
remote sensing  

Article

Bio-Inspired Hybridization of Artificial Neural Networks:
An Application for Mapping the Spatial Distribution of Soil
Texture Fractions

Ruhollah Taghizadeh-Mehrjardi 1,2,3,* , Mostafa Emadi 4, Ali Cherati 5, Brandon Heung 6, Amir Mosavi 7,8,9

and Thomas Scholten 1,3,10

����������
�������

Citation: Taghizadeh-Mehrjardi, R.;

Emadi, M.; Cherati, A.; Heung, B.;

Mosavi, A.; Scholten, T. Bio-Inspired

Hybridization of Artificial Neural

Networks: An Application for

Mapping the Spatial Distribution of

Soil Texture Fractions. Remote Sens.

2021, 13, 1025. https://doi.org/

10.3390/rs13051025

Academic Editor: Eyal Ben-Dor

Received: 24 January 2021

Accepted: 4 March 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geosciences, Soil Science and Geomorphology, University of Tübingen,
72070 Tübingen, Germany; thomas.scholten@uni-tuebingen.de

2 Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan 8951656767, Iran
3 CRC 1070 Ressource Culture, University of Tübingen, 72070 Tübingen, Germany
4 Department of Soil Science, College of Crop Sciences, Sari Agricultural Sciences and Natural

Resources University, Sari 4818168984, Iran; mostafa.emadi@sanru.ac.ir
5 Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and

Education Center, AREEO, Sari 4849155356, Iran; a.cherati@areeo.ac.ir
6 Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University,

Halifax, NS B3H 4R2, Canada; brandon_heung@dal.ca
7 Department of Ecology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;

amir.mosavi@mailbox.tu-dresden.de
8 Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany
9 School of Economics and Business, Norwegian University of Life Sciences, 1430 Ås, Norway
10 DFG Cluster of Excellence “Machine Learning”, University of Tübingen, 72070 Tübingen, Germany
* Correspondence: ruhollah.taghizadeh-mehrjardi@mnf.uni-tuebingen.de

Abstract: Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that in-
fluences most physical, chemical, and biological properties of soil; furthermore, reliable spatial
predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial
neural network (ANN) models with bio-inspired metaheuristic optimization algorithms such as
a genetic algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and
monarch butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the
Mazandaran Province of northern Iran. In total, 1595 composite surficial soil samples were collected,
and 64 environmental covariates derived from terrain, climatic, remotely sensed, and categorical
datasets were used as predictors. Models were tested using a repeated 10-fold nested cross-validation
approach. The results indicate that the hybridized ANN methods were far superior to the reference
approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the MBO-
ANN approach was consistently determined to be the best approach and yielded the lowest error and
uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% for clay, 10%
for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil types, geology
maps, rainfall, and temperature were the most important predictors of PSFs, followed by the terrain
and remotely sensed data. This study demonstrates the effectiveness of bio-inspired algorithms
for improving ANN models. The outputs of this study will support and inform sustainable soil
management practices, agro-ecological modeling, and hydrological modeling for the Mazandaran
Province of Iran.

Keywords: spatial distribution; particle size fractions; evolutionary algorithms; sub-humid regions;
hybrid machine learning; artificial intelligence; big data; data science

1. Introduction

Soil texture is one of the most critical physical properties of soil and is classified based
on the relative proportions of sand, silt, and clay. These individual particle-size fractions
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(PSFs) are a type of compositional soil data and have important impacts on the behavior
of other physical, chemical, and biological properties of soil; furthermore, it is a major
control of soil fertility [1–4]. For example, the buffering capacity of soils [5], fertilizer
application rates [6,7], soil carbon maintenances [8,9], and taxonomic-based diagnostic
horizon definitions [10] are greatly dependent on soil PSFs and textural classes. Moreover,
soil PSFs are the most widely used input for developing pedotransfer functions, which are
used to predict soil characteristics that are difficult to measure, which are in turn used for
hydrogeological, erosion, and environmental modeling purposes [11–14]. Hence, providing
high-resolution spatial data related to soil PSFs is of great interest to researchers.

Globally, soil surveying practices have largely transitioned towards the use of digital
soil mapping (DSM) approaches as a means to reduce the cost and time required to develop
soil maps and leverage the advances in modern technologies related to computing, remote
sensing (RS), machine learning (ML), and geographical information systems. Within a
DSM framework, different statistical methods are used to infer the relationships between
soil response variables (e.g., soil texture and PSFs) and a suite of environmental covariates
to predict soil variability in unsampled locations. Typically, these environmental covariates
may be derived from digital elevation models (DEM), geomorphological data, climatic
data, and RS data for predicting PSFs [11,15,16].

The use of ML models has become increasingly prevalent for predicting the spatial
distribution of soil properties. When predicting soil PSFs, various ML-based DSM studies
have included the use of artificial neural networks (ANNs) [17–21], boosted regression tree
(BRT) [19,22,23], Random Forest (RF) [18,24], and artificial neuro-fuzzy inference system
(ANFIS) [16,25]. Despite the variety of ML models that a DSM practitioner may apply,
existing literature does not seem to suggest that one model is universally better than
others; furthermore, model comparison studies have shown that different models have the
potential to generate drastically different outputs when given the same input data [26].

When predicting PSFs, however, ANNs have been shown to be particularly effective, and
they are the most widespread approach due to their accuracy and flexibility [17–21]. However,
this model has several considerable shortcomings, such as inconsistent architectures for
different applications, coupled with the process required to tune and fit a neural network,
which is a time-consuming procedure that is largely based on trial and error [27,28].
Conventionally, ANNs have been fitted using a backpropagation (BP) algorithm; however,
state-of-the-art approaches using bio-inspired, metaheuristic, optimization algorithms
have become increasingly prevalent, including the genetic algorithm (GA) [29], particle
swarm optimization (PSO) [30], ant lion optimization (ALO) [31], spotted hyena optimizer
(SHO) [32], binary spring search algorithm (BSSA) [33], grey wolf algorithm (GWO) [34],
genetic optimization resampling based particle filtering (GORPF) algorithm [35], and ant
colony optimization (ACO) [16]—all of which may be hybridized with ANNs to address
the aforementioned disadvantages.

The separate estimation of each particle size class does not guarantee that the sand, silt,
and clay percentages will sum to 100% for all predicted locations. To reduce the uncertainty
and unreliability in spatially predicting PSFs, soil PSFs must be treated as compositional data
(i.e., sum to a constant value) [3,12,14]. To address this, different types of transformations
include the additive, centered, and isometric log-ratio transformations [12,14]. A unique
feature of the ANN model is its ability to use a softmax transform function in the output
layer. The softmax function, also known as a softargmax or a normalized exponential
function, is very similar to the additive log-ratio transform, which ensures that the sand,
silt, and clay fractions sum to unity [12].

Within the DSM literature, the use of these optimization techniques is limited, and
a comprehensive comparison has yet to be carried out on individual soil properties—in
particular, compositional soil data, such as PSFs. Hence, the main objectives of this study
were: (1) to develop and test the performance of metaheuristic, optimization algorithms
that were hybridized with ANNs for predicting soil PSFs using existing soil survey; (2) to
rank the explanatory power of individual environmental covariates for predicting the
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distribution of soil PSFs for a case study in northern Iran; and (3) to map the spatial
distribution of soil PSFs and soil textural classes at a provincial scale. This study was carried
out in the Mazandaran Province of northern Iran, which is an agriculturally significant
region with intensive crop production and diverse soil types. Due to the nonuniform
impacts of the soil forming factors, coupled with the unique eco-hydrological characteristics
of the area, the surficial soil texture is highly diverse across the province.

2. Materials and Methods
2.1. Study Area

The Mazandaran Province located in the northern region of Iran, within 50◦31′21′′ E
to 53◦56′52′′ E longitudes and 36◦38′06′′ N to 36◦54′59′′ N latitudes, has an areal extent of
23,833 km2 (Figure 1). Forestlands, rangelands, croplands, and orchards are the dominant
landcover types, occupying 46%, 24%, 10% and 4% of the total area, respectively. The
soils of the province are mostly fertile and, due to the suitable climatic conditions, play
a significant role in producing various crops (e.g., rice, wheat, and corn) and fruit trees
(e.g., citrus and kiwi) in Iran. The elevation ranges from <5 m above mean sea level
in the northern region, along the shoreline of the Caspian Sea, to >3000 m above mean
sea level in the southern region, along the Alborz Mountain chains. According to the
De Martonne methodology for climate classification [36], the Mazandaran Province is
described as having a mixture of very humid, humid, Mediterranean, and semi-humid
climatic conditions. Within the province, the rainfall in the eastern part is about 400 mm
and increases along a westward gradient to 1400 mm; hence, the soil moisture regime
is classified as xeric, ustic, and udic along that same gradient. The predominant soil
temperature regime class is classified as being thermic and followed by mesic and cryic [37].
The most important soil environmental factor, which influences the soil development and
variability at the provincial scale, is climate, followed by the relief, parent material, and
vegetation, which control local-scale soil variation [38,39]. The dominant physiographic
unit in this landscape are mountains (76%), followed by piedmont plains (6%), flood plains
(6%), flood basins (5%), hills (2%), alluvial plains (2%), plateaus (0.2%), and alluvial fans
(0.2%); in addition, miscellaneous land types occupy 3% of the total area. The main soil
orders include Mollisols (39%), Entisols (17%), Inceptisols (7%), Alfisols (5%), and Ultisols
(0.002%) and the remaining parts of the landscape consist of rocky outcrops, badlands, and
waterbodies (32%).

2.2. Soil Data

The soil texture data for this study were acquired by the Mazandaran Agricultural
Research, Education and Extension Organization (AREEO) in Sari, Iran and consists of 1595
surficial soil samples collected between 2014 and 2018. All samples were collected from the
0–20 cm depth increment and their corresponding geographical coordinates were recorded
using a global positioning system (GPS) device. Apart from those samples that were
randomly sampled in uncultivated areas, more than half of the samples were acquired from
croplands and orchards using a gridded sample design with a 2 km × 2 km grid spacing
(Figure 1). All samples were air-dried and passed through a 2 mm sieve for measuring the
PSFs using the Bouyoucos hydrometer method [40]. A computer program was used for
converting the PSFs to soil textural classes based on the classification system of the United
States Department of Agriculture (USDA) [41].
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2.3. Environmental Covariates

To represent the possible pedogenetic and hydro-ecological process involved in con-
trolling the spatial distribution of PSFs, a large set of environmental covariates was gen-
erated for Mazandaran Province. The four main data sources included terrain-derived
attributes, RS reflectance data, climatic characteristics, and digitized polygon maps. As tab-
ulated in Table A1, 64 environmental covariates that represented the SCORPAN factors [42]
were used to predict soil PSFs.

Geologic, soil taxonomic, and physiographic maps in the polygon format were in-
cluded as categorical covariates and the remaining 61 variables were based on continuous
data. Using the SAGA GIS software, 18 topographic covariates were derived from a digital
elevation model (DEM) at a 30 m spatial resolution. The terrain attributes included slope,
aspect, catchment area, catchment slope, channel networks base level, elevation, flow
accumulation, multi-resolution valley bottom flatness index (MrVBF) [43], topographic
openness (NegOpen and PoOpen), plane curvature, relative slope position, slope-length
(LS) factor, topographic wetness index (TWI), total insolation, upslope curvature, valley
depth, vertical distance to channel networks, and wind effect.

The 41 satellite-derived covariates were acquired based on the median values of optical
satellite data from Landsat 8 (Operational Land Imager) and Sentinel-2 imagery taken
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during 2014–2018. The individual spectral bands were used as covariates; furthermore,
additional band ratios were calculated: normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI) [44], transformed vegetation index (TVI) [45], soil adjusted
vegetation index (SAVI) [16], brightness index (BI) [46], normalized difference water index
(NDWI) [47], land surface water index (LSWI) [48], clay index [49], salinity index [50],
carbonate index [51], and gypsum index [52]. Furthermore, five datasets were acquired
from MODIS images at a 1 km spatial resolution: near-infrared (858 nm) reflectance band,
daytime land surface temperature, NDVI, SAVI, and soil brightness index. Lastly, data
representing the mean annual rainfall (mm) and mean annual temperature (◦C) data for
the 1970–2000 period were acquired at a 1000 m spatial resolution from the WorldClim
data repository to represent the climatic factors that control the soil forming process for the
region [53].

All environmental covariates were aggregated (average resampling) or disaggregated
(bilinear resampling) to a common grid of a 30 m × 30 m spatial resolution and rescaled
using Z-score standardization. With respect to the categorical covariates, they were all
transformed into dummy variables.

Selection of Environmental Covariates

A feature selection technique was applied to identify the most suitable covariates
for implementation in the model [54]. Here, a correlation-based feature selection method,
which was fully automated. Here, an optimal covariate should be highly correlated with
the soil response variables and not be correlated to any other relevant covariates [55].
The correlation-based feature selection method consists of two steps: (1) the selection of
relevant covariates; and (2) the identification and removal of irrelevant covariates from the
original database [55]. The correlation-based feature selection method removed more than
half of the environmental covariates and selected only 23 covariates. It should be noted
that the calibration and testing of the ML models was carried out based on the 23 selected
environmental covariates.

2.4. Predictive Models

The proposed ANN-based algorithms, which are among the most efficient neural
computing methods, include genetic algorithm (GA-ANN), particle swarm optimization
(PSO-ANN), bat (Bat-ANN), and monarch butterfly optimization (MBO-ANN). The train-
ing for ANN was performed with various evolutionary algorithms to unveil the most
efficient method. A multi-layered feed-forward perceptron neural network with three
main layers (one input, one hidden, and one output) was used to identify the non-linear
relationships between PSFs and environmental covariates. The neurons between the three
layers are interconnected weighted connection (i.e., synapses) [56]. By running the ANN
model, the weighted predictors from an input layer are added to a bias coefficient, and the
results pass through the transfer function in the hidden and output layers to produce an
output (i.e., PSFs). Figure 2 depicts a flowchart of the training process via the proposed
hybridization methods. In this study, 2–20 neurons in the hidden layers were tested and
the best architecture was selected considering the lowest mean squared error (MSE). In
brief, the proposed ANNs consist of 23 neurons (i.e., covariates) in the input layer and
three neurons (i.e., clay, silt, and sand contents) in the output layer. Sigmoid functions were
used as the transfer functions in the hidden layers and softmax transfer functions were
used in the output layers.
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The soil texture data are multivariate data with clay, silt, and sand fractions that
must sum up to 100%. The strict requirement of summing to 100% is not met in most
unsampled locations without pre-treatment of the PSFs data. Therefore, in this study, the
predicted sand, silt, and clay fractions in the output layer of ANNs are passed through
a softmax transfer function to address the compositional constrains [12]. The softmax
transfer function takes, as input, a vector (i.e., the predicted clay, silt, and sand fractions),
and normalizes it into values ranging from 0 to 1. whereby the vector adds up to 1. Finally,
the returned values from the softmax transfer function are multiplied by 100.

The local optima, convergence rate, and training time of the neural networks are
greatly affected by their weights and biases, thus resulting in the need for optimizing
the ANN parameters during the iteration process [57]. The hybridization of ANN with
bio-inspired, optimization algorithms has the potential to be a powerful tool, which may
overcome these challenges [28,57]. Hence, four bio-inspired, metaheuristic algorithms,
namely, GA, BAT, PSO, and MBO, were trained to predict the PSFs as the target vari-
ables. Table 1 shows the hyper-parameter settings of the four metaheuristic algorithms,
which were hybridized with ANN. The performances of these bio-inspired training algo-
rithms were compared with the commonly used backpropagation algorithm (BP-ANN)
for predicting PSFs. A brief description of each training algorithms is provided in the
following subsections.



Remote Sens. 2021, 13, 1025 7 of 23

Table 1. The hyper-parameters settings of algorithms used in this study.

Bio-Inspired
Algorithms Hyper-Parameters Defined Parameters

GA

Population size 50
Crossover rate 0.75
Cost function RMSE

Learning algorithm Levenberg-Marquardt
Activation function Tangent-sigmoid
Selection method Roulette Wheel

Generation number 100
Chromosome size 9

Mutation rate 0.06

PSO
Acceleration constants 2.1

Inertia weights 0.9–0.6

BAT

Loudness 0.5
Pulse rate 0.5

Frequency minimum 0
Frequency maximum 1

MBO

Population size 50
Maximum number of generations 100

Max walk step (Smax) 1.0
BAR 5/12

Migration period (peri) 1.2
Migration ratio (p) 5/12
Activation function Hyperbolic tangent

2.4.1. Backpropagation (BP) Algorithm

The BP neural network, which uses the Levenberg–Marquardt algorithm, is the sim-
plest in terms of implementation and is also the most popular approach used for training
neural networks [58]. BP is a type of supervised learning algorithm, which adjusts the
weights and biases according to the target value(s). BP starts by randomly selecting initial
weights and then comparing the outputs with the given target value(s) to calculate the
difference in MSE [59]. The errors are then backpropagated through the earlier layers via a
negative gradient descent direction for adjusting the weights and bias until at least one
stopping criteria is reached. The maximum number of epochs and the MSE of the network
output for each target PSFs were the two stopping criteria and were set as 500 and 0 in
this study, respectively. It should be noted that the BP algorithm is a type of hill-climbing
algorithm, whereby the algorithm may get “trapped” in local minima; furthermore, BP
algorithms also tend to overfit the data [56].

2.4.2. Genetic Algorithm (GA)

A GA is frequently used for hybridization with an ANN. This algorithm mimics the
process of natural selection and the survival-of-the-fittest for optimizing the weights and
bias of neural network connections [60]. GA commences with a random population with
individual chromosomes as solutions, whereby the genes of the chromosomes are the
random values. Each solution/generation’s conditions are calculated with fitness values to
select the parents to produce the children in the next solution/generation. Upon sequential
generations, the chromosomes of the population tend to achieve the best solutions. The
crossover and mutation are two operators mostly used by the GA algorithm to generate
new offspring. In this study, the hyperparameter settings are described in Table 1.

2.4.3. Particle Swarm Optimization (PSO)

PSO is a metaheuristic algorithm, which was first proposed in 1995 [61]. It is modeled
based on the swarming nature of insects and birds. By tuning the model parameters,
PSO algorithms are used for hybridization with different machine learning techniques—
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particularly with ANN models. To optimize an ANN with PSO, a recently outlined
procedure was used [62]. PSO starts with random populations for a given fitness function.
The individual solutions are “particles” in a population with random velocities and posi-
tions. The fitness value of particles is then calculated to get the required value for the best
fitness function. Particles adjust their movement to the best local position with the best
fitness, accompanied by other particles’ best position in global optimization. Here, the local
velocity adjustment of particles on their best fitness and the other particles’ experience is
considered in the PSO algorithm. The first step of the algorithm terminates following the
mass movement. This process is repeated until the stopping criteria are met. By changing
the particle’s position and velocity from their solution space, PSO optimizes the weights
and biases of ANN [57]. The cost function (fitness function) of the ith particle can be
defined in the terms of RMSE in Equation (1):

E(wi, bi) =

√√√√ 1
S

s

∑
k=1

[
O

∑
l−1
{Tpls− Ppls(wi, bi}2

]
(1)

where, wi is the weights; bi is the biases; E is the cost value; Tpls is the target value; Ppls is
the predicted output; O is the neuron numbers; and S is the number of training samples.

2.4.4. Bat Algorithms (BAT)

The BAT algorithm is inspired by the echolocation ability of bats in finding their prey
with global optimization [63]. The BAT algorithm begins the local position’s optimization
with random fly followed by the sequential iterations to achieve the best local solution
along with the optimum global location. Bats use echolocation for sensing the distances in
search space for a global optimum. In this algorithm, bats at a position, Xi, fly randomly
with velocity, Vi, to emit pulses at a frequency, f i, loudness, Ai, and emission rate, ri. In this
study, the minimum (fmin) and maximum (fmax) frequencies were set as 0 and 1, respectively.
Bats automatically adjust f i, and ri is changed based on the adjacency of their prey. Ai
changes between 1, as a large positive value (A0), and 0 as a minimum value (Amin). The
rules apply an initial population of bats to update Xi and Vi with initial random values of
f i for n virtual bats to select the best solution in local search with following equations:

fi = fmin + ( fmax − fmin)8 (2)

Xnew
i = Xold

i + Vnew
i (3)

Vnew
i = Vold

i + (Xi − Xbest) fi (4)

where 8is a vector with randomly generated values (0 to 1) and Xbest is the optimal local
position of current bats. Subsequently, the new solution is generated using a random walk
algorithm that selects the best local solution for a globally-optimal position of the bat in
each iteration and balancing the Ai (loudness) and ri (pulse emission rate) [63,64]. The
algorithm initiates by randomly selecting an initial population of bats, and the weights and
biases in an ANN. Afterward, the BAT algorithms assign the best solution for the output of
the trained ANN. Subsequently, by searching in local space, a new solution is generated.
Each local space with a satisfactory new solution will be substituted with an optimal global
solution. These procedures are repeated until the maximum number of iterations (e.g., 100)
is met and whereby the optimal values of weights and biases are found.

2.4.5. Monarch Butterfly Optimization (MBO) Algorithm

The MBO algorithm is a global-solving, metaheuristic algorithm with a high conver-
gence rate for high-dimensional data [65] and was initially proposed in 2019 [66]. This
algorithm mimics the migratory behavior of individual monarch butterflies between north-
ern USA (Land1) to southern Mexico (Land2). MBO initiates with random generation of
the population to form a local solution. Afterward, all populations are ranked by fitness
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functions. The ranked populations are separated into subpopulations, identified as Land1
and Land2, to consider the pre-defined fixed ratio of population p. The original popula-
tion is kept unchanged by these two operators independently and where the objective
is to simultaneously minimize the fitness functions. The migration operator generates
the new candidate solutions/individuals and is adjusted by the migration ratio using the
following equation:

xt+1
i,k =

{
xt

r1,k
xt

r2,k

r ≤ p
r > p

(5)

where xi is the position of a butterfly i; t is the generation number; k is the element of xi at
a generation of t + 1; r1 is the randomly generated position in Land1; r2 is the randomly
generated position in Land2; p is the ratio of butterfly in Lands; and ri is equal to the
product of the period (peri) parameter, which was set to 1.2, and a random number (rand)
between 0 and 1.

The butterfly adjusting operator tunes the positioning behavior of other butterflies, j,
in global best positions using the following equation:

xt+1
j,k =


xt

best,k
xt

r3,k
xt+1

j,k + ∝ ×(dxk − 0.5)

i f rand ≤ p
i f rand > p and rand ≤ BAR

i f rand > p, BAR
, (6)

where xbest is the best monarch butterfly position in Land1 and Land2; t is the current
generation number; r3 is the randomly generated from Land2; BAR is the butterfly ad-
justing ratio; dxk is kth element of the walk step; and α= (Smax/t2) is the weighing factor
with maximum walk step (Smax). The models’ weights and biases are encoded as the k
elements of a D-dimensional vectors. In the process of optimization using MBO, the initial
random weights and biases are updated at each generation with the best position of the
monarch butterflies that achieve the optimal fitness functions. Here, MBO calculates the
best weights and biases by allocating the best monarch butterflies’ positions in a forward
path and obtains the mean square error of fitness functions for ANN training. This pro-
cess periodically continues until the lowest RMSE of fitness is achieved or the maximum
generation (e.g., 100) is met.

2.5. Accuracy Assessment and Uncertainty Analysis

For evaluating the performances of the hybridized ANN models in predicting the
PSFs for Mazandaran Province, the soil data were randomly partitioned into two sets. Here,
70% of the data were randomly selected to calibrate the ANN models, and the remaining
30% of the data were used to test the models and determine the accuracy metrics. When
training the ANN models, the calibration dataset was further subdivided into training and
validating datasets, whereby 80% of the data were used to train the ANN models, and the
remaining 20% were used to validate the model. The nested cross-validation process was
repeated 10 times to account for the effects of the internal (bootstrapping) and external
randomness within the modeling procedure, thereby ensuring stability in the accuracy
metrics [67].

The metrics used to evaluate model accuracy included mean absolute error (MAE),
RMSE, coefficient of determination (R2), and Lin’s concordance correlation coefficient
(CCC), which are formulated as follows:

MAE =
1
n

n

∑
i=1
|Pi−Mi| (7)

RMSE =

√
1
n

n

∑
i=1

(Pi−Mi)2 (8)
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R2 =

 ∑n
i=1(Mi−M′)(Pi− P′)√

∑n
i=1(Mi−M′)2

√
∑n

i=1(Pi− P′)2

2

(9)

CCC =
2 r σMσp

σ2
M + σ2

p + [M′ − P′]2
(10)

where n is the number of samples in the cross-validation dataset; Mi and Pi are the measured
and predicted PSFs for each sampling points, respectively; M′ and P′ are the means for
the measured and predicted PSFs values, respectively; and σM and σp are the variances
of measured and predicted PSFs values. The model with the highest R2 and CCC and the
lowest MAE and RMSE values was determined to be the best hybridization of ANN for
predicting PSFs and soil textural classes.

For analyzing the uncertainty of hybridized ANN, the PSF maps generated by each
iteration of the models were used to calculate the mean and standard deviation (SD) of
the PSF for each pixel. Then, the confidence interval (CI) was calculated as the prediction
mean ± 1.64SD (standard deviation) for the given 90% CI. It should be noted that only the
mean of the PSF contents for each pixel is presented.

3. Results
3.1. Summary Statistics

Table 2 shows the descriptive statistics of the measured topsoil sand, silt, and clay
contents for the study area. The silt contents were the highest in this area, with an average of
45.2%, whereas the clay and sand contents were 31.4% and 23.4%, respectively. Considering
the high silt contents, the soils were typically classified as clay loam, according to the USDA
system of soil texture classification. The coefficient of variation (CV) was the highest
for sand values (63%), which indicates high heterogeneity with a wide range of sand
spread across Mazandaran Province; in contrast, clay and silt had a CV of 39% and 25%,
respectively. The sand and clay values had high variability over the study area with CV
> 35% [68], while the silt values had moderate variability (15% < CV < 35%). Regardless
of the PSFs, the mean and medium values were similar, which suggests that the PSFs
closely resembled a normal distribution and was further confirmed by the low skewness
and kurtosis.

Table 2. Summary statistics of PSFs data for the Mazandaran Province (n = 1595).

Min Max Mean Median SD CV Skewness Kurtosis

Clay
(%) 0.2 70.0 31.4 31.3 12.51 39.84 0.13 −0.57

Silt (%) 6.0 84.0 45.2 46.0 11.21 24.80 −0.27 1.04
Sand
(%) 1.0 86.0 23.4 20.0 14.68 62.73 1.21 1.50

SD, standard deviation; CV, coefficient of variation (%).

The distribution of the soil textural classes for all sample points, according to the
USDA soil texture triangle, is plotted in Figure 3. Here, the plot indicates that there was a
wide range of soil texture classes over the study area (Figure 3), which included eight out
of the 12 possible texture classes: sand, loamy sand, sandy loam, loam, silt loam, silt, sandy
clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay.
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The high variability in PSFs could be attributed to the variability in parent materials,
topography, elevations, soil weathering rates, land uses and management practices, and
other environmental elements [11]. The selective removal of particles that were <63 µm
in diameter on steep slopes in the study area via soil erosion processes may have been a
controlling factor on the accumulation of finer soil particles in the low-lying areas [69].

3.2. Accuracy Assessment and Uncertainty Analysis

The performances of the five ANN models (i.e., BP-ANN, GA-ANN, PSO-ANN, Bat-
ANN, and MBO-ANN) for predicting three components of PSFs were compared in terms of
MAE, RMSE, R2, and CCC. Once the ANN models were trained using the aforementioned
algorithms, the optimal weights and biases of each input covariates were assigned to predict
the PSFs [57,70]. Table 3 indicates the mean values of the accuracy metrics, calculated using
the testing data from the repeated, nested 10-fold cross-validation procedure. As shown
in Table 3, the accuracy of the ANN models varied amongst the different optimization
learning algorithms. In terms of R2 and CCC statistics, MBO-ANN was the most effective in
predicting clay contents with mean accuracy values of MAE = 5.6%, RMSE = 6.4%, R2 = 0.68
and CCC = 0.69. In comparison, BP-ANN, the reference approach, had substantially lower
R2 (0.50) and CCC (0.51) and slightly higher MAE (6.5%) and RMSE (8%). Furthermore,
BP-ANN was also considerably outperformed by the GA-ANN, PSO-ANN, and Bat-ANN
models for clay predictions with CCC values of 0.68, 0.62, and 0.66, respectively. Across
all ANN hybridizations, there were considerable gains in CCC values for clay predictions,
whereby an increase of 35%, 33%, 29%, and 22% was observed for MBO-ANN, GA-ANN,
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Bat-ANN, and PSO-ANN, respectively, when compared to the reference BP-ANN model.
These results indicate that the bio-spired algorithms hybridized with neural network
greatly enhanced the accuracy of clay prediction.

Table 3. Accuracy metrics of the five ANN models for predicting PSFs based on repeated 10-fold cross-validation.

ANN
Models

Clay Silt Sand

MAE RMSE R2 CCC MAE RMSE R2 CCC MAE RMSE R2 CCC

BP-ANN 6.54 8.10 0.50 0.51 5.76 7.34 0.32 0.25 6.50 8.70 0.45 0.49
GA-ANN 5.76 6.71 0.65 0.68 4.87 6.68 0.60 0.63 5.79 6.58 0.69 0.70
PSO-ANN 5.78 6.77 0.57 0.62 5.01 6.70 0.58 0.60 5.88 6.85 0.59 0.63
BAT-ANN 5.80 6.60 0.63 0.66 5.14 6.78 0.49 0.51 5.88 6.77 0.61 0.63

MBO-
ANN 5.60 6.46 0.68 0.69 4.81 6.60 0.62 0.65 5.74 6.59 0.70 0.71

MAE, mean absolute error; RMSE, root mean square error; R2, the coefficient of determination; CCC, Lin’s concordance correlation coefficient.

Similar trends of R2, CCC, MAE, and RMSE values were observed for the silt and
sand predictions. With these PSFs, the results also showed that the BP-ANN model had the
lowest R2 and CCC and highest errors (MAE and RMSE). Again, the MBO-ANN model
resulted in silt and sand predictions that had the highest accuracy across all five hybridized
models. Furthermore, the improvement of prediction using the hybridization of ANN with
bio-inspired algorithms was most pronounced for the silt prediction in comparison to the
clay and sand predictions. With respect to the silt predictions, the MBO-ANN algorithm
was an improvement on the BP-ANN algorithm by increasing R2 from 0.32 to 0.62 (93.8%
increase) and CCC from 0.25 to 0.65 (160% increase) and decreasing MAE from 5.76% to
4.81% (16.5% decrease) and RMSE from 7.34% to 6.60% (10.1% decrease). Again, similar to
the clay predictions, MBO-ANN was the most effective bio-inspired hybridization of ANN
followed by GA-ANN, PSO-ANN, and Bat-ANN, respectively.

With respect to the sand predictions, the MBO-ANN model was, again, the most
effective approach amongst the hybridized models, yielding the highest R2 (0.70) and
CCC (0.71) values and lowest RMSE (6.59%) and MAE (5.74%) values. In comparison
with the traditional BP-ANN model, the bio-inspired hybridized algorithms improved the
sand predictions across all accuracy metrics when compared to BP-ANN. Specifically, with
respect to CCC, the improvements for the MBO-ANN, GA-ANN, Bat-ANN, and PSO-ANN
were 45%, 43%, 29%, and 29%, respectively.

When evaluating the uncertainty estimates, ideally, 90% of test data with correspond-
ing observed values should fall within the confidence interval (CI) range for each of the
PSFs (Table 4). Here, the evaluation of the uncertainty estimates showed a similar trend
with respect to how the various ANN models performed, whereby the MBO-ANN results
were the most optimal in generating uncertainty estimates because 85%, 83%, and 88% of
the clay, silt, and sand observations, respectively, fell within the defined CI. Conversely,
the bootstrapping of the BP-ANN model was the least effective in generating uncertainty
estimates because only 78%, 72%, and 81% of the observed values fell within the 90%
confidence interval range.
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Table 4. The percentages (%) of three PSFs that fall within the 90% prediction intervals predicted by hybridized-ANN models.

ANN
Models

Clay Silt Sand

Inside CI Outside CI Inside CI Outside CI Inside CI Outside CI

5 to 95% <5% >95% 5 to 95% <5% >95% 6.50 <5% >95%

BP-ANN 78 12.4 9.6 72 14.8 13.2 81 10.5 8.5
GA-ANN 81 8.7 10.3 78 9.8 12.2 84 6.4 9.6

PSO-
ANN 81 9.0 10.0 75 13.0 12.0 83 8.5 8.5

BAT-
ANN 82 7.2 10.8 74 11.4 14.6 86 8.4 5.6

MBO-
ANN 85 8.0 7.0 83 7.9 9.1 88 6.4 5.6

CI, confidence interval.

3.3. Covariate Importance

The weight values assigned to each input parameter by the ANN model were used to
identify the most important covariates for predicting the PSFs. In this study, the relative
importance (RI) of the covariates, were categorized as follows: weakly relevant (RI < 2%),
slightly relevant (2% < RI < 4%), moderately relevant (4% < RI < 6%), and strongly relevant
(RI > 6%). The RI values of all covariates are shown in Figure 4, where it shows that there
was a wide range of RI amongst the covariates when predicting PSFs.
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The number of covariates with weakly, slightly, moderately, and strongly relevant
contribution for PSFs prediction are shown in Table 5. The most critical factor controlling
the PSFs was represented by the categorical data, which represented the study area’s soil,
geologic, and physiographic variability. These covariates were then followed by climatic,
terrain-derived, and RS-derived data, respectively. The categorical maps, along with the
two climatic datasets (rainfall and temperature), were the most strongly relevant covariates
across all PSFs predictions for the study area.
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Table 5. The number of covariates with relevance contribution in predicting PSFs.

Covariates
Clay Silt Sand

W Sl M St W Sl M St W Sl M St

RS-based
covariates

Sentinel-2 2 1 2 - 1 3 1 - - 4 1 -

Landsat-8 2 2 - - 1 3 - - - 4 - -

MODIS - 2 - - - 2 - - - 2 - -

Terrain-based covariates 1 1 4 1 - 3 3 1 - 5 2 -

Climatic data - - - 2 - - - 2 - - - 2

Categorical data - - - 3 - - - 3 - - - 3

W, weakly relevant (RI < 2); Sl, slightly relevant (2 < RI < 4); M, moderately relevant (4 < RI < 6); St, strongly relevant (RI > 6).

By calculating the mean RI based on the covariate source, it was observed that data
derived from the categorical maps were consistently ranked the highest for the clay predic-
tions with a mean RI = 8.5%. The importance of the categorical data was then followed by
climatic data (7.5%), terrain-derived data (4.4%), MODIS-derived data (3.1%), Sentinel-2-
derived data (3.0%), and Landsat-derived data (1.9%), respectively. When the covariates
were evaluated on an induvial basis, the physiography map had the highest RI value (9.5%),
indicating the most important driving factor for clay spatial distribution, followed by the
geology map (8.2%), soil map (7.7%), rainfall (7.6%), temperature (7.3%), MRVBF (7.2%),
topographic wetness index (TWI) (5.6%), and the Sentinel-2-derived clay index (4.7%),
respectively (Figure 4).

The importance of the covariates for predicting silt content were also similar, whereby
the climatic data and categorical maps were ranked the highest and yielded a mean RI of
8.4% and 8.2%, respectively. The importance of these data sources was then followed by
terrain-derived data, which had a mean RI of 4.1% and the remote sensing data, which
had a mean RI of 3.0%, 2.6%, and 2.5% for the Sentinel-2-, MODIS, and Landsat-derived
data, respectively. Similar to the clay predictions, the physiographic map was determined
to be the most important covariate for silt predictions with RI = 9.8%, and followed by
rainfall (8.4%), temperature (8.3%), geologic map (7.8%), soil map (7.0%), and MRVBF
(6.1%), respectively (Figure 4).

The ranking of the mean RI values by data source for the sand predictions were the
same as for the clay predictions where the categorical maps had the highest mean RI of 8.5%
and was subsequently followed by the climatic data (7.9%), terrain-derived data (3.9%),
and remote sensing data, where the MODIS-, Sentinel-2-, and Landsat-derived data had
a mean RI of 3.4%, 2.9%, and 2.5%, respectively. Again, the physiographic map, geologic
map, temperature, rainfall, soil type map, MRVBF, and TWI were the most important
covariates for sand predictions with the RI values of 9.6%, 8.6%, 7.9%, 7.8%, 7.2%, 5.5%,
and 5.4%, respectively (Figure 4).

3.4. Spatial Prediction of Soil PSFs

The continuous map of clay, silt, and sand fractions and USDA soil texture classes for
the whole region was produced using the MBO-ANN model due to its superior performance
in comparison to the other approaches (Figure 5). Furthermore, the MBO-ANN model, when
coupled with the softmax transfer function in its output layer guarantees the summation of
PSFs to 100%, which is necessary for precise predictions of PSFs (see the Supplementary
Materials). Based on a visual assessment of the predictions, the silt contents were relatively
higher compared with the clay and sand contents along the central strip of the study area.
The predicted PSF maps, produced using the MBO-ANN model, were also reclassified in
accordance to the USDA soil texture classification system (Figure 5).
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Eight main USDA textural classes were identified: clay, silty clay, and silty clay loam
classes were mapped in the northeastern region; the silty clay loam class dominated the
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central region; the silt loam, loam, and sandy loam texture classes dominated the southern
regions of the province; and sandy clay loam soil texture class had a limited distribution in
the study areas (Figure 5).

With respect to the predicted clay contents, there was a relatively higher abundance
of clay in the northeastern region of the province, which corresponds with a flood basin
on the low-lying area and where the fine-textured materials are dominant. Here, the clay
contents were >40% and were mainly distributed at low elevations (<10 m) and where
fine-textured parent materials are present (Figure 5).

In comparison, the sand content was low in the northeastern; however, was it substan-
tially higher in the southern and southeastern regions, where the soils are mostly degraded
and the coarse-textured parent materials are exposed. In addition, the thin coastline (about
10–20 m from shorelines), adjacent to the Mazandaran Province, includes a sand dune that
was omitted from this study given that these areas were not mapped as soils by surveyors.
With respect to the silt predictions, the map showed highest amounts of silt along the
central region of the study area along an east to west direction. This area of high silt
contents corresponds with the presence of a loess deposit and loess-derived soils, which
are highest in the eastern region of the province [71].

4. Discussion
4.1. Environmental Covariates

The categorical maps, along with the two climatic datasets (rainfall and temperature),
were the most strongly relevant covariates across all PSFs predictions for the study area. Soil
taxonomic type, represented as great soil groups, was strongly relevant in explaining the
total variation of PSFs soil in Mazandaran Province. The soil survey data were traditionally
derived from the physiographic units in Iran and provide information directly related to
the spatial patterns of PSFs; furthermore, the geological map also provided information on
the soil parent material and its associated mineralogy—a key determinant of soil texture.
By using these datasets as covariates, there is the potential to renew and improve upon
existing soil textural and PSF maps for the Mazandaran Province using DSM approaches.
The relationship between these datasets and PSFs was apparent in this study; for example,
the spatial distribution of alluvial plains and flood basins were two physiographic units
of the northeastern region of the study areas, which also coincided with the high clay
contents that were observed. The information such as soil type and land cover could
explain the considerable variation of PSFs [22,24,72,73]. Therefore, these results would
seem to indicate that, for study areas where detailed and accurate soil maps exist, it would
be beneficial to include them as a covariate in predicting PSFs [18]. Of the terrain-derived
data, MRVBF was the most important—especially for the prediction of clay and silt. Here,
MRVBF was effective in characterizing the low-lying terrains and the depositional features
of the landscape, where fine particles tend to accumulate [43]. In cultivated alluvial/flood
plains of low-lying areas, the use of land surface temperature data from MODIS was a
promising covariate, particularly where the soils were clearly bare over a year [74].

RS-derived covariates were not strongly relevant for predicting PSFs in this study.
The main reason was attributed to the effect of surficial soil moisture and roughness, the
presence of vegetation canopy, and, in some cases, due to the low spatial resolution of the
RS data [75,76]. All covariates derived from Landsat and MODIS imagery were classified
as being weakly to slightly relevant covariates, whereas two covariates derived from the
Sentinel-2 were moderately important. Specifically, the clay index was moderately relevant
for predicting all PSFs, while NDVI was moderately relevant for predicting the clay and
silt fractions (Table 4). With respect to the clay index of Sentinel-2, there was a negative
relationship with soil clay content [77]. The soil texture mapping using Sentinel-2 data
performance had a good discrimination for extremely different soil texture classes (e.g.,
sandy loam versus clay), whereas neighboring soil texture classes (e.g., sandy clay loam
and clay class) had high uncertainty [75].
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The weak relationship between the Landsat data and PSFs was most likely associated
with lower spatial resolution of the images (i.e., 90 m) and the time of imagery acquisi-
tion [78]. A poor relationship between Landsat data and the sand and silt fractions was
also reported for PSFs prediction in large-scale studies [79,80]. However, high correlations
between clay contents and Landsat 7 images, particularly with Band 7, have been reported
in other studies [81]. In comparison, the higher spectral and spatial resolution (10 m) of the
Sentinel-2 data may have been the main reason the covariates derived from this data source
had higher RI. Similar to this study, the covariates derived from Sentinel-2 data resulted in
satisfactory/good predictors of clay contents for soils in the Czech Republic [82].

Although several variables were determined to not be important, accounting for
them in the prediction process still has the potential to enhance the spatial predictions of
PSFs [11,83,84]. PSFs have a complex, nonlinear hierarchal relationship between many
covariates that were determined to be effective, and machine learning models are designed
to discover these relationships. It could be concluded that the coarse-resolution categorical
maps could potentially capture the average soil PSFs at large spatial extents and scales
other covariates related to local terrain and vegetation would be more effective in capturing
soil erosional and depositional processes.

4.2. Performance of Hybridized Models and Output Maps

The poorest model performance for the PSF predictions resulted from the BP-ANN
(i.e., traditional implementation of ANN) and was substantially improved upon by us-
ing bio-inspired optimization algorithms. The MBO algorithm was the most effective
approach within the studied bio-inspired algorithms while PSO was the lowest-performing
hybridization for clay predictions. The prediction accuracy of clay in this large-scale study
for the proposed model was better than that of other studies [20,85,86] ranging 9.2–12.2%
for RMSE and 0.33–0.54 for R2. By considering the multispectral (VNIR–SWIR) ASTER
data as covariates for mapping the surface clay content at large scales, the results yielded
the R2 of 0.61% [87] that is close but still lower than our findings. The prediction accuracy
was close to another finding [20] with R2 of 0.71 and RMSE of 7.3% but much better than
many other studies [85,86,88,89]. The slightly lower model performance for predicting
silt contents in the MBO-ANN model with lower R2 and CCC compared with clay and
sand contents may be due to the poorer relationship between the auxiliary covariates and
silt content that is in agreement with other findings [24,85,86], which declared the low
performance was due to high variability.

Regarding to the accuracy and uncertainty analysis, it was concluded that the hy-
bridized ANN using bio-inspired algorithms resulted in a vast improvement in comparison
to the standard reference approach using BP-ANN by potentially overcoming challenges
such as the local minima and low convergence issues [90,91]. Consistently, the MBO-ANN
model outperformed all other hybridizations when mapping PSFs, which was likely at-
tributed to its ability to optimize the initial input parameters (e.g., thresholds and weights)
for ANN by the MBO algorithm, thereby resulting in the suitable convergence of the neural
network towards a global optimum solution and effectively capturing the nonlinear rela-
tionships between variables [92]. Although the MBO-ANN approach was able to handle
the large set of input variables in predicting the spatial distribution of PSFs, its processing
time was longer than that of BP-ANN; furthermore, the use of the other bio-inspired hy-
bridizations with ANN were also longer, but acceptable. From this study, the increased
computational demand and processing time was warranted given the level of improvement
when compared to the BP-ANN approach, as evidenced by all accuracy metrics.

Theses soil textural class maps reflected the contribution of environmental covariates
that were used to generate the PSFs prediction maps. These maps can also potentially
improve land surface modeling for future studies. From a soil management perspective, in-
formation on the spatial distribution of clay in the northern region is important for decision
makers in order to improve agricultural practices and the management of paddy fields and
orchards. In particular, the application of potassium fertilizer is greatly dependent on the



Remote Sens. 2021, 13, 1025 18 of 23

clay contents of the study area due to the ability of clay minerals to bind/fix the potassium
in interlayers spaces and cause its unavailability for plant uptake.

5. Conclusions

Provincial-scale information on soil texture is crucial for the management of soil
resources and agricultural production planning by decision makers. By using a large set of
environmental covariates derived from terrain, remotely sensed, climatic, and categorical
data as the main sources of data, series of hybridized ANN models were built for predicting
PSFs and tested using a 10-fold cross-validation. The softmax transfer function was used
in the output layer of the ANN models to normalize the predicted clay, silt, and sand
contents, leading to the summation of PSFs to 100% in unsampled locations. Of the 64
environmental covariates used, categorical data, which consist of physiographic maps,
maps of soil types, and geologic maps, were the most effective variables for predicting the
spatial distribution of PSFs. The importance of these categorical inputs was subsequently
followed by the climatic data, terrain data, and RS-derived covariates, respectively. Where
available, existing map products generated using conventional approaches (i.e., existing
categorical maps) could have the potential of being refined using DSM approaches for
future mapping of PSFs at the provincial scale.

When compared to the reference ANN approach, BP-ANN, the bio-inspired opti-
mization algorithms substantially improved the predictions of PSFs, whereby the results
indicate that MBO-ANN resulted in the best performance across all accuracy metrics and
PSFs. Furthermore, the MBO-ANN approach also resulted in the lowest uncertainty in
comparison to BP-ANN. It could be concluded that the application of bio-inspired com-
putational algorithms is a promising alternative to the conventional BP-ANN—especially
given that the computational demands were not substantially greater. The high-resolution
PSFs maps generated in this study can be used for integrated management of soils along
with sustainable development strategies at the provincial scale. Furthermore. The maps can
be used as inputs to support future environmental and hydrological modeling activities.
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Appendix A

Table A1. Covariates initially considered for predicting the distribution of PSFs.

No. Covariates Code Definition
1 Geology map Geology Polygon map prepared by SWRI
2 Soil map Soil Polygon map prepared by SWRI
3 Physiography map Physi Polygon map prepared by SWRI

4 Annual rainfall (mm) Rainfall It is derived from the monthly rainfall
values

5 Mean annual temperature (◦C) Temp It is derived from the monthly temperature
values

6 Aspect (◦C) Aspect The compass direction of the maximum
rate of change

7 Catchment area Cat.Area Area from which rainfall flows into a river
8 Catchment slope (degrees) Cat.Slo. Average gradient above flow path

9 Channel networks base level CNBL The interpolated channel network base
level elevations

10 Elevation (m) Elev Height above sea level
11 Flow accumulation (number of cells) Fl.Ac Calculates accumulated flow

12 Multi-resolution Valley Bottom Flatness
Index MRVBF Measure of flatness and lowness

13 Openness NegOpen How wide a landscape can be viewed from
any position

14 Openness PosOpen How wide a landscape can be viewed from
any position

15 Plan curvature (radians / m) Plan.Cur The curvature of a contour line

16 Relative Slope Position Re.Slope.Posi The position of one point relative to the
ridge and valley of a slope

17 Slope Length factor LS factor Slope Length and Steepness factor
18 Topographic Wetness index TWI ln (specific catchment area/slope angle)
19 Total Insolation (kWh / m2) To.In Calculate the total incoming solar radiation

20 Upslope Curvature Ups.Cur The distance weighted average local
curvature

21 Valley Depth (m) Va.Dep The vertical distance to a channel network
base level

22 Vertical distance to channel networks (m) VDCN The altitude above the channel network
23 Wind Effect WE The Wind Effect is a dimensionless index
24 Coastal aerosol of Sentinel-2 B1.S Wavelength of 0.442 µm
25 Blue band of Sentinel-2 B2.S Wavelength of 0.492 µm
26 Green band of Sentinel-2 B3.S Wavelength of 0.559 µm
27 Red band of Sentinel-2 B4.S Wavelength of 0.664 µm
28 Vegetation Red Edge of Sentinel-2 B5.S Wavelength of 0.704 µm
29 Vegetation Red Edge of Sentinel-2 B6.S Wavelength of 0.740 µm
30 Vegetation Red Edge of Sentinel-2 B7.S Wavelength of 0.782 µm
31 Near-infra red of Sentinel-2 B8.S Wavelength of 0.832 µm
32 Shortwave IR-1 band of Sentinel-2 B9.S Wavelength of 0.945 µm
33 Shortwave IR-2 band of Sentinel-2 B10.S Wavelength of 1.373 µm
34 Normalized Difference Vegetation Index NDVI.S (NIR−GREEN / NIR + GREEN)

35 Enhanced Vegetation Index of Sentinel-2 EVI.S (2.5 × (Band4 − Band3)/(Band4 + 6×
Band 3–7.7 × Band1 + 1)

36 Transformed vegetation index of Sentinel-2 TVI.S (Band5 − Band3/ Band5 + Band3)

37 Soil Adjusted Vegetation Index of Sentinel-2 SAVI.S (Band4 − Band3/ Band4 + Band3 + 0.5) ×
(1 + 0.5))

38 Land Surface Water Index of Sentinel-2 LSWI.S (NIR − shortwave infrared)/
(NIR+shortwave infrared)

39 Brightness Index of Sentinel-2 Bright.In.S ((RED)2 + (NIR)2)0.5
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Table A1. Cont.

No. Covariates Code Definition
40 Clay Index of Sentinel-2 Clay.In.S (SWIR-1 / SWIR-2)

41 Normalized Difference Salinity Index of
Sentinel-2 Salin.In.S (Red-NIR)/(Red + NIR)

42 Carbonate Index of Sentinel-2 Carbonat.In.S (RED / GREEN)
43 Gypsum index of Sentinel-2 Gypsum.In.S (SWIR-1 − NIR) / (SWIR-1 + NIR)

44 Blue band of Landsat-8 B1.L Wavelength of 0.450–0.515 µm of Landsat 8
spectral band

45 Green band of Landsat-8 B2.L Wavelength of 0.525–0.600 µm of Landsat 8
spectral band

46 Red band of Landsat-8 B3.L Wavelength of 0.630–0.680 µm of Landsat 8
spectral band

47 Near infrared band of Landsat-8 B4.L Wavelength of 0.845–0.885 µm of Landsat 8
spectral band

48 Shortwave Infrared-1 band of Landsat-8 B5.L Wavelength of 1.560–1.660 µm of Landsat 8
spectral band

49 Shortwave Infrared-2 band of Landsat-8 B6.L Wavelength of 2.100–2.300 µm of Landsat 8
spectral band

50 Normalized Difference Vegetation Index of
Landsat-8 NDVI.L (NIR − RED) / (NIR + RED)

51 Enhanced Vegetation Index of Landsat-8 EVI.L (NIR − RED) / (NIR + C1 × RED−C2 ×
BLUE + L)

52 Soil Adjusted Vegetation Index of Landsat-8 SAVI.L (1 + L) × (NIR − RED) / (NIR + RED + L)

53 Normalized difference moisture index of
Landsat-8 NDMI.L (Band4 − Band5/ Band4 + Band5)

54 Combined spectral response index of
Landsat-8 COSRI.L [Blue + Green)/(Red + NIR)] × NDVI.L

55 Brightness Index of Landsat-8 Bright.In.L ((RED)2 + (NIR)2)0.5
56 Clay Index of Landsat-8 Clay.In.L (SWIR-1/SWIR-2)
57 Salinity Index of Landsat-8 Salinity.In.L Band 3/Band 4
58 Carbonate Index of Landsat-8 Carbon.In.L (RED / GREEN)
59 Gypsum index of Landsat-8 Gypsum.In.L (SWIR-1 − NIR) / (SWIR-1 + NIR)

60 MODIS Night Temperature Temp.M Land Surface Temperature/Emissivity
Daily L3 Global 1km

61 MODIS Near Infrared NIR.M Wavelength of 0.841–0.876 µm of MODIS
spectral band

62 Normalized Difference Vegetation Index of
MODIS NDVI.M (NIR – GREEN / NIR+ GREEN)

63 Soil Adjusted Vegetation Index of MODIS SAVI.M (1 + L) × ( NIR − RED) / (NIR + RED + L)
64 Brightness Index of MODIS Brigh.Index.M ((MODIS RED)2 + (MODIS NIR)2)0.5

Note: Red: Categorical maps; Blue: Climatic data; Yellow: Terrain attributes; Green: Remote sensing.
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