in the Arctic Ocean and (2) integrating models to
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compliment the remote sensing with the full response of the Arctic region to climate
change. Ultimately, Saildrone provides a unique opportunity for validating and improving
remote sensing products in the Arctic and other high-latitude regions. Future work needs
to explore further differences in the SMAP products, inclusive of the large freshening even
observed in the JPLSSS at day 170. This should include future exploration of differences in
SSS close to land and possible issues with the SMAP instrument malfunction. Additional
work should include the incorporation of comparisons with the European Space Agency’s
Soil Moisture Ocean Salinity Mission (SMOS).

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/831/s1, Figure S1. The Figure shows comparisons between the Seabird and RBR salin-
ity measurements.
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