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Abstract: The accumulation of heat and moderate precipitation are the primary factors that are used
by grasslands to trigger a green-up date. The accumulated growing degree-days (AGDD) requirement
over the preseason is an important indicator of the response of grassland spring phenology to climate
change. This study adopted the Normalized Difference Phenology Index (NDPI), which derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS), to extract annual green-up dates in the
Hulun Buir grassland in China between 2001–2015. Our analysis indicated that the range (standard
deviation) and trend for the green-up date were DOY (day of year) 104 to DOY 144 (10.6 days) and
−2.0 days per decade. Nine point two percent of the study area had significant (p < 0.05) changes in
AGDD requirements. The partial correlations between the AGDD requirements and chilling days
(67.04%, pixels proportion) were negative and significant (p < 0.05). The partial correlations between
the AGDD requirement and precipitation (28.87%) were positive and significant (p < 0.05). Finally,
the partial correlation between the AGDD requirement and insolation (97.65%) were positive and
significant (p < 0.05). The results of this study could reveal the response of vegetation to climate
warming and contribute to improving the phenological mechanism model of different grassland
types in future research.

Keywords: green-up date; accumulated growing degree-days; climate change; meteorological indica-
tors; Hulun Buir; grassland

1. Introduction

Plant phenology aims to investigate the interrelationships between cyclical plant
phenological phenomena and environmental conditions [1,2]. Phenological events reflect a
combination of intrinsic factors of plants (genetic) and environmental impacts. Since the
avoidance of late spring frost damage and early autumn cold events are very important
for the survival of plants, timely green-up is essential [3]. Changes in the phenological
phenomena of vegetation that are caused by global climate changes lead to constant
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changes in a variety of ecosystem processes, which, in turn, could affect weather and
climate systems [4–6]. Recent studies have increasingly emphasized the impact of climate
change on phenology [7–11]. Plants in temperate and frigid regions require an adequate
amount of heat with which to initiate green growth in the spring or early summer [12,13].
This specific amount of heat is also referred to as the heat requirement, which is often
calculated using the classical growing degree-days concept [14–16]. A parameter referred
to as accumulated growing degree-days (AGDD) has been widely utilized as a critical
parameter in process-based phenological models in order to simulate plant growth [1,17,18].
In grasslands, the green-up date reflects the important turning point of the process in which
the grassland begins to germinate, turn green, and grow; these processes happen when
temperature and water conditions reach a suitable state in the spring. Vegetation green-up
date characterizes the onset of photosynthesis on land and can serve as a good indicator to
measure terrestrial ecosystem processes such as carbon and water cycles and the energy
balance between the biosphere and the atmosphere [19–21]. Moreover, the vegetation
green-up date has been identified as one of the simplest and most sensitive indicators in
measuring the response of grassland ecosystems to climate change, particularly in high
latitudes and high altitudes [22].

Some phenological models, based on the growing degree-days, have been widely
used to simulate plant phenology and receive much attention [23,24]. In these phenological
models, a critical threshold for AGDD requirement is species-specific and location-specific;
then, these models can determine the green-up date [17,25]. The thresholds of AGDD
requirement were determined commonly by experiments or optimization processes in
process-based phenology models. The interaction of heat requirement with contextual
environmental factors could help increase our understanding of the global carbon balance
in climate warming and improve spring phenological predictions [18].

In recent decades, many studies have examined the AGDD of woody plants [12,26,27].
For example, among 13 temperate species in Europe and North America, the AGDD
requirement for leaf unfolding increased by 50% between 1980 and 2012 [27]. In addition,
the AGDD requirement showed considerable spatial variation for vegetation green-up
in north-central and high latitudes [28,29]. This indicated that temperature might not
be the only factor influencing spring phenology. Therefore, it is necessary to put other
meteorological indicators in the model to enhance the fitting accuracy. It is very important
that we improve our understanding of the AGDD requirements for spring phenology and
its spatiotemporal changes. Early field observations recorded the AGDD requirement of
several woody plants in Europe and North America; the analysis showed that temperate
late-spring species had a greater heat requirement than early spring species [12]. In
the temperate steppe and forests in the Northern Hemisphere, the AGDD requirements
showed extensive spatial positive correlations with vegetation green-up date and preseason
precipitation [28]. Several process-based models combining AGDD and precipitation for
fitting grassland green-up onset dates have been developed in Inner Mongolia [30,31] and
the Qinghai-Tibet Plateau [1,32], where the correlation coefficient for simulating interannual
variations of green-up date was low [1]. Recent research has improved our understanding of
the regulatory effects of the photoperiod on the heat requirements of woody plants [27,33].
In the Qinghai-Tibet Plateau region of China, temperatures increased rapidly between 1998
and 2012, but no significant increase in AGDD requirements was observed [34].

In Chinese grassland areas, ground observation records and satellite data have been
increasingly used to identify temporal changes in the green-up date and the relationship
between these changes and climate [35]. Most of these studies have focused on the Qinghai-
Tibet Plateau [34,36–39]. The general belief was that vegetation required a certain amount
of heat accumulation to trigger green-up in the spring [37,40]. Moreover, the changes in
vegetation phenology in the spring may exert influences on the biophysical processes on
the land surface and may even affect the regional climates in East Asia [41]. The effects
of environmental factors on vegetation green-up have also been explored, such as winter
temperatures and their relationship with cold effects [38], preseason precipitation [42],
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photoperiod, and sunshine hours [43]. Theoretically, even if the temperature during the
vegetation dormant period differed annually, the heat requirement for plant green-up
remained relatively constant. A previous study reported that the heat requirement for
vegetation green-up on the Qinghai-Tibet Plateau did not change significantly although the
AGDD requirements showed a negative correlation with chilling days (CD) [34]. Generally,
enough chilling days were needed to break dormancy before the green-up date [44].

Previous research aimed to investigate how the interannual variability of dormant
CD affects the heat requirements at the species and regional scales [27,34]. However, only
a limited number of studies have focused on different types of grasslands. In addition
to the accumulation of CD during dormancy, the heat requirements of grassland vege-
tations may also be affected by other environmental factors, such as precipitation and
insolation. The analysis of the temporal and spatial variations in the heat requirements of
spring vegetation in grasslands and their interactions with environmental factors could
improve our understanding on the impact of meteorological indicators before the green-up
date [19,27,34,43].

Our present research focuses on the Hulun Buir grassland for two main reasons. First,
this grassland is distributed across the extreme northeast of China. Second, Hulun Buir is
the most concentrated and representative area of a temperate meadow steppe in China.
Our study has three main aims: (1) to monitor the vegetation green-up dates between 2000
and 2015 and analyze the temporal and spatial patterns by the mean (±standard deviation)
and the trends for variations in the green-up dates; (2) to analyze the trends in variations
of the AGDD requirements and other meteorological indicators (CD, precipitation, and
insolation); and (3) to investigate the impact of meteorological indicators on the interannual
variations in the AGDD requirement in different types of grasslands.

2. Materials and Methods
2.1. Study Area

The Hulun Buir grassland occupies the highest latitude of Northern China. The
temperature in this region increased significantly between 1970 and 2014, with the mean
temperature increasing by 0.2 ◦C per decade [45]. In arid regions, evaporation was signif-
icantly higher than precipitation, and severe droughts often occurred in the spring and
early summer [46]. The average annual temperature range of the Hulun Buir grassland
was −8.6–4.4 °C during 1979–2015 (Figure 1), and the average annual precipitation was
255–588 mm (Figure 2), gradually decreasing from east to west. Another characteristic of
the precipitation in this area is the uneven temporal distribution, which includes annual
and seasonal variations, with most of the precipitation occurring in July and August.
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Figure 2. The multiyear annual average precipitation during 1979–2015.

The Hulun Buir grassland covers an area of approximately 100,000 km2 in the middle
latitudes of Eurasia, between 115◦31′ E and 126◦04′ E and 47◦05′ N and 53◦20′ N. The
region is located northeast of the temperate grasslands in China. Due to the high latitude,
the heat from the ground radiation is reduced, and the temperatures are relatively low. This
grassland lies far from the direct influence of the ocean. In addition, this area is controlled
by the Mongolian high-pressure air mass. Therefore, the Hulun Buir grassland has a
temperate continental monsoon climate. The Greater Khingan Mountains run northeast
to southwest and through the center of Hulun Buir City, thus reducing the chances of
monsoons from the Southeast Pacific reaching deep into the mainland. Simultaneously,
because of the natural barrier created by the Greater Khingan Mountains, the cold current
from Siberian Mongolia is blocked. Thus, there is a clear difference in climates on the
two sides of these mountains. To the east of the Greater Khingan Mountains, there is a
semi-humid forest grassland climate with four distinct seasons, a mild climate, and heavy
rainfall. In comparison, the west side of the Greater Khingan Mountains has a semi-humid
and semi-arid grassland climate and is colder and drier with less rainfall. The Greater
Khingan Mountains form a cold and humid forest climate [47].

Hulun Buir is the most concentrated and representative area of a temperate meadow
steppe in China, in which many types of meadow steppe ecosystems develop. From the
east humid region to the west semi-arid region, an ecological geographical gradient of
climatic dryness is formed from east to west (Figure 3). Thus, zonal vegetation is divided
from east to west, with a temperate meadow steppe and temperate steppe predominant in
the west, lowland meadow, and upland meadow in the east [48].
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Figure 3. Administrative divisions and grassland classification in Hulun Buir. In this figure, county
boundaries were used to divide the different districts. The name of each administrative district is
given in bold. The blank areas represent non-grassland areas. The grassland classification dataset is
based on a 1:1,000,000 Vegetation Atlas of China [49].

2.2. Datasets

We downloaded Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09A1
data (2001–2015) National Aeronautics and Space Administration (NASA) https://modis.
gsfc.nasa.gov/ (accessed on 9 February 2021). MOD09A1 provides 8-day surface reflectance
of the MODIS Terra product with 500-m resolution of bands 1–7, projected as sinusoidal
projection. Each MOD09A1 pixel contains the best possible L2G observations over an 8-day
period, taking into account the effects of high viewing coverage, low viewing angles, cloud-
less and cloudless shadows, and aerosol concentrations. This scientific dataset provides
products, including reflectance values for bands 1–7 and quality evaluation data. Data
project transformation and subset for analysis were prepared using the MODIS Reprojec-
tion Tool and Envi5.3 software. For processing, the time series was filtered with a double
logistic function. The function formula used was given below:

g(t; x1, . . . , x4) =
1

1 + exp
(

x1−t
x2

) − 1

1 + exp
(

x3−t
x4

) (1)

where x1 determines the position of the Normalized Difference Phenology Index (NDPI)
time series curve rising inflection point, while x2 gives the rate of change. Similarly, x3
determines the position of the NDPI time series curve falling inflection point, while x4
gives the rate of change at this point. Additionally, for this function, the parameters are
restricted in range to ensure a smooth shape.

The meteorological data used in this study included temperature and precipitation
data downloaded from the China Meteorological Forcing Dataset [50], with a spatial
resolution of 0.1◦ and a temporal resolution of 3 h. Meteorological data were resampled
from 0.1◦ to 500 m using the Nearest-Neighbors method in Envi5.3 software.

2.3. Determination of Vegetation Green-Up Date

Remote sensing data have been widely used in the large-scale monitoring of vegetation
activities, particularly for grassland ecosystems [51–53]. The green-up date determined
by remote sensing reflects vegetation at a regional scale and is based on a time series of
vegetation index. Commonly used vegetation indices include the normalized difference

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
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vegetation index (NDVI) and the enhanced vegetation index (EVI). When calculated by
NDVI, green-up date has been shown to be affected by snowmelt in boreal regions [54].
The normalized difference phenology index (NDPI) was therefore developed to minimize
the effects of snowmelt [55]. Commonly, three methods of extraction are used for green-up
dates: dynamic threshold, maximum slope, and median methods. A comparative analysis
showed that the median method is the most reliable [56].

Due to the significant influence of snowmelt in the Hulun Buir grassland, we chose
to use the NDPI in this paper for phenological period extraction. The contrasting results
between the NDVI and NDPI at pixels scaling is shown in Figure 4. The NDVI before
growing season had many abnormal values. Thus, NDPI could better reflect the growth
of vegetation. The median method was used to monitor the annual green-up date. The
formula used was given below:

NDPImid = (NDPImax + NDPImin) × 50%, (2)

where NDPImid represents the NDPI of the green-up date, NDPImax represents the maxi-
mum NDPI throughout the growing season, and NDPImin represents the minimum of the
NDPI increase phase.
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Figure 4. Time series reconstruction results under the double-logistic base normalized difference
phenology index (NDPI) (a) and normalized difference vegetation index (NDVI) (b).

2.4. Calculation on the Key Heat Requirement and Meteorological Indicators

The AGDD requirement was chosen for heat requirement, and number of CD, pre-
cipitation, and insolation were chosen for the key meteorological indicators. The annual
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AGDD requirement for the vegetation green-up was defined as the sum of daily mean
temperatures above 0 ◦C in the preseason (1st January to green-up date) [12,57].

AGDD =
tGD

∑
t0

Tt i f Tt > T0, (3)

where AGDD represents the effective accumulated temperature for the vegetation green-up
date, t0 represents 1 January, tGD represents the vegetation green-up date, and Tt represents
the daily mean temperature.

CD was defined as the number of days over the same period with mean daily temper-
atures below 0 ◦C [34].

CD =
tGD

∑
t0

Dt Dt =

{
1, Tt < 0
0, Tt ≥ 0

, (4)

where CD represents the number of chilling days for vegetation green-up date, t0 represents
1 January, tGD represents the vegetation green-up date, and Tt represents the daily mean
temperature.

In this study, precipitation was calculated by the sum of daily precipitation, and
insolation was represented by the mean of daily downward shortwave radiation 60 days
before the green-up date. Meteorological variables were calculated on the basis of gridded
daily temperature, precipitation, and insolation data at the spatial resolution of 0.1◦ × 0.1◦,
which were resampled into 500-m resolution surface data by the Nearest-Neighbors method.
The Nearest-Neighbors method directly took the pixel value closest to a pixel position
as the new value of the pixel [58]. The advantages were that the method was simple,
the processing speed was fast, and the original pixel value would not be changed. The
annual AGDD requirement over 15 years (2001–2015) was used to analyze spatial changes
and the relationships between AGDD and CD, AGDD and precipitation, and AGDD
and insolation, respectively. For interannual variations, the slope of the linear regression
between the AGDD requirement and the year was determined as the time trend of the
AGDD requirement over the study period (2001–2015). A partial correlation method was
used to investigate the influence of CD, precipitation, and insolation on the interannual
variation of the AGDD requirements. A partial correlation analysis refers to the process
that when two variables are related to the third variable at the same time, the influence
of the third variable is removed, and only the correlation degree between the other two
variables is analyzed, and the determination index is the value of the partial correlation
coefficient. This method was successfully applied to eliminate the covariate effect between
multiple influencing factors [27,34].

2.5. Trend Analysis Method

The Mann-Kendall [59,60] method was used to examine the trends in the green-up
date and meteorological indicators. Since the Mann-Kendall method is a nonparametric
test for monotonic trends, it does not assume a specific distribution for the data and is
insensitive to outliers. The Mann-Kendall method was a climate diagnosis and prediction
technology. It could determine whether there was a mutation in the time series, and if
there was, the time of the mutation can be determined. The Theil-Sen method was a
nonparametric statistical method for the significance test of the trend [61]. It was a method
for robust linear regression that chooses the median slope among all lines through pairs
of two-dimensional sample points. Combining the two is an excellent method of the
time series trend analysis, which has been widely used in climate and hydrological trend
research in recent years [62,63].
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2.6. Flow Chart

Flow chart of the key indicators computation and statistical analysis is displayed
in Figure 5. Green-up date was extracted based on the NDPI calculated from remote
sensing data (MOD09A1). Meteorological indicators were calculated from the temperature,
precipitation, and insolation according to the green-up date. A partial correlation analysis
was used to investigate the relationship between the heat requirement indicator and
meteorological indicators.
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3. Results
3.1. Spatial and Temporal Patterns of Remotely Sensed Green-Up Dates

The multiyear mean remote sensing green-up dates (Figure 6) ranged from DOY (day
of year) 104 in warm and dry areas to DOY 144 in cold and wet areas across the Hulun Buir
grassland; the analysis also revealed spatial variations that were delayed from the west
and east to the central region.
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Figure 7 illustrates the spatial pattern of the green-up date standard deviations, which
decreased from low-attitude areas to high-attitude areas. The mean standard deviation
across the whole area was 10.6 days. The statistical analysis of the number of pixels in
main grassland types is shown in Figure 8. The temperate steppe had the earliest green-up
date (DOY 115 ± 11.6; mean ± standard deviation), followed by the temperate meadow
steppe (DOY 123 ± 8.6), lowland meadow (DOY 126 ± 10.5), and upland meadow (DOY
127 ± 7.3). The green-up date across 79.5% of the temperature steppe ranged from DOY
104 to DOY 128, 80.2% of the temperature meadow steppe ranged from DOY 112 to DOY
128, 70.1% of the lowland meadow ranged from DOY 112 to DOY 136, and 92.7% of the
upland meadow ranged from DOY 120 to DOY 136.
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Figure 8. Green-up dates in the different types of grasslands.

The trends in green-up dates decreased from the west and east to the central region
(Figure 9) and ranged from −15 days per decade to 15 days per decade. The mean trend
overall was −2.0 days per decade. However, only 4.4% of the pixels exhibited significant
(p < 0.05) positive changes where mainly distributed in the northwestern temperate steppe;
9.3% of pixels exhibited significant (p < 0.05) negative changes where mainly distributed
in the temperate meadow steppe and northeast lowland meadow. The areas with large
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delayed trends were primarily concentrated in the temperate steppe, whereas the areas
with large advanced trends were primarily concentrated in the lowland meadow areas.
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Figure 9. Spatial pattern of the temporal trends in green-up dates (in days per decade) between 2001
and 2015. The inset shown at the top-right of the figure indicates pixels with a significant (p < 0.05)
increase (red) or decrease (green). The middle-left inset shows the frequency distribution of trends
corresponding to the values indicated by the map legend.

3.2. Trend Analysis for AGDD Requirement

During the study period, 71.3% of the study area showed an increasing trend in
AGDD requirement (Figure 10). Pixels showing significant changes in AGDD requirement
(p < 0.05) accounted for 9.3% of the entire study area. Of these pixels, 7.8% of the study area
showed a significant increase; these were primarily distributed in the temperate steppe
area of New Barag Right Banner.
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Figure 10. Spatial pattern of the temporal trends in accumulated growing degree-days requirements
(in ◦C-days year–1) between 2001 and 2015. The top-right inset indicates pixels with a significant
(p < 0.05) increase (red) or decrease (blue). The middle-left inset shows the frequency distribution of
trends corresponding to the values indicated by the map legend.
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3.3. Trend Analysis of Meteorological Indicators

Meteorological indicators showed different trends in the Hulun Buir grassland area
over the preseason. The trend for CD (Figure 11a) in 75.6% pixels ranged from −0.6 days
year–1 to 0.6 days year–1. Only less than 1% area in the CD trend was statistically significant
(p < 0.05).

Remote Sens. 2021, 13, 1044 12 of 23 
 

 

 

Figure 11. Spatial pattern of the temporal trends in (a) chilling days in days year−1, (b) precipita-

tion in mm year−1, and (c) insolation in W m–2 year–1. The top-right insets indicate pixels with a 

significant (p < 0.05) increase (blue in (a) and (b) and red in (c)) or decrease (red in (a) and (b) and 

blue in (c)). The middle-left insets show the frequency distributions of trends corresponding to the 

values indicated by the map legends. 

  

Figure 11. Spatial pattern of the temporal trends in (a) chilling days in days year−1, (b) precipitation
in mm year−1, and (c) insolation in W m–2 year–1. The top-right insets indicate pixels with a
significant (p < 0.05) increase (blue in (a,b) and red in (c)) or decrease (red in (a,b) and blue in (c)). The
middle-left insets show the frequency distributions of trends corresponding to the values indicated
by the map legends.
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The trend for precipitation (Figure 11b) in 93.6% of the pixels ranged from −3 to
1 mm year–1. Of these pixels, 16.4% showed a significant trend for reduced precipitation
(p < 0.05), of which 74% were distributed in the eastern temperate steppe and northeastern
lowland meadow.

The trend for insolation over the preseason (Figure 11c) was approximately −2 to
3 W m–2 year–1. There was a significant (p < 0.05) increasing trend for insolation over 20.3%
of the region, primarily concentrated in the temperate steppe. Less than 1% of the pixels
showing a decreasing trend for insolation were statistically significant (p < 0.05).

3.4. Partial Correlation Analysis between AGDD Requirement and Environmental Factors
3.4.1. AGDD Requirement and CD

Across the entire region, 99.4% of pixels showed a negative partial correlation between
the AGDD requirement and CD (Figure 12a), of which 67.0% of the pixel partial correlation
coefficients were less than −0.55 (0.55 corresponds to p = 0.05). Furthermore, 38.3 % of the
pixel partial correlation coefficients were less than −0.68 (0.68 corresponds to p = 0.01).

3.4.2. AGDD Requirement and Precipitation

Across the entire region, 80.4% of the pixels showed a positive partial correlation
between the AGDD requirement and precipitation (Figure 12b), of which 28.9% of the pixel
partial correlation coefficients were greater than 0.55. Seventeen point seven percent of the
pixel partial correlation coefficients were greater than 0.68. No pixels showed a significant
(p < 0.05) negative partial correlation.

3.4.3. AGDD Requirement and Insolation

Compared with CD and precipitation, insolation had greater influence on the AGDD
requirements (Figure 12c). Across the entire region, 97.6% of the pixel partial correlation
coefficients were greater than 0.55. Furthermore, 93.3% of the pixel partial correlation
coefficients were greater than 0.68.

3.5. Partial Correlation Analysis between AGDD Requirement and Environmental Factors in
Different Grassland Types
3.5.1. Temperate Steppe

Overall, 81.3% of pixels showed a significant (p < 0.05) negative correlation between
AGDD requirement and CD. Furthermore, 21.5% of pixels showed a significant (p < 0.05)
positive correlation between AGDD requirement and precipitation; these were primarily
distributed in New Barag Right Banner. Ninety-seven percent of pixels showed a significant
(p < 0.05) positive correlation between AGDD requirement and insolation.

3.5.2. Temperate Meadow Steppe

Forty-three point five percent of the pixels showed a significant (p < 0.05) negative
correlation between the AGDD requirement and CD and were primarily distributed in
Chen Barag Banner. Eight point seven percent of the pixels showed a significant (p < 0.05)
positive correlation between the AGDD requirement and precipitation. Seventy-two point
three percent of the pixels showed a significant (p < 0.05) positive correlation between the
AGDD requirement and insolation.

3.5.3. Lowland Meadow

Fifty-three point seven percent of pixels showed a significant (p < 0.05) negative
correlation between the AGDD requirement and CD and were primarily distributed in
other than the middle area. Fifteen percent of pixels showed a significant (p < 0.05)
positive correlation between the AGDD requirement and precipitation and were primarily
distributed in the southwestern and northeastern regions. Furthermore, 73.7% of pixels
showed a significant (p < 0.05) positive correlation between the AGDD requirement and
insolation and were primarily distributed in other places than the high-altitude region.
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Figure 12. Spatial patterns of the interannual partial correlations between the accumulated growing
degree-days requirement and chilling days (a), precipitation (b), and insolation (c). Partial correlation
coefficient values of ±0.68, ±0.55, and ±0.48 correspond to significance at p = 0.01, p = 0.05, and
p = 0.10, respectively. Top-left insets show the frequency distributions of the correlation coefficients
corresponding to values indicated by the map legends.
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3.5.4. Upland Meadow

A significant negative correlation (p < 0.05) was detected between the AGDD require-
ment and CD for 21.2% of pixels. A significant positive correlation (p < 0.05) was detected
between the AGDD requirement and precipitation for 2.4% of pixel. Finally, 58% of pix-
els showed a significant (p < 0.05) positive correlation between the AGDD requirement
and insolation.

4. Discussion
4.1. Factors Affecting the Spatial Variation of AGDD Requirement

This study revealed spatial variations in AGDD requirement throughout the Hulun
Buir grassland vegetation. This variability indicates the need to use AGDD requirements
at the pixel scale in order to establish a model of vegetation phenology. On the east
and west sides of the Greater Khingan Mountains, the grassland was primarily lowland
meadows, and the AGDD requirement was relatively low in cold regions; these findings
were consistent with those published previously [28]. Some researchers consider this
relationship to be the result of plants adapting to colder growing environments [36] or
plants using heat more efficiently in cooler areas [28]. Plants in relatively warm regions
could accumulate more heat quickly than cold regions to trigger green-up. Though a
higher AGDD was required in warm steppe, the green-up date was earlier than other cold
grassland-type areas. However, the annual mean temperature in these regions was 0.25 ◦C
higher than that of the lowland meadow area, and the AGDD requirement was 11 ◦C-days
higher than that of the lowland meadow area. The temperate steppe area showed the
earliest green-up date for plants across the entire study area with the least precipitation
and relatively high temperatures. Due to favorable thermal conditions, this relatively dry
area may exhibit high levels of efficiency in terms of water use, thus allowing vegetation to
break their dormant period earlier and enter a period of ecological growth.

4.2. Changes in AGDD Requirement

Previous analysis showed that the speed of climate warming in most parts of the world
weakened or stagnated during the period between 2002 and 2012 [64]. However, between
2001 and 2015, the Hulun Buir grassland area showed no significant change in terms of the
annual mean temperature. Previous studies reported that the warming trend in Hulun Buir
between 2001 and 2013 was weaker than that between 1970 and 2000 and that the largest
reduction occurred in the winter warming trend; in contrast, the largest increase over an
entire year was for the spring season warming [45]. However, the AGDD requirement
increased significantly in only 18.4% of the region, as reported previously for more than 10
temperate trees in Europe and North America [27]. Our analysis showed that 90.2% of the
regional AGDD requirement did not change significantly; this proportion was the same
as that described previously for the change in AGDD requirement on the Qinghai-Tibet
Plateau [34]. We also found that the increase in heat requirement for grassland vegetation
was positively correlated with precipitation. In areas with an earlier green-up date, the
AGDD requirement was higher than that in areas with a later green-up period because of
the high temperature. This result is consistent with previous studies [27,65]. The AGDD
requirement for the later green-up dates was relatively large (Figure 13), and the altitudes
of these area were high. Climate warming caused warm weather, and more chilling days
were required to break the dormant period [66].
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4.3. Factors Affecting Interannual AGDD Requirement

The accumulation of heat is recognized as a major factor in triggering the green-
up of plants [37,40]. However, little is known of the mechanisms responsible for the
relationship between heat requirement and meteorological indicators over the preseason.
For the Tibetan Plateau vegetation and for European and North American trees, the
heat requirement and CD accumulation are primarily negatively correlated [27,34]. Our
present findings are in consistent with those described by previous research in that heat
requirement and CD accumulation were negatively correlated. The dependence of AGDD
on CD has been recognized previously but is not yet fully understood [44]. The negative
partial correlation between AGDD requirement and CD means that if the CD decease,
the winter warming continues, the number of chilling days will decrease in the future,
and the AGDD requirements will increase. Plants would break dormancy when chilling
requirements were fulfilled. Currently, it is difficult to determine the minimum number of
CD required [44]. Only comparisons between different regions and different vegetation
types in climate change control experiments will help us to understand the specific CD
required for vegetation green-up.

Our studies further showed that in 28.9% of the Hulun Buir grassland, there was
significant (p < 0.05) positive correlation between the AGDD requirement and precipitation
over the preseason. In nearly 70% of the Hulun Buir grassland, there was no significant
correlation between the AGDD requirement and precipitation. This indicates that increased
precipitation did not significantly reduce the heat requirement. Furthermore, the effect of
snowmelt on phenology in spring was confirmed by a snow cover experiment [67]. A posi-
tive correlation has also been reported between the heat requirement and precipitation [27].
In the west warm steppe, the precipitation in the winter was equal with April. An increase
in insolation can reduce the water content of soil by increasing surface evaporation, thus
delaying the green-up date and increasing AGDD requirement.

Significant correlation was detected between AGDD requirement and insolation in
most of our study regions, and an increase in insolation led to a significant increase in
AGDD requirements. Previous studies in European woody species showed that total insola-
tion could directly adjust the AGDD requirement and that this occurred independent of any
chilling effect [68]. These previous studies were based on woody plants, and the response
of grassland vegetation to total insolation remains poorly understood. The response of
different species of plants to total insolation must also be considered. Approximately 95%
of our study regions showed a significant (p < 0.05) positive correlation with insolation.
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Relatively high insolation may result in relatively high temperatures. In this area, snowfall
in the winter was equal with the total precipitation in April. An increase in insolation
can reduce the water content of soil by increasing surface evaporation, thus delaying the
green-up date and increasing the AGDD requirement.

A previous study reported that temperatures slightly above freezing were the most
effective in satisfying the chilling requirement [69] and suggested that the temperature
range between 0 and 5 ◦C is the most effective across species. In our study area, the most
effective temperature was unclear. At the same time, the most effective time range in
precipitation and insolation were also unclear. So, we investigated the partial correlation
under a 0 ◦C threshold 30 days before the green-up date (Figure 14) and a 5 ◦C threshold
60 days before the green-up date (Figure 15). By contrast, the correlations over the whole
area were similar with the correlations under the 0 ◦C threshold 60 days before the green-up
date, although the level was weakened. The 0 ◦C threshold could be better to explain the
partial correlations between the AGDD requirement and meteorological indicators 60 days
before the green-up date.
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Figure 14. Spatial patterns of the interannual partial correlations between the accumulated growing
degree-days requirements and chilling days (a), precipitation (b), and insolation (c) under the 0 ◦C
threshold 30 days before the green-up date. Partial correlation coefficient values of ±0.68, ±0.55, and
±0.48 correspond to significance at p = 0.01, p = 0.05, and p = 0.10, respectively. Top-left insets show
the frequency distributions of the correlation coefficients corresponding to the values indicated by
the map legends.
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Figure 15. Spatial patterns of the interannual partial correlations between the accumulated growing
degree-days requirement and chilling days (a), precipitation (b), and insolation (c) under the 5 ◦C
threshold 60 days before the green-up date. Partial correlation coefficient values of ±0.68, ±0.55, and
±0.48 correspond to significance at p = 0.01, p = 0.05, and p = 0.10, respectively. Top-left insets show
the frequency distributions of the correlation coefficients corresponding to the values indicated by
the map legends.

5. Conclusions

In the present study, remote sensing and meteorological data were used to investigate
the temporal and spatial variations of long-term green-up dates and AGDD requirements
in the Hulun Buir grasslands during the winter and spring warming periods between 2001
and 2015. The green-up date was significantly different for different grassland types and
showed large spatial variations ranging from DOY 104 in warm and dry areas to DOY
144 in cold and wet areas. Overall, there was an advancing trend for green-up dates of
−2.0 days per decade. The AGDD requirements trend did not significantly change in
most of the area. We conclude that the interannual variations in the AGDD requirements
were extensively driven by the number of chilling days and mean of the insolation, while
precipitation affected the AGDD requirements in limited areas. The chilling days and
isolation have more impact on the heat requirements for the vegetation green-up than
precipitation in the context of climate change.
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