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Abstract: Forest biomass is currently among the most important and most researched target variables
in forest monitoring. The common approach of observing individual tree biomass in forest inventory
is to assign the total tree biomass to the dimensionless point of the tree position. However, the tree
biomass, in particular in the crown, is horizontally distributed above the crown projection area. This
horizontal distribution of individual tree biomass (HBD) has not attracted much attention—but if
quantified, it can improve biomass estimation and help to better represent the spatial distribution
of forest fuel. In this study, we derive a first empirical model of the branch HBD for individual
trees of European beech (Fagus sylvatica L.). We destructively measured 23 beech trees to derive an
empirical model for the branch HBD. We then applied Terrestrial Laser Scanning (TLS) to a subset
of 17 trees to test a simple point cloud metric predicting the branch HBD. We observed similarities
between a branch HBD and commonly applied taper functions, which inspired our HBD model
formulations. The models performed well in representing the HBD both for the measured biomass,
and the TLS-based metric. Our models may be used as first approximations to the HBD of individual
trees—while our methodological approach may extend to trees of different sizes and species.
Keywords: terrestrial laser scanning (TLS); sampling; forest inventory; forest monitoring;
biomass models

1. Introduction

Tree biomass and carbon are important for forest management and ecological studies
at all geographical scales. Forest biomass is among the most researched tree and forest
variables. Tree biomass is defined as the dry weight of the living mass of a tree, and cannot
be determined in situ during a forest inventory. Instead, prediction of tree biomass in
operational forest inventories relies on allometric biomass models to predict tree biomass.
Diameter at breast height (dbh) is most often used as predictor in these models as it is
strongly correlated with the mass of a tree; tree height (%), species and, in some cases, wood
specific gravity serve as further predictor variables in some model formulations [1-3].

Commonly, total above ground biomass (AGB) is the target variable in those models,
and for estimating AGB per unit area this prediction is then assigned to the tree "s posi-
tion; that is, to a dimensionless point. This simplification suffices for most conventional
applications, but a more realistic approach to the biomass distribution across an area of
interest may be required for other purposes. For example in forest fire behavior and risk
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modelling [4,5], predictions of the horizontal biomass distribution (HBD) is required for
models that predict the spread of forest fires [6]. Further, in a context of enhancing the
precision of forest biomass estimation, the HBD may gain relevance as recent simulation
studies indicate [7]. Lastly, HBD models are also relevant when field plot data on biomass
density are used in the area based approach [§] as the dependent variable in models with
remotely sensed predictors because the variance explained by the model also depends on
the match between the reference areas for field and remotely-sensed data sources.

Most studies of forest tree biomass have focused on its vertical distribution [4,5,9,10].
Although branch allometry has been considered [11], it appears that the horizontal distri-
bution of individual tree branch biomass has not previously been researched in greater
detail; the only examples that we are aware of, are from Kershaw and Maguire [11] and
from Xu and Harrington [12] who analyzed the horizontal distribution of leaf biomass,
Mascaro et al. [13] who considered a uniform distribution of aboveground biomass across
crown projection area, and Nielsen and Mackenthun [14] and Fehrmann et al. [15] who
mapped the spatial distribution of roots.

A direct approach to the estimation of a HBD will be time-consuming, costly, and in
all but a few rare cases impractical in context of a forest inventory. However, Terrestrial
Laser Scanning (TLS) has evolved as a non-destructive measurement technique producing
3D point clouds with great potential also in forestry applications due to the reduced costs
and efficiency in capturing very large amount of three-dimensional data of object locations
in a minimum amount of time. In forestry the potential of TLS to directly measure tree or
stand attributes or establishing relationships between these variables and TLS metrics is
recognized [16-22].

A TLS point cloud represents a very dense sample of visible (non-occluded) surface
areas of objects from which 3D representations of scanned objects are derived. The density
of the laser point cloud is a function of the distance from the laser scanner to the scanned
objects. Moreover, as is the case for complex objects like leaf-off tree crowns (as in our case)
parts of the objects may be occluded (invisible for the scanner because they are located
behind another structure) from a single fixed location of the TLS device. Therefore, TLS
data collection in forests requires some adaptation, both with respect to the data collection
and with respect to the data processing [17,20]. The adaptations are pre-requisite for any
attempt to generate model dependent predictions. The adaptations in the data collection
phase usually consist in combining multiple scans from different positions [16,18,21], or
controlling the distance from the scan to the object to be sampled. Regarding the use of TLS
data for forestry purposes, most studies reconstruct tree shapes from point clouds, either by
a piecewise approximation through a voxelization of space [23-27], or by three-dimensional
surface reconstruction [28-31].

The use of TLS to estimate biomass for individual trees has been intensively studied
in recent years [22,26,30,32]. Although most of these studies focus on total aboveground
biomass, the techniques used for the reconstruction of trunk and branch shape are likely
to allow also studying the distribution of branch biomass in the horizon plane. However,
previous studies indicate that algorithms based on simple geometric fitting have problems
in the reconstruction of branches smaller than 7 cm [27,33], and in general in those parts
of the crown with occlusions. Previous studies also show tendencies to overestimate the
biomass of fine branches when using pure geometrical fitting approach techniques [26,32].
Therefore, other approaches need to be developed to ensure an unbiased estimation and
an adequate spatial representation of the horizontal distribution of branch biomass. The
use of TLS data for the construction of a proxy for the distribution of a target attribute
within individual trees or stands (i.e., [34]) represents a new direction for TLS applications
in forestry.

The goal of this study is to build a model for individual tree branch HBD from
destructively sampled data, and to evaluate the potential of a TLS data metric to serve as
an expedient and cheaper proxy of an otherwise costly and impractical empirical HBD.
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2. Materials and Methods
2.1. Destructive Biomass Measurements

We destructively measured 23 sample trees from a 38 year old beech stand which
is part of the Forest Botanical Garden and Arboretum of the Faculty of Forest Sciences
and Forest Ecology at Georg-August-Universitidt Gottingen (Lower Saxony, Germany:
51°33/20.2"N 9°57'46.7"E). The trees were not pruned, and branching patterns developed
under natural conditions. The 23 sample trees used were subjectively selected so that
they covered the dbh range of the stand, did not show any signs of crown damage, had
developed single stems, and belonged to the dominant and co dominant layers. Suppressed
trees were avoided in the selection process. One of the selection criteria was that the trees
could be felled without causing damage to the branches. The study stand had on average
3984 trees-ha~! larger than 5 cm in dbh, a dominant height of 15.9 m, a total basal area
of 37.6 m?-ha~! (37.0 m?-ha~! of beech), and an average slope of 17% with south-east
exposure. Other forest inventory characteristics of the study stand are presented in Table 1.

Table 1. Statistics (1) of the stand from where the sample trees were taken (estimates, obtained from an inventory with

n = 6), (2) of the trees for which the horizontal branch biomass distribution was measured after felling (n = 23) and (3) of the

subset of 17 trees analyzed by terrestrial laser scanning (TLS) (dbh stands for diameter at breast height, & for total tree height

and SD for standard deviation).

dbh (cm) h (m) Crown Ratio CR Crown Diameter CD (m)

Range Mean SD Range Mean SD Range Mean SD Range Mean SD
(1) Whole stand 5.0-23.9 10.3 3.7 6.3-21.1 11.6 2.0 - - - - - -
(2) Empirical data 9.2-20.6 14.0 3.0 13.3-21.1 17.7 22 0.437-0.814 0.612 0.082 1.84-9.28 3.73 1.65
(3) TLS 9.2-20.6 14.3 3.1 13.9-21.1 17.8 2.2 0.437-0.814 0.617 0.087 1.84-9.28 3.85 1.82

The sample trees were felled and measured in the winters of 2014 /2015 (6 trees) and
2015/2016 (17 trees) in leaf-off state. All 23 sample trees were measured and destruc-
tively sampled to characterize the horizontal branch biomass distribution, while only the
17 trees in the second measuring survey (2015-16) were also scanned by TLS before cutting
them into pieces. Summary statistics of the sample trees are in Table 1. The following
measurements were made at each tree: the dbh of 23 all standing sample trees was measured
to the nearest mm with a diameter tape; total height (/) and height of the first live branch
were determined to the nearest dm with a clinometer; crown diameter (CD) was measured
to the nearest cm with measuring tape and clinometer (to generate the zenithal directions);
the crown ratio (CR) was calculated as the ratio between live crown length and /, where
the lower end of the crown was defined by the insertion point in the stem of the first live
branch. The trees were then carefully felled to avoid damaging the branches. For each first
order branch (i.e., the branches originating from the stem) longer than 20 cm, the following
variables were measured directly in the field: the distance from the stump height to the
height of branching node (bh); the branch length (bl); the branch diameter (bd), measured
perpendicularly to the branches ” axis at the closest possible position to the stem; and the
vertical branch angle («) (Figure 1A). The height of branching nodes bk and branch lengths
bl were determined with a tape (mm resolution), branch diameter was measured with a
precision caliper (0.01 mm resolution), and branch angle was determined with a digital
goniometer (°). Measurement of the branch angle at the stem was necessary to estimate
the horizontal position of the first order branches. In a simplified method, and to make
measurements practicable, we assumed that first order branches were “flat” and extended
from the stem to its end with all side-branches in a single plane (Figure 1B) defined by the
vertical branch angle «, that is: the branch curvature or bending was not considered. An
illustration of the measurements made in each sample tree is shown in Figure 1A. All first
order branches shorter than 20 cm were assumed to have a value of « corresponding to the
mean « of all first order branches longer than 20 cm.
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Figure 1. Illustration of (A) the measurements made for each sample tree before felling, and (B) for
individual branch measurements. dbh = diameter at breast height, /1 = tree height, bh = branch height
at the stem, bd = branch base diameter, bl = branch length, and « = vertical branch angle.

For biomass measurements, all first order branches were cut and laid flat on a large
plastic sheet on which concentric circles were drawn in steps of 20 cm radius so that the
branch base (first order branching node) was located at the center of the circle (Figure 1B).
Starting from the outer end, twigs and side-branches were cut consecutively into 20 cm
circular rings defined by the outer radius of the ring. Fresh biomass was weighed in all
branch elements within a circular ring with a digital scale, to the nearest gram. Composite
samples of branches were then randomly collected for each 20 cm circular ring to predict
wood dry matter after oven drying at 105 °C until constant weight. The biomass in each
circular ring of each branch in the tree was then projected to the horizontal plane by
using the branching angle « as measured before cutting the branch. By assuming that the
horizontal distribution of crown biomass in radial direction is the same for all orientations
in the horizontal plane (isotropic), we disregarded both a possible asymmetry of the
crown projection shape and possible differences in biomass distribution over the horizontal
angular range of 0 to 360° around the stem. The distribution of the total branch biomass for
a given tree was obtained by projecting, branch by branch, the biomass observed at each
circular ring.

2.2. Modelling the Individual Horizontal Woody Branch Biomass Distribution

The empirical biomass data resulting from the approach described in Section 2.1
allowed us to depict and model the individual tree branch biomass distribution as a
function of the horizontal distance from the stem. The empirical branch biomass density
and the crown radius were standardized and grouped into 20 classes of relative crown
radii (rcr) for each tree. The observed horizontal branch biomass distribution for the
23 destructively sampled beech trees is shown in Figure 2, showing the same basic shape
with some variability.

We fitted a horizontal biomass distribution model by the ordinary least squares (OLS)
method with the rcr as the only predictor variable. The segmented polynomial model with
a unique inflection point proposed by Max and Burkhardt [35] was used. This model has
been developed and successfully applied to model stem taper curves and was selected
due to its flexibility and because the pattern observed in Figure 2 is similar to the pattern
observed in the relative diameter-relative height relationship of the stem taper curves
(e.g. [36-38]). In Section 4 we argue about alternative model formulations that could be
used to model the horizontal biomass distribution.
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Figure 2. Observed horizontal branch biomass density over relative crown radii (rcr) for the 23
destructively sampled beech trees.

Goodness of fit was evaluated by means of the pseudo-coefficient of determination
(R?") and the root mean square error (RMSE), as previously described in Pérez-Cruzado
et al. [39]. The formulation of the segmented polynomial model proposed by Max and
Burkhardt [35] is as follows:

0.5
w = <b1~(rcr — 1)+ by (1’cr2 - l) + b3-(a — rer)* max((iu—rz;), 0)> +e (1)

where w is the standardized branch biomass density at the relative crown radii rcr; a is the
inflection point to be estimated; by, by, and bs are the coefficients related to the polynomial
terms to be estimated; and ¢ is a random error term.

As the data contain multiple observations (20 classes of relative radii) for each tree,
autocorrelation within the residuals of each individual is expected, violating the assumption
of independent error terms. An autoregressive error structure was therefore included in
the model to account for autocorrelation. We used the Durbin—-Watson test [40,41] to test
for the presence of autocorrelation and evaluated the order of the autoregressive term by
graphing the residuals against different lag residuals.

It is important to note that the horizontal branch biomass distribution has been
standardized and, therefore, the model fitted does not immediately estimate absolute
biomass values but its distribution only. For application to specific trees, the total branch
biomass must therefore be predicted from other models, and the absolute biomass is then
distributed along the standardized model identified.

2.3. TLS Data Collection and Processing

We scanned a subset of 17 trees in the measuring campaign in 2015/2016 using the
Trimble® TX5 3D laser scanner with a scan resolution of 177 Mpts per full scan, resulting in
a scan duration of 3:35 min and a point spacing of approximately 3 mm at a distance of 10 m.

Analysis of terrestrial scans of individual trees in dense stands is extremely difficult
because of overlapping crowns and the challenge of segmenting individual trees from
the resulting point cloud. To avoid these challenges, after careful felling to avoid crown
damages and before doing the destructive measurements described in Section 2.1, the trees
were first brought to an open space where they were placed upright in a tailor-made tree
holder (Figure 3A,B). Each tree was then scanned from five positions at constant horizontal
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distances of 10 m from the tree stem and distributed regularly (72°) around the tree
(Figure 3C). The multi-scan TLS approach should reduce the occlusion problems that occur
for complex objects like leaf-off tree crowns (as in our case) parts.

@ Target

v Tree

Figure 3. A subset of 17 sample trees was carefully felled and re-erected (A) in an open space in (B) a tailor-made tree holder.
These sample trees were then scanned (by TLS) using the scan and target locations as illustrated in (C).

The five single scans were merged to a multi-scan single point cloud using the soft-
ware Trimble Realworks®. For the target-based registration process, we used 8 artificial
registration targets placed at a horizontal distance of 12 m from the tree holder and dis-
tributed regularly (45°) around the tree (Figure 3C). The maximum registration error was
less than 5 mm.

The laser returns of the individual trees were manually extracted in the software
CloudCompare® to remove returns from objects other than branches (Figure 4A). In a next
step, the stems were manually deleted (Figure 4B). To remove noise, we used the Cloud-
Compare’s “statistic outlier remover” SOR (PCL, 2011) (Figure 4C). Lastly, for graphical
representation and modelling, the origin of the Cartesian grid system (x, y, z) was set to
the stem position and the Z axis was aligned with the stem axis visually for each tree. For
ellipsoidal-shaped crowns in the horizontal plane, the semi-minor and semi-major axes
were aligned visually with the X and Y axes.

Figure 4. (A) Merged single tree point cloud. (B) Point cloud with stem axis removed. (C) after
noise removal.

2.4. A New TLS Metric to Approximate Branch HBD

Empirical data collections, as described in Section 2.1, are extremely time consuming
and expensive. For reference, the average time spent on destructive sampling per tree used
in this study was four working days for two persons. To approximate the branch HBD,
we developed a new TLS-based metric that we name Standardized Composite Histogram
(SCH), which is generated from the crown laser returns. SCH is derived from the histogram
of crown returns as a function of the horizontal distance to the stem axis, where, however,
some adjustments were necessary:
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1.  The outer parts of the crown receive more hits than the inner parts.

2. After having removed the returns from the stem, as described in Section 2.3, the first

order branches do not, of course, emerge directly from the one-dimensional stem axis

but at a certain distance—the stem radius—which becomes smaller towards the top

of the tree, as shown in Figure 4.

The outermost branches occlude the inner part of the crown.

4. The stem axis does not follow a perfect upright straight line and it has not been
perfectly vertically erected on the stem center on the ground.

@

These four factors generate empty spaces with no returns in the position of the stem
(see Figure 5), resulting in an undesired distribution of hits, which the computation of SCH
is expected to solve.

Il \

Figure 5. Schematic representation of the branches in the crown, projected onto a horizontal plane,
where we assumed an ellipsoidal shape of the crown projection with the semi-axes centered at
the stem axis and thus defining four quadrants (I-IV). The returns in the surface of the stem were
manually removed.

To calculate the metric SCH, we projected the TLS returns to the horizontal plane
and divided the point cloud in four quadrants as illustrated in Figure 5. This allowed to
generate homogeneous groups regarding distance from the stem axis to the outermost
crown projection, and reduces the effect of severe crown asymmetries in the horizontal
plane. Separate histograms were produced for each quadrant and we later combined the
four histograms into a single composite histogram. The objective of this procedure was
reducing the effect of unbalances in occlusions among different parts of the crown. We
assumed an ellipsoidal shape of the crown projection area, where the semi-major and
semi-minor axis are aligned with the maximum and minimum distance among returns in
the outermost point cloud projected in the horizontal plane as illustrated in Figure 5.

In the following, we describe step-by-step how to generate the Standardized Compos-
ite Histogram (SCH):

1.  The horizontal distance to the stem axis (o) was calculated for each individual re-
turn by transforming the Cartesian coordinates of the original TLS point cloud to
cylindrical coordinates (p, ¢, z) with ¢ = azimuth and z = height:

p=ya2ty @

2. The crown returns were classified according to the four quadrants defined by the
X and Y Cartesian coordinates in the horizontal plane (see Figure 5), and separate
histograms were produced in each quadrant in 1 cm steps of p.

3. From steps one and two, the distribution of TLS returns can be determined for each
quadrant. The starting point for each quadrant (pstarT) was set to half of the range in p
between 0 and the center of the bin with maximum observed frequency (Figure 6A,B).
The entire histogram was then moved to the left by setting pstarT as the starting point
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of the histogram (Figure 6C). The order for the k bins at the left of pstarT Was inverted,
and the counts summed to the first k remaining bins (Figure 6D,E) so that the total
number of hits captured in the distribution remained the same.

4. The resulting histograms for each quadrant (Figure 6E) were combined into a single

histogram and then standardized in p relative to the maximum p across all quadrants.
This is what we finally refer to as the standardized composite histogram (SCH).

5.  The SCH was then grouped into new classes of relative p, and the counts were

standardized with the total number of counts over all p classes.

P
B)z
b
> PSTART
@ '
LSI: ' me\x:
L2
AV ! 5
C)z
g
3
/E/\
P
D)z
[ =
g
3
Lt <\
P
E)z
C
e
3
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Figure 6. Schematic representation of the computation of the standardized composite histogram
(SCH) from the point cloud in the horizontal plane, conducted for each quadrant separately and
subsequently combined (see text for explanation of histograms (A-E)).

2.5. Evaluation of the TLS Metric SCH

To evaluate SCH to be used as a proxy for branch HBD, we first needed to adjust
a model to the distribution of the TLS returns and then compare it to the empirical dis-
tribution from 2.1 which we use as a reference distribution. We fitted a non-parametric
local polynomial regression (LOESS) model to both the empirical data from 2.1 and the
TLS-based SCH metric, by using a smoothing parameter («) of 0.75. The 95% confidence
intervals were estimated for both the empirical data and the SCH metric: the overlap
between these confidence intervals was used to assess their similarity and, therefore, the
suitability of the SCH metric for use as a proxy for the branch HBD. The SCH metric
was then calibrated to provide a better representation of the empirical data by computing
the tree by tree differences between the raw SCH metric and the empirical data, and by
then modelling these differences by LOESS. The possible need for this correction is raised
because SCH is a metric of surface area, whereas HBD is about volume and biomass of
(most likely) cylindrical shaped branches. We did not test tree-by-tree similarities in the
empirical and SCH metric density functions as we were only interested in how the global
empirical distribution was represented by the SCH metric. Statistical analyses and all
computations were executed in R [42].
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3. Results
3.1. Empirical Branch HBD

The empirical horizontal branch biomass distribution estimated from the 23 destruc-
tively sampled trees is shown in Figure 7. As expected, the distribution follows an inverse
J shape, with most of the branch biomass close to the stem. To some extent, the shape of
these curves resembles that of the stem taper curves. The branch biomass is very variable,
particularly closer to the stem—where the major portion of biomass occurs—and becomes
smaller towards the crown edge where thinner branches dominate (Figure 7).

025
|

Standardized biomass density
0.20
1

0.05
|

0.00
|

0.0 02 04 06 08 1.0

rer

Figure 7. Observed horizontal branch biomass distribution for the 23 destructively sampled beech
trees (grey lines); the distribution of the average tree obtained using a non-parametric local regression
(LOESS) with a smoothing span « = 0.75 (red line); and the fitted Max and Burkhart [35] segmented
model (black line).

The segmented model proposed by Max and Burkhart [35] was initially fitted without
expanding the error terms to account for autocorrelation. The Durbin-Watson test, however,
indicated a significant positive serial correlation (4 = 1.284). Graphs of residuals against lag
residuals suggested the need to include a third-order autocorrelation term AR(3). After
correcting for autocorrelation using the proposed error structure, the trends in residuals
against lag residuals disappeared, and the Durbin—-Watson test (d = 2.063) indicated the
absence of significant correlation. The values of the goodness-of-fit statistics (R*" = 0.922
and RMSE = 0.00015) indicated a good fit, and all of the parameters simultaneously con-
tributed to statistically significantly improving the quality of the fit of the model to the data
(Table 2). Figure 7 (black line) illustrates the overall satisfactory fit.

Table 2. Parameter estimates for the horizontal branch biomass density distribution, where rho
represents the estimated autocorrelation parameter.

Model (n = 460) Parameter Estimate Std. Error
Global model (Equation (1)) b —0.0047 0.0014
by 0.0024 0.0007
b3 0.0366 0.0026
a 0.6654 0.0208
rho 0.3584 0.0436
Generalized model (Equation (2)) by —0.0053 0.0014
b, 0.0027 0.0007
b1 0.0679 0.0098
b3y —0.0497 0.0142
a 0.6541 0.0213

rho 0.3429 0.0440
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To analyze the effect of each individual tree on the parameter estimates a, by, by,
and b3 of Equation (1), we fitted the model independently for each of the 23 trees. The
parameter estimates for b3 were very variable, with a coefficient of variation of 427.5%.
Analysis of the correlation coefficients between the b3 parameter estimates and the main
tree variables indicated a positive correlation with the crown ratio; we therefore generalized
the base model (Equation (1)) by including a linear relationship of the parameter b3 with
the crown ratio (CR) to finally obtain Equation (3) for the empirical branch biomass density
distribution model:

w = (by-(rer — 1) + by- (rer? — 1) + (b3y + bap-CR)-(a — rer)*-

max%l(la rz%) 0) )0 54 ¢,

®)

where w is the standardized branch biomass density at the relative crown radii rcr; CR is the
crown ratio; a is the inflection point to be estimated; by, by, b3 and bs; are the parameters
related to the polynomial terms to be estimated; and ¢ is a random error term.

The generalized model explains 92.4% of the observed variability of the standardized
branch biomass density (w) with a RMSE value of 0.000149, which is a 2.6% reduction
relative to the original Equation (1). The value of the Durbin-Watson test was d = 2.062,
indicating absence of significant autocorrelation after including the AR(3) structure in
the model. All the parameters simultaneously contributed to statistically significantly
improving the quality of the fit of the model to the data at a 5% level and the visual analysis
of the residuals did not show any anomalous trend (Figure 8). The parameter estimates
and the goodness of fit statistics are shown in Table 2.

8
=
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S | ° ’
2 .
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0.025 0.125 0.225 0.325 0425 0525 0625 0725 0.825 0.925

Radius classes

Figure 8. Residual variability of horizontal branch biomass distribution per relative crown radius
(rcr) class, where the dashed blue line corresponds to zero. The width of the radius classes is 0.05, and
the midpoints are indicated by ticks on the x-axis. The same 20 classes of rcr have been considered as
for Figures 2, 7 and 9.

3.2. The SCH TLS Metric as a Proxy for the Branch HBD

Figure 9 illustrates the SCH metric built from the distribution of crown returns re-
sulting from the TLS. The average number of returns per sample tree crown was 834,045
(5D =390,296). The standardized return density obtained for the 17 scanned trees showed
a similar horizontal branch biomass distribution to that obtained by destructive sampling
(Figures 2 and 7).
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Figure 9. Standardized composite histogram (SCH) of the crown hits from TLS for the 17 scanned
sample trees (grey lines). The red line represents the mean values obtained by LOESS.

For a more objective analysis of this similarity, we generated the 95% confidence
interval bands around the LOESS models for both the empirical data and the TLS-based
metric SCH. The original data overlap with the raw values of the SCH metric (Figure 10A),
although systematic deviations were found with the TLS-based model underestimating the
biomass closer to the stem and overestimating the biomass towards the crown edge. This
is probably due to the scanning geometry, which causes branches at the outer parts of the
crowns to produce fewer scan occlusions than those closer to the stem. These differences
were successfully corrected by modelling the differences with the empirical data by LOESS,
as illustrated in Figure 10B.

A B

Standardized density
0.10 0.15
1 1
Standardized density
0.10 0.15
1 1

0.05
1
0.05
1

Figure 10. Comparison of the empirical horizontal branch biomass distribution (black) with (A) the
original Standardized Composite Histogram obtained from Terrestrial Laser Scanning data (red) and
(B) the Standardized Composite Histogram obtained by TLS data adjusted with the empirical data.
The solid lines represent the mean local regression trends (smoothing span « = 0.75) and the shaded
areas represent the 95% confidence intervals.

Overall, the results indicate that the proposed SCH metric may be used as a proxy for
the empirical branch biomass distribution, albeit adjustments were required.
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4. Discussion

The individual tree horizontal biomass distribution is a basic element required to
generate horizontal forest biomass distribution for application in forest inventory for
biomass from fixed-area plots [7], and alike applications. It will also be of interest for
remote sensing-based modelling of forest biomass when matching field plot biomass to
remotely sensed data, as well as for many other ecological and forest management stud-
ies [7]. In the absence of available models as of yet, we chose two empirical pathways
to construct our own models: (1) a destructive study of 23 trees and (2) combining the
destructive sampling study with TLS which may help to increase sample size in a cost-
efficient manner. All trees were beech trees of relatively small dimensions (dbh between
9.2 cm and 20.6 cm), with single stems and no irregularities. As both pathways yielded
similar models whose shape resembles that of stem taper curves, we used well-known
techniques to fit stem taper models. We observed correspondence between our TLS-based
SCH metric and the empirical horizontal branch biomass distribution so that the presented
TLS-based SCH metric bears potential for a rapid and straightforward approach to approx-
imate the individual branch HBD, or to increase sample size in a cost-efficient manner.
The similarity to taper curves was not surprising, as branch allometry has been reported
to resemble stem allometry [43], because the crown horizontal biomass distribution is
considered to be the sum of the biomass allocation in many branches constituting the
crown (although with a multitude of geometrical arrangements), one may expect that the
overall horizontal branch biomass distribution will have similar characteristics.

The fitting statistics of the model finally developed (OLS model) were similar to those
obtained for taper curves [44-50], indicating the overall suitability of the model. The
authors opted for the OLS model instead of others which are expected to yield improved
goodness-of-fit statistics. This is the case for fitting subject (tree) specific models including
random parameters by subject by using nonlinear mixed models (NME model). The
main disadvantage for the NME model is the operational use, as the random parameters
estimation for a new tree would require horizontal branch biomass density over relative
crown radii (rcr) data, which is time-consuming to gather. When this information is not
available, the NME model can still be used to estimate horizontal biomass from the fixed
parameters of mixed-effects model, by assuming the random parameters are equal to zero
(mean approach, M) or by computing mean predictions from the mixed-effects models over
the distribution of random effects (population average approach PA). There is substantial
evidence in the literature that prediction errors are greater for the M and PA approaches
than for the OLS approach, and therefore, from the prediction point of view, the use
of the mixed-effects models is not recommended when subject specific measurements
are not available (e.g. [37,42—47]). Furthermore, although it is highly likely that there are
random tree effects in the modelled relationship, it may lead to non-constant among-subject
variances in the NME model. This is because tree effects are expected to be size-dependent,
and then the NME model would be heteroskedastic caused in part by an error variance
and a subject variance that may both depend on tree size (but not necessarily with identical
dependency structures). Due to the above reasons, we opted for the OLS model.

The approach may be valuable for deriving the density function of the horizontal
branch biomass distribution directly from basic geometric considerations of crown architec-
ture, under the assumption that branching patterns are self-similar fractals. Our approach
of directly adjusting the horizontal distribution of branch biomass is novel. It has the
advantage over previous work that it does not require the use of voxel-based algorithms or
3D shape reconstruction [16-18,22,26,29-31]. Furthermore, this technique allows a good
approximation of the biomass of small branches by TLS measurement, which has been
found to be problematic in previous work [27,33]. This methodology ensures compatibility
in individual tree-level estimates of total branch biomass with biomass equations. This
is because the height of the distribution can easily be adjusted to ensure that the volume
below it matches the branch biomass for a given tree, as described in Kleinn et al. [7].
Although our empirical approach of felling trees and re-erecting them in an open space
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for laser scanning and subsequent section-wise weighting of branch pieces enabled us to
build first models from direct measurements (not only scans etc.), it is not operationally
applicable to larger and irregular trees. However, in situ scans of selected trees by felling all
surrounding trees may be an operational alternative for extending this study to non-easily
handled tree dimensions. The results obtained in terms of correction of the SCH metric
show that it is feasible to extend this study to other species or larger tree sizes by combining
TLS scans and destructive analysis.

For our model of tree HBD we assumed (1) a circular crown projection area (2) around
a perfectly upright stem which is easy to work with but not very realistic. However, any ad-
ditional refinement of crown projection area assessment will have associated measurement
cost. (3) The third assumption is isotropy: we assumed that in each vertical half plane laid
through the stem axis the relative distribution of biomass will be the same. While some
symmetry is logically required to guarantee physical stability of trees, perfect isotropy
is a simplification. However, at this moment, we do not see how this assumption could
operationally be replaced by a more realistic assessment in a field inventory context, unless
laser scanning becomes much faster, cheaper and more accurate in terms of immediate
reconstruction of tree crowns.

5. Conclusions

The following conclusions may be drawn from the study. First, the horizontal branch
biomass distribution has been empirically described and modelled with model formula-
tions known from taper curves; the fitting statistics of the resulting models were similar to
those obtained for taper curves. Second, we derived a TLS-based metric named Standard-
ized Composite Histogram (SCH) as a proxy of branch Horizontal Biomass Distribution
(HBD); we observed correspondence between the SCH metric and the empirical HBD,
indicating a possible way of increasing the efficiency in developing HBD models by com-
bination of empirical measurements and TLS scans in some sample trees, and only TLS
scans in a larger sample. Finally, considering the promising results obtained under the
optimal scanning conditions of this study, further evaluation of the effect of factors such as
taking TLS data with occlusions or reducing the number of scans on the performance of
the proposed methodology would be relevant.

This first model of the horizontal distribution of crown biomass may support the
improvement of precision of estimating biomass from field sampling (as recently illustrated
in Kleinn et al. [7]). Further, we expect that remote-sensing-based models to predict biomass
may benefit from the geometrically more specific determination of the plot biomass when
applying the HBD to all sample trees within a fixed area plot.
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