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Abstract: As widely applicated in many underwater research fields, conventional side-scan sonars
require the sonar height to be at the seabed for geocoding seabed images. However, many interfer-
ence factors, including compensation with unknown gains, suspended matters, etc., would bring
difficulties in bottom detection. Existing methods need manual parameter setups or to use postpro-
cessing methods, which limits automatic and real-time processing in complex situations. To solve
this problem, a one-dimensional U-Net (1D-UNet) model for sea bottom detection of side-scan data
and the bottom detection and tracking method based on 1D-UNet are proposed in this work. First,
the basic theory of sonar bottom detection and the interference factors is introduced, which indicates
that deep learning of the bottom is a feasible solution. Then, a 1D-UNet model for detecting the sea
bottom position from the side-scan backscatter strength sequences is proposed, and the structure
and implementation of this model are illustrated in detail. Finally, the bottom detection and tracking
algorithms of a single ping and continuous pings are presented on the basis of the proposed model.
The measured side-scan sonar data in Meizhou Bay and Bayuquan District were selected in the
experiments to verify the model and methods. The 1D-UNet model was first trained and applied
with the side-scan data in Meizhou Bay. The training and validation accuracies were 99.92% and
99.77%, respectively, and the sea bottom detection accuracy of the training survey line was 99.88%.
The 1D-UNet model showed good robustness to the interference factors of bottom detection and fully
real-time performance in comparison with other methods. Moreover, the trained 1D-UNet model
is used to process the data in the Bayuquan District for proving model generality. The proposed
1D-UNet model for bottom detection has been proven effective for side-scan sonar data and also has
great potentials in wider applications on other types of sonars.

Keywords: side-scan sonar; sea bottom detection; 1D-UNet; signal segmentation; real-time processing

1. Introduction

Conventional side-scan sonars have been widely used in many underwater research
fields, such as underwater resource exploration, benthic habitat mapping, environmental
investigation, seabed target detection, underwater rescue, and archaeology, because of
certain advantages like low price and easy installation [1–5]. The conventional side-scan
sonar is towed under the water and continuously records the backscatter strength data after
the sound waves are projected from the transducer on the port and starboard side. Then,
the sonar image constructed using these backscatter strengths can reflect the important
information on the seabed, which enables the wide applications for side-scan sonars. In
benthic habitat mapping, side-scan sonars can provide the backscatter information from the
seabed to construct benthic habitat maps to help protect coastal ocean ecosystems [6–10]. In
marine engineering, side-scan sonars are commonly used to detect and track engineering

Remote Sens. 2021, 13, 1024. https://doi.org/10.3390/rs13051024 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9434-1388
https://orcid.org/0000-0003-3796-8405
https://doi.org/10.3390/rs13051024
https://doi.org/10.3390/rs13051024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13051024
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/5/1024?type=check_update&version=2


Remote Sens. 2021, 13, 1024 2 of 23

targets, such as offshore pipelines [11]. In the military, side-scan sonars are often used
to detect important military targets, such as mines [12,13]. In underwater rescue and
archaeology, side-scan sonars can help in detecting important underwater targets, such
as human beings [14] and wrecks [15,16]. In the investigation of marine resources and the
environment, side-scan sonar images can also be used for resource searching and seabed
sediment classification to understand the environmental changes of the seabed [17–19].

The sonar depth can be measured by the depth sensor when the side-scan sonar is
towed underwater. However, the sonar height to the sea bottom needs to be obtained by
the bottom detection method. The side-scan sonar can find the sea bottom position by
detecting the maximum backscatter strength within a certain range, and the sonar height
to the sea bottom can be calculated by the sample interval and the sound speed [20]. The
main purpose of conventional side-scan sonars is to obtain seabed images. Hence, the
image quality is more important in side-scan sonar operation rather than sounding, and the
backscatter strengths are compensated by time-varying gains to offset the propagation loss
of side-scan sonars [21,22]. The time-varying gains for side-scan data are often unknown
due to sonar self-limitation or improper recording operations, which would bring problems
in the bottom detection. In addition, other interference factors, including the sonar self-
noise generated when the sonar is close to the vessel in the shallow water area, the possible
suspended objects in the water column, and the possible targets on the seabed will also
bring problems in the bottom detection of side-scan sonar data.

Detecting the sea bottom from the conventional side-scan sonar data using the tra-
ditional method is difficult due to these interference factors. Accordingly, commercial
programs mostly provide manual assistance functions using the various threshold pa-
rameter settings to improve bottom detection results. The parameter setup needs great
human intervention to accommodate different types of side-scan data and makes the
real-time operation unfeasible. The other solution is to covert the time-domain side-scan
data into frequency-domain sequences [23]. Then, the bottom position can be found using
the mathematical characteristics [24] in the frequency-domain sequences. However, some
interference factors may have similar mathematical characteristics, so the robustness of
these characteristics to noise must be improved. Considering the consistency principle
of seafloor terrain variation, other methods apply dynamic post-processing methods [25],
such as the Kalman filter to improve the accuracy of the bottom detection and tracking
results [26]. However, real-time bottom detection and tracking become difficult when many
post-processing operations are used.

Deep learning methods have been widely applied in related research fields [27–32]
and could be a better choice in realizing real-time and accurate bottom detection of side-
scan data affected by numerous interference factors [33]. The backscatter strengths will
represent a special variation characteristic when the sound reaches the sea bottom. If
the deep learning model can accurately distinguish the variation characteristic from other
interference factors, then the bottom detection can be realized [34]. In addition to processing
two-dimensional (2D) images, deep learning methods have been also applied in target
recognition and segmentation of the one-dimensional (1D) sequences [35,36] and three-
dimensional (3D) images [37,38]. The 1D convolutional neural network (1D-CNN), as an
effective recognition and classification model for 1D sequence data, has been applied to
recognize the backscatter strength sequences at the bottom positions to fulfill the seabed
detection and tracking of side-scan sonar data [39]. However, 1D-CNN must traverse the
ping sequence to recognize the bottom position and would cost a substantial amount of
time in some cases and bring delays in real-time operations. Moreover, recognition of
local sequence variation will lose the perception of the whole sequence variation and make
the model insufficiently robust to some interference factors. The U-Net-type models are
widely used in object segmentation because they can simultaneously perceive the whole
and local features [40,41]. The one-dimensional U-Net (1D-UNet) model has been proven
to be suitable for sequence segmentation [42]. Therefore, a 1D-UNet model is proposed
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and applied to segment the bottom positions from side-scan backscatter data to realize the
bottom detection and tracking in this work. The major contributions of this work include:

• The interference factors of bottom detection, including compensation with unknown
gains, sonar self-noise and vessel noise, suspended objects in the water column, and
targets on the seabed, are introduced in detail.

• A well-designed 1D-UNet model for the bottom detection of the side-scan backscatter
sequences is proposed and validated in the experiment with high accuracies and good
robustness to the interference factors.

• The proposed bottom detection and tracking method of side-scan data has been
proved to have fully real-time performance and show potentials in wider applications
on other types of sonars.

In this paper, the traditional bottom detection theory is first introduced, and the
interference factors that bring problems in bottom detection of side-scan data are listed.
Second, the structure and implementation of the proposed 1D-UNet model are introduced
in detail. Third, the bottom detection and tracking methods using the 1D-UNet model are
presented. In the experimental part, the measured side-scan sonar data in Meizhou Bay
and Bayuquan District were used to validate the model and methods.

2. Theory and Method

This chapter contains three parts. The first part introduces the bottom detection
theory of conventional side-scan sonars and main interference factors. The second part
provides the proposed 1D-UNet model for sea bottom detection of side-scan backscatter
strength sequences. The third part is the sea bottom detection and tracking method of
successive pings.

2.1. Bottom Detection of Conventional Side-Scan Sonars and Main Interference Factors

Conventional echo sounders measure depth by generating a short pulse of sound and
detecting the pulse-echo from the bottom. After the sound is projected from the transducer,
the sound first propagates in the water column. The backscattering strength from the water
will be low because the water column mainly contains water. Then, the sound will be
reflected and refracted when the sound pulse reaches the sea bottom. At this time, an echo
with a strong backscatter strength will be received by the transducer. Considering the
propagation loss of the sound wave, this high-sound-level echo is often the strongest in the
detection gates. This is the basic bottom detection principle of echo sounders.

Similar to echo sounders, the side-scan sonar transducer projects a single wide sound
beam at the port and starboard sides and records the backscatter strengths in the time
sequence on the port and starboard sides. The backscatter strength sequences of the
port and starboard sides are independent and relatively symmetric and can be separately
processed to detect the sea bottom. Under ideal conditions, the transducer would record the
highest-level echo when the sound hits the sea bottom; accordingly, the bottom detection
process can be easily conducted. However, the traditional bottom detection principle could
fail on the effects of unknown gain, sonar self-noise and beam patterns, suspended objects
in the water column, target on the seabed, random noises, and other exceptional situations,
which will introduce difficulties in bottom detection of side-scan data (Figure 1).
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Figure 1. Operation and one-ping port-side (starboard-side) backscatter strength sequence of the side-scan sonar. (a) shows
the beam pattern and the sound propagation of a side-scan sonar; (b) shows a backscatter strength sequence of a port-side
(starboard-side) ping affected by many factors.

In Figure 1b, these influencing factors that bring difficulties in bottom detection of
side-scan data include:

1. Unknown gain. During the sound propagation, the level of the sound wave gradually
decreases due to the effect of propagation loss. When the sound wave reaches the
sea bottom, the transducer will record a high-level echo, which shows the sea bottom
position. Given that the side-scan sonars are mainly used for obtaining seabed images,
time-varying gains are applied on the side-scan backscatter samples to make the
strengths uniform. In many cases, the gains are unknown because the instrument
does not provide it, or the operator does not record it. The unknown gain will cause
the echoes arriving at the sea bottom to be no longer the highest-level echoes, which
brings problems to the traditional methods.

2. Sonar self-noise and vessel noise. The self-noises of side-scan sonars include the
noises of the sonar itself (such as ringing error) and the survey ship. In some shallow
waters, the ship noise will also bring great influence to the side-scan sonar when the
side-scan sonar is installed on the ship or towed near the ship. This type of noise is
mainly concentrated within a certain range after the sound is emitted.

3. Suspended objects in the water column. Fishes, marine suspended matters, bubbles,
and other suspended objects may appear and bring effects on bottom detection during
the sound wave propagates on the water column before reaching the seabed. The
echoes from these suspended objects have a relatively larger sound level than echoes
from water, which shows a similar strength variation when the sound reaches the sea
bottom. Thus, the suspended objects in the water column are potential influencing
factors.

4. Targets on the seabed. After the sound reaches the seabed, the side-scan sonar will
continuously record the backscatter strengths of echoes from the seabed, which are
used for constructing the seabed sonar image. When a target appears on the seabed,



Remote Sens. 2021, 13, 1024 5 of 23

the echoes from the target could have a much larger sound level than echoes for the
surrounding seabed and would be an influencing factor of bottom detection.

5. Random noises and exceptional situations. Random noises are also likely to pro-
duce abnormally strong-level echoes, similar to echoes when the sound hits the sea
bottom. In exceptional situations, side-scan sonar data may be recorded incomplete or
completely missing. These situations can also cause problems in the bottom detection
of side-scan sonar data.

The traditional bottom detection method of side-scan data could be ineffective due
to these interference factors. Nevertheless, the special variation characteristics in sound
levels (or backscatter strengths) when the sound arrives at the seabed are distinguishable
with those of these interference factors, which can serve as the basis for bottom detection
of side-scan sonar data. Therefore, the proposed model that can detect the special strength
variation characteristics is presented below.

2.2. 1D-UNet for Bottom Detection

The regional backscatter strength sequence around the sea bottom position shows a
special variation feature, as illustrated in Figure 1. So, the 1D-UNet model is proposed to
segment the bottom positions from the side-scan backscatter sequences. In this section,
the sampling steps including extraction from the raw data, normalization, and bottom
positions labeling are introduced first. Then, the structure and implementation of the
1D-UNet model are explained in detail. The flow chart of the proposed 1D-UNet model is
shown in Figure 2.
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Figure 2. The flow chart of the proposed one-dimensional (1D)-UNet model.

2.2.1. Samples

Diverse side-scan sonars record backscatter strengths in different ranges and use
various sample rates (Figure 3a). To learn the sea bottom position from these data via
deep learning models, samples should be normalized into (0–1) and resized to a fixed size
(powers of two, such as 512). The variation features of the backscatter strengths would not
be changed after the normalization. The samples of each backscatter strength sequence can
be normalized using the maximum and minimum values of each sequence as follows:

dBN =
dB − dBmax

dBmax − dBmin
(1)
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where dBN is the normalized strength of the backscatter sample; dB is the raw strength; and
dBmax and dBmin are the maximum and minimum values of the strength sequence, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 23 
 

 

 

Figure 3. Sampling (input and output) for the 1D-UNet model. (a) is the raw backscatter 
strength sequence of a ping port-side data. (b) shows normalization and resizing of the se-
quence. (c) shows the corresponding sea bottom probabilities of each backscatter sample. 

To use the 1D-UNet model to segment the sea bottom position of the side-scan 
backscatter sequence, the model should be able to learn the correct relationship between 
the one-ping port-side (starboard-side) backscatter strength sequence (Figure 3b) and the 
corresponding sea bottom position (Figure 3c). The input data of 1D-UNet are the normal-
ized backscatter strength sequences (Figure 3b). Meanwhile, the output sequences are the 
corresponding sea bottom probabilities of each backscatter sample (Figure 3c).  

The corresponding bottom positions of each backscatter strength sequence can be 
detected using the traditional method and should be manually checked to ensure accu-
racy. The target sequence of the 1D-UNet has the same size as the input sequence. The 
value at the sea bottom position should be set as one, while those at the other positions 
should be zero (Figure 3c). 

2.2.2. Structure of 1D-UNet 
The 1D-UNet is the 1D version of famous U-Net models and can fulfill the subse-

quence segmentation of the 1D data sequence, and is used for sea bottom detection of 
side-scan backscatter strengths in this work. The 1D-UNet model contains the decoding 
and encoding parts. In the encoding parts, the input sequences were downsampled to 
extract the features. In the decoding parts, the learning features were upsampled to the 
output results. 

Input data and output target: The input layer is the backscatter strength sequences 
that were normalized and resized as 1 × 512 1D tensors with a range from zero to one. The 
backscatter strength sequences were downsampled using 1D convolution and 1D pooling 
operations from 1 × 512 tensors to 1024 × 32 tensors. Then, the tensors were upsampled 

Raw data: 

Normalization: 

Label: 

(a) 

(b) 

(c) 

Figure 3. Sampling (input and output) for the 1D-UNet model. (a) is the raw backscatter strength
sequence of a ping port-side data. (b) shows normalization and resizing of the sequence. (c) shows
the corresponding sea bottom probabilities of each backscatter sample.

To use the 1D-UNet model to segment the sea bottom position of the side-scan backscat-
ter sequence, the model should be able to learn the correct relationship between the
one-ping port-side (starboard-side) backscatter strength sequence (Figure 3b) and the cor-
responding sea bottom position (Figure 3c). The input data of 1D-UNet are the normalized
backscatter strength sequences (Figure 3b). Meanwhile, the output sequences are the
corresponding sea bottom probabilities of each backscatter sample (Figure 3c).

The corresponding bottom positions of each backscatter strength sequence can be
detected using the traditional method and should be manually checked to ensure accuracy.
The target sequence of the 1D-UNet has the same size as the input sequence. The value at
the sea bottom position should be set as one, while those at the other positions should be
zero (Figure 3c).

2.2.2. Structure of 1D-UNet

The 1D-UNet is the 1D version of famous U-Net models and can fulfill the subsequence
segmentation of the 1D data sequence, and is used for sea bottom detection of side-scan
backscatter strengths in this work. The 1D-UNet model contains the decoding and encoding
parts. In the encoding parts, the input sequences were downsampled to extract the features.
In the decoding parts, the learning features were upsampled to the output results.

Input data and output target: The input layer is the backscatter strength sequences
that were normalized and resized as 1 × 512 1D tensors with a range from zero to one.
The backscatter strength sequences were downsampled using 1D convolution and 1D
pooling operations from 1 × 512 tensors to 1024 × 32 tensors. Then, the tensors were
upsampled using 1D transposed convolution, concatenation, and 1D convolution from
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1024 × 32 tensors back to 1 × 512 tensors. The output layer is the corresponding probability
sequences of bottom detection with a range from zero to one. The 1D-UNet structure is
shown in Figure 4.
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Figure 4. Structure of the proposed 1D-UNet for bottom detection from backscatter strength data of the conventional
side-scan sonar.

Encoding part: The layers of the encoding part are composed of 1D convolution and
pooling operations. The 1D convolution operation s of the data sequences in discrete form
is shown below.

s(t) = (d ∗ w)(t) =
∞

∑
a=−∞

d(a)w(t − a) (2)

where d is the input data sequence, w is the activation function, and t is the tth value of d.
The convolution operation will reduce the size of the tensor on the original dimension.

To make the concatenation operation easier and ensure the size consistency between the
final output and the input layer, we add padding for each convolution operation based on
the convolution kernel size. Therefore, the size after each convolution operation is always
a multiple of two. The convolution operation is followed by the activation function. The
rectified linear unit (ReLU) h is selected as the activation function for the convolution layers.

hw,b(X) = max(X·w + b, 0) (3)

where w and b are the trainable parameters, and X is the input data.
A pooling function replaces the layer output at a certain location with a summary

statistic of the nearby outputs, in order to reduce the number of parameters to learn and
the amount of computation performed. Here, the max-pooling operation is used to obtain
the maximum output within a rectangular neighborhood.

Decoding part: The layers of the decoding part are composed of 1D transposed
convolution (up-sampling), concatenation, and convolution operations. After processing
by the encoding part, the original-dimension length of the input sequence has reduced from
512 to 32. The length needs to increase back to 512 to predict the corresponding bottom
position. The transposed convolution (or deconvolution [43]) broadcasts input values
through the kernel and results in a larger output shape, which would serve this purpose.

To avoid losing important information during down-sampling operations, 1D-UNet
uses skip-connections via the concatenation of the same-size layers in the encoding and
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decoding parts for perceiving both of the low-level and high-level features of the input
sequence. After concatenation, the first-dimension length of the sequence will be doubled.
Accordingly, the convolution operations are applied to reduce the size. Therefore, the size
of the output sequence is the same as the input data after processing by the decoding part.

Loss function: After each training loop, the loss function is used to calculate the
difference between the predicted results and the ground truth data. Given that the bottom
detection problem is a sequence segmentation task, the output sequences only contain two
classes (1 foreground/bottom, 0 background) and the classes are quite imbalanced. To
handle the class-imbalance problem [44], the mean squared error (MSE) function between
the predicted result and the target sequence is selected as the loss function.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where N is the length of the predicted and target sequences, yi is the ith sample of the
predicted sequence, and ŷi is the ith sample of the target sequence.

Since the background scores are 0, the value of the MSE loss function is always
affected by the foreground (bottom) scores. Therefore, the 1D-UNet model can be trained
successfully with good accuracy.

Optimizer: Base on the loss function, the optimizer is intended to update the model
parameters to reduce the loss and improve the accuracy. The root mean square propagation
optimizer, as one of the current most important optimizers, which uses the adaptive
learning rate and has good robustness in most problems, was chosen as the optimizer for
1D-UNet to update the parameters.

Accuracy: The training and validation accuracies (accT and accV) of the model are
calculated as the proportions of the correct-detected sample number in the total training
and validation sample number, respectively, as shown in Equation (5) below:

accT =
N1

NT
, accV =

N2

NV
(5)

where N1 and NT are the numbers of correct-predicted and total training samples, and N2
and NV are the numbers of correct-predicted and total validation samples.

Considering the sample accuracy using the traditional method with manual correction,
the correctness of each prediction result can be determined true if the difference between
the location of the maximum bottom probability in the output sequence and the labeled
position is within 0.5% of the output sequence length, as

correct(y) =

{
true, abs(iy − iŷ)) ≤ 0.5% × ly
f alse, abs(iy − iŷ)) > 0.5% × ly

(6)

where y and ŷ are the predicted and the target sequences, iy and iŷ are the index of
the maximum probabilities in the predicted and target sequences, ly is the length of the
predicted sequence, and abs means the absolute value function.

During continuous training and learning from the relationship between the input
sequences and the output targets, the training and validation losses of the 1D-UNet will
decrease, and the training and validation accuracies will increase. The well-trained 1D-
UNet model serves as the basis of sea bottom detection and tracking of side-scan pings.

2.3. Sea Bottom Detection and Tracking of Side-Scan Pings

After the 1D-UNet model establishment, the trained 1D-UNet model is used for
predicting the bottom position of each side-scan ping data (Figure 5).
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Figure 5. Bottom detection result for ping data obtained by using the trained 1D-UNet model.

Each side-scan ping has the port and starboard part. The port-side and starboard-side
data should be separately processed. The port-side (starboard-side) backscatter strength
sequences need to be resized and normalized as the input data. Then, the bottom positions
on both sides are predicted using 1D-UNet. After determining the sea bottom positions of
the port-side and starboard-side backscatter strength sequences, the sea bottom of the ping
data can be obtained.

When the seabed is almost flat, the port and starboard sea bottom position should be
nearly the same. Given the symmetry between the port and starboard data, the predicted
port and starboard bottom positions can be combined to check the exceptional results and
achieve better robustness. Some side-scan sonars have two or more frequencies. Thus, the
ping data of the low and high frequency should be processed separately.

In the practical fieldwork, the side-scan sonar constantly records the backscatter
strength data of each ping. According to the operation principles of side-scan sonars, these
successive pings following the along-track direction can be processed by the proposed
1D-UNet model to fulfill real-time bottom detection. The bottom tracking of the side-scan
sonar data can be fulfilled via continuous bottom detection of successive pings. The bottom
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detection and tracking procedure of continuous pings are shown in Figure 6. The bottom
detection accuracy of successive pings can be calculated as follows:

acc =
Nc

N0
(7)

where acc means accuracy, Nc is the number of correct-bottom-detection pings, and N0 is
the total number of pings.
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Figure 6. Procedure of bottom detection and tracking of successive side-scan pings.

3. Experiment and Results

To verify the validity and performance of the proposed 1D-UNet in this work, the
measured side-scan sonar data in Meizhou Bay, Fujian, China 2012 and Bayuquan, Liaoning,
China, 2014 were selected for the experiment (Figure 7).
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Figure 7. Experimental regions of side-scan sonar data. (a) is the Meizhou Bay region; (b) is the Bayuquan District.

In Meizhou Bay, an Edgetech 4100P side-scan sonar was used for the measurement,
with an operation frequency of 500 kHz, a maximum sampling slant range of 150 m, and
ping interval time of 150 ms. The side-scan data in the Bayuquan District were obtained
with an Edgetech 4200 side-scan sonar, with an operating frequency of 400 kHz, maximum
sampling slant range of 150 m, and ping interval time of 210 ms. These side-scan data were
all recorded in eXtended Triton Format (*.xtf) files, which only contained the compensated
backscatter strengths in each ping data, while the raw signal levels and the time-varying
gains are unknown. The experiment contains three parts:

1. Training and validation of 1D-UNet. The side-scan data containing 13,504 pings
from a survey line in Meizhou Bay were selected for the 1D-UNet training and
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validation. The sampling and training processes were given in detail. The predicted
bottom results were compared with the target bottom results, and the model accuracy
was validated via statistical analysis. The 1D-UNet model was further validated by
using the side-scan data of other survey lines in the same region.

2. Model comparison. The trained 1D-UNet model was compared with other methods:
The 1D-UNet model was compared with the last peak and the 1D-CNN method to pro-
cess the side-scan data with different interference factors. The real-time performance
of the 1D-UNet model was compared with 1D-CNN via statistical analysis.

3. Bottom detection in a different region. To prove the generality of the 1D-UNet
model, the trained 1D-UNet model using the side-scan data in Meizhou Bay was
applied to process those data in the Bayuquan, where the data were measured with a
different side-scan sonar model.

The pre-processing stages including decoding raw binary files and sampling from
the side-scan files were processed using our self-developed programs written in C++. The
proposed 1D-UNet model was implemented using the Python language (version 3.8) on
PyTorch 1.7.1 library with CUDA 11.0 support. The bottom detection and tracking of
side-scan pings were also written in Python. The experiments were carried on a desktop
computer having a 64-bit Windows 10 operating system with an AMD Ryzen 5 2600X
processor, 64 GB RAM, and a Nvidia RTX 2700 GPU. The 1D-UNet model was trained and
validated on the Nvidia GPU with CUDA support for acceleration.

3.1. Training and Learning from the Side-Scan Data in Meizhou Bay
3.1.1. Training and Validation of the 1D-UNet Model

The training of the 1D-UNet model requires a large amount of sample data to obtain
high accuracy and generality. First, a survey line with 13,504 pings was selected for the
model training (Figure 8a). The raw side-scan data (as *.xtf files) were decoded, and the
corresponding waterfall image was constructed (Figure 8b). The corresponding bottom
detection results were processed by manual recognition (Figure 8c).

The waterfall image (Figure 8b) shows that the backscatter strengths of this survey
line have been compensated with time-varying gains; thus, the maximum-strength echoes
were not at the position where the sound waves hit the bottom. The survey line spans
the seabed with two different types of sediments. Accordingly, the backscatter strengths
greatly varied from different sediments. At the connection region of different sediments,
the seabed topography fluctuates, which could bring some challenges to bottom detection
and tracking. A band-shaped noise appears at the center of the waterfall image, which
indicates the existence and effects of sonar self-noise and vessel noises. Moreover, the
obvious targets on the seabed could also be the interference factor to the bottom detection.

The port-side and starboard-side backscatter sequences can be used to detect the
sea bottom separately; thus, these 13,504 ping side-scan data were further divided as
27,008 sample sequences. These samples were normalized and resized as uniformed
input sequences for the 1D-UNet model (Figure 8d). Based on the pre-known sea bottom
positions, the corresponding target sequences of the same number were also established.
The probability at the sea bottom was set as one, while those of the other backscatter sample
indexes were zero (Figure 8e). The whole samples were randomly divided into training
(70%) and validation (30%) sets. During each training epoch, the 1D-UNet model was
trained using the training set, and the loss function would calculate the loss of the model
and update the model parameters. After each training epoch, the validation samples were
predicted using the trained model to calculate the validation loss and accuracy.
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Figure 8. Sampling for input and target data from the measured side-scan data. (a) is the selected survey line for the
training; (b) is the waterfall image constructed using the backscatter strength data; (c) shows the known sea bottom result of
the survey line; (d) is the input sequence from a port-side ping data; and (e) shows the corresponding target sequence that
represents the bottom probabilities.

The training and validation losses and accuracies were calculated using Equations (4)–(6),
respectively. In Figure 9, the training and validation accuracies gradually increase with the
increase of the training epoch. Meanwhile, the training and validation losses gradually de-
crease. The training accuracy eventually reached a stable value near 100% after approximately
10 training epochs. The validation accuracy fluctuated in 14 training epochs and reached a
stable value near 100% after 15 epochs. The training loss gradually decreased along with
an increasing training epoch and eventually decreased near zero. The validation loss also
decreased near zero after 10 epochs. After 20 epochs, the training and validation accuracies
finally reached 99.92% and 99.77%, respectively.
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Figure 9. Training and validation accuracies and losses of 1D-UNet in 20 epochs.

The whole side-scan data of this survey line were processed using the trained 1D-UNet
model following the procedure illustrated in Figures 5 and 6. The sea bottom detection



Remote Sens. 2021, 13, 1024 13 of 23

results of the port-side and starboard-side side-scan data were processed and displayed on
the side-scan waterfall image (Figure 10a).
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Figure 10. Bottom detection results obtained by using the trained 1D-UNet model. (a) shows the detected sea bottom
positions of the port-side and starboard-side pings on the side-scan waterfall image; (b) shows the comparison and
differences between the bottom position labels with the port-side and starboard-side predicted results; (c) shows the
histograms and fitted probability distribution function (PDF) curves of the position difference data from (b).

In Figure 10a,b, the bottom detection results of the port-side and starboard-side pings
of the same survey line are consistent with the target results. The bottom detection lines in
the waterfall image (Figure 10a) also intuitively reflect the boundary between the water
column and the seabed. The position (backscatter sample index) differences between the
bottom detection positions of the port-side (starboard-side) pings and the targets were
calculated (Figure 10b). The difference curves varied within a small range near zero. By
statistical analysis, the histograms and fitted probability distribution function (PDF) curves
of the port-side and starboard-side position differences are shown in Figure 10c. The
main histograms are within the range of 2, which meets the correctness requirement of
the position deviation less than 0.5% of the target sample length in Equation (6). The PDF
curve of the port-side differences is fitted with the normal distribution curve, with the
expectation µ as 0.02 and the variance σ as 0.44. The PDF curve of the starboard-side
differences are also fitted with the normal distribution curve, with the expectation µ as
−0.03 and the variance σ as 0.45. According to the sample number and Equation (7), the
total bottom detection accuracy of the whole line is 99.88%, which proves the validity of
the 1D-UNet model and the methods in this work.

3.1.2. Validation of Other Survey Lines

To further validate the 1D-UNet model and methods, the measured side-scan data of
five survey lines in Meizhou Bay were randomly selected for bottom detection and tracking
processing. The waterfall images of these five survey lines are shown in Figure 11.
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Figure 11. Sea bottom detection and tracking of other survey lines in Meizhou Bay. Panels (a–e) are the corresponding
bottom detection results represented on the waterfall image of five survey lines.

The survey line (a) contains 4865 pings, with a maximum slant range of 84 m. Obvious
sediment variation and seabed targets (pipelines) are shown in Figure 11a. Strong noises
will appear near the positions where the transducer starts to record due to the sonar self-
noise and vessel noise, which will influence the bottom detection results. The two long
pipelines on the seabed also cause a great variation in the backscatter strength sequences.
When the targets are close to the sea bottom positions, they will influence the bottom
detection results.

The survey line (b) contains 5976 pings, with a maximum slant range of 84 m. Small
seabed targets and seabed texture variation are shown in Figure 11b. The data measured in
the same water area were all affected by sonar and vessel noises, and strong noises also
appear at the center of the waterfall image. The seabed texture variation also results in
variations in the side-scan backscatter strength sequences, which will also influence the
bottom detection results.

The survey line (c) contains 8599 pings, with a maximum slant range of 150 m. Obvious
sediment variation and seabed targets (pipelines) are demonstrated in Figure 11c. The
strong noise band exists at the center of the waterfall image due to the sonar self-noise
and vessel noise. Pipeline targets on the seabed also have some influence on the bottom
detection results. Some ping data are missing, which will bring effects in the continuous
bottom tracking.

The survey line (d) contains 1991 pings, with a maximum slant range of 84 m. The
interference factors in Figure 11d include sonar self-noise, vessel noise, obvious sediment
variation, and seabed texture variation. The survey line (d) contains 2308 pings, with
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a maximum slant range of 84 m. The interference factors in Figure 11e include sonar
self-noise, vessel noise, seabed texture variation, and some missing ping data.

The side-scan data of these survey lines were processed using the 1D-UNet model and
the bottom detection and tracking method proposed in this work. The seabed detection
and tracking results (shown as blue and yellow curves, respectively) of each survey line are
shown in Figure 11. The accurate seafloor detection and tracking results prove the validity
and robustness of the method for process side-scan data affected by the interference factors,
including sonar self-noise, vessel noise, sediment variation, seabed objects, seabed texture
variation, and missing ping data.

3.2. Model Validation and Comparison with Other Methods

The same backscatter strength sequences were processed by the 1D-UNet model, the
last peak method [26], and the 1D-CNN model [39], respectively, for result comparison.
Then the real-time performance of the 1D-UNet was compared with the 1D-CNN model
via statistical analysis.

3.2.1. Comparison with Other Methods

To compare the proposed method with other methods, the side-scan backscatter
strength sequences of five different pings were selected and processed by using the last
peak method, 1D-CNN and 1D-UNet respectively. These side-scan data were affected by
different types of interference factors. The processed results are shown in Figure 12.

The five backscatter strength sequences were all compensated by unknown gains
and affected by the sonar self-noise and vessel noise. No other interference factors can
be observed in Figure 12a. The sequence (b) in Figure 12b was affected by suspended
objects in the water column; the sequence (c) in Figure 12c was affected by seabed targets;
the sequence (d) in Figure 12d was affected by the low-reflectivity sediment and high-
reflectivity seabed targets; the sequence (e) in Figure 12e was affected by the suspended
objects in the water column and seabed targets. To ensure comparability, the search range
of all these methods is the whole backscatter strength sequence, and no other auxiliary
methods were used in this experiment. The last peak method is to find the maximum
strength position after removing the sonar self-noise and vessel noise. The 1D-CNN method
needs to traverse the entire sequence to detect the bottom by the bottom recognition model.
The 1D-UNet method directly segments the bottom from the sequence.

The last peak method is to find the maximum backscatter strength position after the
sonar self-noise and vessel noise are removed. Given that the measured side-scan data
were all compensated by the unknown gains, the maximum strength location is behind
the location where the sound reaches the sea bottom. The detected bottom positions
(Figure 12(a1,b1,c1,e1)) were all behind the true bottom position due to the combined
effects of the beam patterns and gains. With regard to the backscatter strength sequence
(Figure 12d) from the low-reflectivity sediment with a high-reflectivity target on the seabed,
the backscatter strength from the seabed target was the maximum value, which leads to
the wrong detection result (Figure 12(d1)).

The 1D-CNN method needs to traverse the entire sequence to recognize the local
backscatter strength sequence at the bottom position. The bottom detection results are
presented in Figure 12(a2–e2), and the real bottom positions are pointed by the arrow.
In sequence (a) with less interference factors, the location with the maximum detection
probability is the correct bottom location. In sequence (b), the maximum probability
location is still the bottom location, although the probabilities caused by the sonar self-
noise and the suspended object in the water column are high too. In sequence (c), the
probability of the correct bottom position is the second largest among all the predicted
probabilities. The results are mainly affected by the sonar self-noise and seabed targets. In
sequence (d), the probabilities caused by the sonar self-noise and seabed targets are larger
than that at the correct bottom position. In sequence (e), the probability at the correct bottom
location and those caused by the suspended object in the water column and seabed targets
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are high. The results show that the 1D-CNN method cannot completely eliminate the
effects of interference factors in the backscatter strength sequences. Thus, the search range
needs to be limited to around the correct location to ensure bottom detection accuracy.
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Figure 12. Bottom detection results of five different side-scan ping data processed by the last peak method, 1D-CNN, and
1D-UNet. Panels (a–e) show five different backscatter strength sequences, and i1 to i3 (i = a, b, . . . , e) are the detected
bottom results using the last peak, 1D-CNN, and 1D-UNet, respectively.

The 1D-UNet model can perceive the variation characteristics of the local and whole
sequence. Accordingly, 1D-UNet shows high robustness against the interference factors,
including sonar self-noise, suspended objects in the water column, seabed targets, and
sediment changes. In Figure 12a3–e3, the locations of the maximum predicted probability
are always the correct sea bottom location, and the probabilities caused by other interference
factors are low. The comparison proves the validity and robustness of the proposed 1D-
UNet model.
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3.2.2. Real-time Performance and Comparison

To verify and compare the real-time performance of the proposed method with the
prior work, 10,000 successive ping data were processed using 1D-CNN and 1D-UNet
methods. The bottom detection results of 10,000 pings are shown in Figure 13a, and
the time costs of each ping are shown in Figure 13b. The time costs of each ping were
statistically analyzed to evaluate the real-time performance, as shown in Figure 13c.
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Figure 13. Real-time experimental results of 10,000 successive pings using 1D-CNN and 1D-UNet. These results were
processed by the computer with AMD R5-2600X CPU and GTX-2070 GPU. (a) shows the bottom detection results of these
pings; (b) shows the corresponding time costs of each ping using 1D-CNN and 1D-UNet; (c) shows the histogram and PDF
curves of the time costs of 1D-CNN and 1D-UNet.

The 1D-CNN method uses the adaptive search range to improve the accuracy and
calculation speed. In the statistical analysis, the maximum time cost of each ping is 382 ms,
and the minimum time cost is 69 ms. The PDF of the time costs were fitted by a normal
distribution curve with an average µ of 76.16 ms and variance σ of 15.12 ms. Considering
that the ping sample interval is 150 ms, there is still more than a 0.1% chance that the time
cost is larger than the ping interval when the 1D-CNN needs to search a large range, which
would cause a delay in real-time processing. The time costs of the 1D-UNet method are
always much lower than the ping interval time of 150 ms, with the maximum value of 32
ms and the minimum value of 13 ms. The PDF of the time costs was fitted using a normal
distribution curve with µ as 14.83 ms and σ as 1.01 ms (Figure 13c). The 1D-UNet method
was proven to be a fully real-time bottom detection method because the time cost of each
ping by the 1D-UNet method is always shorter than the ping interval.

3.3. Bottom Detection of Side-Scan Data in Other Water Regions

The 1D-UNet model and bottom detection and tracking method have been validated
using the side-scan data measured by the same sonar model in the same water area. The
measured side-scan data in the Bayuquan District were processed using the 1D-UNet
model trained by the side-scan data in Meizhou Bay to further validate the generality
of the proposed 1D-UNet model. The track lines of the side-scan data in the Bayuquan
District are shown in Figure 14a, and three lines (in the red color) were randomly selected
in this experiment.
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Figure 14. Model validation using side-scan data in Bayuquan. (a) shows the survey track lines, and the red lines were
selected for validation of the 1D-UNet model. (b–d) are the bottom detection and tracking results of these three selected
survey lines. (b1), (c1) and (d1) are the bottom detection result of three backscatter strength sequences from these three lines.

In Figure 14, the levels of the sonar self-noise and vessel noise in the Bayuquan District
were lower than those in Meizhou Bay and had lower effects on the side-scan data. The
side-scan data in the Bayuquan District were also compensated by unknown time-varying
gains. Figure 14 shows that the seabed sediment was quite consistent in the water region
and suspended objects in the water column and some targets on the seabed are observed.
The first survey line (Figure 14b) contains 925 pings, with a maximum slant range of 150 m.
Some sediment variation and seabed targets are observed in Figure 14b. The second survey
line (Figure 14c) contains 7093 pings, with a maximum slant range of 150 m. No obvious
target was present on the seabed; however, some continuous noises are observed in the
water column in Figure 14c. The third survey line contains 12,502 pings, with a maximum
slant range of 150 m. Continuous noises and a large suspended object are found in the
water column in Figure 14d, which would bring problems in bottom detection and tracking.

The bottom detection and tracking results of these three survey lines were processed
using the 1D-UNet model trained by the side-scan data from Meizhou Bay. The bottom
detection results (Figure 14b1–d1) show that the 1D-UNet can accurately detect the bottom
from the side-scan data measured by various sonar models in different water regions. The
experiment results proved the generality of the proposed 1D-UNet model.

4. Discussion
4.1. Advantanges of Processing Side-Scan Data in 1D Sequences

The advantages of processing 1D side-scan backscatter strength sequences rather than
2D sonar images include:

1. More samples and better accuracy. The accuracy and generality of deep learning
models will improve with the increase in the number of samples. Many samples
will result in higher accuracy and better generality of 1D-UNet. Considering the
difficulties in marine surveys, the amount of available side-scan data is quite limited;
thus, the number of 2D side-scan images will also be limited. From the perspective of
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1D backscatter strength sequences, the numbers would be enormous, which would
ensure the accuracy and generality of 1D-UNet.

2. Better application with lower GPU memory requirement. The 1D models need less
time in training and prediction operations. The 1D convolution, pooling, and other op-
erations are faster and require lower hardware requirements than 2D operations. With
regard to integrated systems as side-scan sonars, the lower hardware requirement in
the actual measurement means the lower cost and wider applications.

3. Faster speed and real-time performance. In practical side-scan sonar operation, ping
data are recorded in fixed time intervals, and the real-time recorded data are the
1D backscatter strength sequences. The real-time method should be able to directly
process a 1D sequence in a limited time less than the ping interval time. Therefore,
the bottom detection and tracking method using 1D-UNet in this work can process
side-scan data in real-time.

4.2. Other Exception Situaions

The experiment results have proved that the bottom detection and tracking method
based on 1D-UNet in this work can effectively distinguish the interference factors, including
unknown gain, sonar self-noise, sediment variation, suspended objects in the water column,
targets on the seabed, and missing data. However, the 1D-UNet model could fail in some
exceptional situations, besides these factors.

1. Very low signal to noise ratio. The 1D-UNet can detect the sea bottom position
from the backscatter strength sequences in various ranges. Moreover, 1D-UNet can
accurately find the bottom location as long as the backscatter strength sequences
can reflect the special strength variation feature at the bottom position. However,
when the signal-to-noise ratio is very low, the backscatter strength variation feature
cannot be reflected in the strength sequence due to the influence of noise and other
interference factors (Figure 15). In this situation, even manual labeling could also be
difficult, and 1D-UNet can hardly detect the bottom location.

2. Very large suspended object. When a large suspended object is in the water column,
or even almost fills the whole water column, the echo signals in the water column
region could be very high. The backscatter strengths from the water column are in
the same signal level as echoes from the seabed because of the high reflectivity of the
suspended object and time-varying gains (Figure 16). Therefore, distinguishing the
boundary between the water column and the seabed areas is difficult, and the special
backscatter strength variation feature at the bottom position cannot be reflected. In
this situation, neither a human being nor the 1D-UNet can easily identify the bottom
location.
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In these cases, the symmetry of the port-side and starboard-side data can be used.
When the port-side (starboard-side) data cannot be recognized, the other-side data should
be used to detect the bottom. When data on both sides cannot be recognized, the bottom
position of this ping can be interpolated using the bottom positions of nearby pings based
on the consistency of seabed depth variations.

4.3. Reproducibility and Application

The proposed 1D-UNet model and the bottom detection and tracking methods pro-
posed in this paper are based on the special strength variation characteristics when the
sound reaches the sea bottom. When the side-scan sonar model and operation methods are
the same or similar, the 1D-UNet model trained from a part of these data can be used for
the bottom detection of the other parts of these data. In the experiment, the sonar data of
two water areas were measured in similar model sonars and pre-processed using similar
methods. Thus, the model trained by data in Meizhou Bay can be applied to process data
in the Bayuquan District. When the sonar models are quite different, or the backscatter
strength sequences represent different variation characteristics, the 1D-UNet should be
re-trained using the new data or updated by transfer learning to process new types of data.

Similar to side-scan sonars, multibeam echosounders also record backscatter strengths
for bottom detection, seabed, and water column imaging. Bottom detection usually is easier
for multibeam echosounders, because backscatter strengths from multibeam echosounders
usually are not compensated with gains and have high signal-to-noise ratios. However,
when large objects (as shipwreck) lay on the seabed, traditional bottom detection methods
could fail and take the shipwreck as the sea bottom (Figure 17b). To represent the potential
application of 1D-UNet on multibeam echosounder, we retrained the proposed 1D-UNet
model using the multibeam backscatter data measured by Kongsberg EM3002, in Swartz
Bay, Canada, 2006 [45]. There existed a shipwreck on the seabed, which caused incorrect
bottom detection results.

The sampling, training, and validation steps were similar to those in this work. The
bottom detection results of two selected beams using the re-trained 1D-UNet model are
shown in Figure 17. With no obvious objects in the water column, the bottom detection
result of the selected beam (Figure 17a) obtained by the default method and 1D-UNet were
both correct. While, because there existed a shipwreck in the water column in Figure 17b,
the default bottom detection result was incorrect. The possible bottom positions can be
obtained by 1D-UNet, and the correct position needs to be selected based on pre-known
depth ranges or bottom positions of nearby beams. Moreover, the bottom detection
accuracy of 1D-UNet can be improved by training with more samples. The results in
Figure 17 proved the potential application of 1D-UNet on a multibeam echosounder.
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Figure 17. Apply the 1D-UNet model for bottom detection from backscatter data of multibeam echosounders. (a,b) show
two multibeam pings containing water column backscatter data. The backscatter strengths of selected beams in blue
rectangles are processed using 1D-UNet, and the corresponding bottom detection results are obtained at the right.

5. Conclusions

A 1D-UNet model for sea bottom detection of side-scan backscatter data and the
bottom detection and tracking method based on 1D-UNet are proposed in this work. The
1D-UNet model is aimed to solve the difficulties in bottom detection of the side-scan
backscatter data caused by interference factors, including compensation with unknown
gains, sonar self-noise, suspended objects in the water column, and seabed targets. The
1D-UNet model was first trained and validated using the side-scan data in Meizhou Bay.
The training and validation accuracies were 99.92% and 99.77%, respectively, and the sea
bottom detection accuracy of the training survey line was 99.88%. The model was applied
to process other survey lines in Meizhou Bay and validated by the experimental results.
This study compared the bottom detection results with the last peak and 1D-CNN method,
and the 1D-UNet model showed better detection results and proved good robustness to
the interference factors of bottom detection. In the real-time performance compassion
with the 1D-CNN method, the 1D-UNet method showed better real-time performance,
with a maximum time cost per ping of 32 ms, which is much less than the ping sampling
interval of 150 ms. Moreover, the 1D-UNet model trained by the measured data in Meizhou
Bay was applicated to process the data in the Bayuquan District. The accurate bottom
detection and tracking results proved the validity and generality of the 1D-UNet model.
The proposed 1D-UNet model in this work can detect the sea bottom from backscatter data
of different sonars in various situations. The segmentation of the 1D sequence by using the
1D-UNet also has a certain significance for related studies.
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