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Abstract: Accurate estimation of fractional vegetation cover (FVC) from digital images taken by
commercially available cameras is of great significance in order to monitor the vegetation growth
status, especially when plants are under water stress. Two classic threshold-based methods, namely,
the intersection method (T1 method) and the equal misclassification probability method (T2 method),
have been widely applied to Red-Green-Blue (RGB) images. However, the high coverage and severe
water stress of crops in the field make it difficult to extract FVC stably and accurately. To solve this
problem, this paper proposes a fixed-threshold method based on the statistical analysis of thresholds
obtained from the two classic threshold approaches. Firstly, a Gaussian mixture model (GMM),
including the distributions of green vegetation and backgrounds, was fitted on four color features:
excessive green index, H channel of the Hue-Saturation-Value (HSV) color space, a* channel of
the CIE L*a*b* color space, and the brightness-enhanced a* channel (denoted as a*_I). Secondly,
thresholds were calculated by applying the T1 and T2 methods to the GMM of each color feature.
Thirdly, based on the statistical analysis of the thresholds with better performance between T1 and
T2, the fixed-threshold method was proposed. Finally, the fixed-threshold method was applied to
the optimal color feature a*_I to estimate FVC, and was compared with the two classic approaches.
Results showed that, for some images with high reference FVC, FVC was seriously underestimated
by 0.128 and 0.141 when using the T1 and T2 methods, respectively, but this problem was eliminated
by the proposed fixed-threshold method. Compared with the T1 and T2 methods, for images taken
in plots under severe water stress, the mean absolute error of FVC obtained by the fixed-threshold
method was decreased by 0.043 and 0.193, respectively. Overall, the FVC estimation using the
proposed fixed-threshold method has the advantages of robustness, accuracy, and high efficiency,
with a coefficient of determination (R2) of 0.99 and root mean squared error (RMSE) of 0.02.

Keywords: proximal RGB image; color feature; Gaussian mixture model; expectation-maximization
algorithm

1. Introduction

Under climate change, water stress has become a great challenge to maize products
globally. In research on crop yield, non-destructive monitoring of crop structural traits is of
great significance. As one of the most widely used structural traits, fractional vegetation
cover (FVC), defined as the proportion of ground surface occupied by green vegetation [1],
plays an important role in monitoring vegetation growth status and estimating crop yields
(e.g., evapotranspiration and above-ground biomass) [2–4]. In addition, FVC is also a key
parameter in the AquaCrop model, which is widely used to simulate crop yield response
to water under different irrigation and field management practices [5,6]. Therefore, it
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is important to estimate FVC rapidly and accurately for annual crops under different
irrigation treatments during crop growing seasons.

Visual estimation, direct sampling, and digital photography have been developed to
measure FVC for agricultural applications [7,8]. With the development of sensor technol-
ogy, many researchers have used Red-Green-Blue (RGB) digital cameras [9–11] or near
infrared (NIR) spectral sensors [12] in the field of agriculture. However, RGB digital
imagery has been used more widely than NIR spectral sensors in image segmentation,
with the advantages of low cost and higher spatial resolution. With the availability of
inexpensive high-quality digital cameras in agriculture applications, estimating FVC by
image segmentation is becoming more common. In general, image-based FVC estimation
can be grouped into two categories: (1) machine learning methods (e.g., K-means, Decision
Tree, Artificial Neural Networks, and Random Forest) [13–15] and (2) threshold-based
methods [16,17]. Machine learning methods need a large amount of training data sets
for the purposes of calibration. The generation of training data, affected by human inter-
vention, has a great influence on model accuracy. Threshold-based methods, with their
advantages of simplicity, high efficiency, and accuracy, play an important role in precision
agriculture [18], and have been successfully used for crops such as wheat, maize, cotton,
and sugar beet [12,19–21].

Selecting an appropriate color feature for crop segmentation is a key step to obtain FVC
estimations using threshold-based methods [17,22]. Excessive green index (ExG) [23,24],
H channel of the Hue-Saturation-Value (HSV) color space [25], and a* channel of the
CIE L*a*b* color space [26] are the three widely used color features. The visible spectral
index, ExG, can be calculated directly from digital numbers in three components of RGB
images, and represents the contrast of the green spectrum against red and blue [24]. The
H channel from the HSV color space uses an angle from 0◦ to 360◦ to represent different
colors [27]. The a* channel from the CIE L*a*b* color space is relative to the green-red
opponent colors [26]. In addition, to deal with the shadow effect in classification, the
Shadow-Resistant LABFVC (SHAR-LABFVC) method was proposed [28]. In the SHAR-
LABFVC method, the CIE L*a*b* color space, from which the a* color feature was extracted,
was transformed from the brightness-enhanced RGB. To distinguish it from the a* color
space in other research [26], the a* color feature in the SHAR-LABFVC method is denoted
as the a*_I color feature in this study.

Another key step to obtain FVC estimations using threshold-based methods is search-
ing for the appropriate classification threshold. Otsu’s method is one of the most widely
used threshold techniques [29], and has been used in many applications of image segmen-
tation and plant detection [30–32]. However, this method can produce under-segmentation
in some circumstances [18]. Another widely used threshold method was proposed by [16]
based on a Gaussian mixture model (GMM) of color features derived from images. Specifi-
cally, a Gaussian mixture model is a parametric probability density function represented as
a weighted sum of Gaussian component densities. Classification thresholds for discrim-
inating vegetation and backgrounds can be calculated from a GMM fitted on different
color features. Fitting a GMM on an appropriate color feature contributes to accurate
threshold calculation.

To evaluate the separability of two Gaussian distributions on different color features,
the separability distance index (SDI) [26] and the instability index (ISI), which is the
reciprocal of SDI [33], were proposed. SDI (Equation (1)) describes the separability of the
distributions between vegetation and backgrounds,

SDI =
|µv − µb|
σv + σb

(1)

where µv and µb are mean values of green vegetation and backgrounds, respectively; and
σv and σv are standard deviations of green vegetation and backgrounds, respectively. The
larger the SDI is, the easier it is to fit these two Gaussian distributions. However, whether
the SDI is an appropriate criterion for selecting the right color feature to produce the
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best performance of GMM fitting is still uncertain and has not been explored in previous
research. It is necessary to further study the applicability of SDI in selecting color features.

With GMM fitted on an appropriate color feature, applying an optimal approach to
obtain the classification threshold is essential for calculating FVC. Once the parameters
for both Gaussian distributions of vegetation and backgrounds have been estimated,
classification thresholds can be calculated by two classic methods, namely, the intersection
method, and the equal misclassification probability method. In the intersection method,
the intersection of the two Gaussian distributions is used as the classification threshold
(hereinafter referred to as T1). In the equal misclassification probability method (hereinafter
referred to as T2), the threshold makes the green vegetation and backgrounds have an
equal misclassification probability [26]. Both two classic methods derive thresholds based
on the Gaussian distributions of green vegetation and backgrounds in each image.

However, both the two abovementioned threshold methods have limitations. Firstly,
both perform well when the bimodality is clearly seen in the distributions of images on
a color feature; however, when FVC is extremely low or the canopy is nearly closed, the
thresholds obtained by these methods may be inaccurate. Secondly, in semi-arid and arid
areas, where climate is characterized by long periods of drought with decreasing projected
rainfall, the high possibility of crops suffering from water stress may raise a new challenge
for FVC estimation caused by spectral changes. To cope with water stress, crops usually
exhibit adaptive mechanisms at the leaf level to reduce light absorption and dissipate excess
absorbed energy, such as the decrease in chlorophyll concentration and down-regulation
of photosynthesis, and increase in the concentration of deep oxidized xanthophyll cycle
components [34–37]. The spectral changes of crops caused by the pigment changes at
the leaf level may have a great influence on the accuracy of threshold calculation using
the two methods. Therefore, RGB images collected across the entire crop growing season
with a wider FVC range and different levels of water stress conditions need to be further
studied regarding the performance of FVC estimation using threshold methods based on
GMM. In addition, in our previous research for cotton FVC estimation [21], an interesting
phenomenon was found: a fixed classification threshold exists in the a* channel. Therefore,
further study is needed to determine if there is a fixed classification threshold for maize.

In this study, there were two main objectives: (1) to determine if a fixed-threshold
method exists and is applicable for images covering the full range of FVC from open to
nearly closed; (2) to explore if the fixed-threshold method outperforms the two classic
threshold-based methods (T1 and T2 methods) in estimating FVC for images with high
reference FVC or captured from deficit irrigation plots. This research could provide a more
practical, efficient, and accurate way to estimate the FVC of field maize under water stress
based on RGB imagery.

2. Materials
2.1. Study Site and Management

Field experiments were conducted during 2013, 2015, and 2016 growing seasons at
the USDA-ARS Limited Irrigation Research Farm, in Greeley, Colorado, USA (40◦26′57′′N,
104◦38′12′′W, elevation 1427 m). The maize (Zea mays L.) was planted with 0.76 m row
spacing on May 14 (day of year, DOY 134), June 3 (DOY 154), and May 5 (DOY 126) in 2013,
2015, and 2016, respectively. Twelve irrigation treatments (TRTs) (Table 1), each 9 m wide
by 43 m long, were randomly arranged with four replications (Figure 1a). Deficit irrigation
was applied during the late vegetative and maturation growth stages. The dates when
maize reached the late vegetative stage (V8), beginning of reproductive stage (R1), and
beginning of maturation stage (R4) were July 1 (DOY 182), July 29 (DOY 210), and August
19 (DOY 231) for the 2013 growing season, respectively. In 2015, these dates were July 6
(DOY 187), August 3 (DOY 215), and August 24 (DOY 236), respectively. In 2016, these
dates were June 27 (DOY 179), July 25 (DOY 207), and August 9 (DOY 222), respectively.
Each treatment targeted a percent of maximum non-stressed crop evapotranspiration (ET)
during late vegetative and maturation growth stages, respectively. Table 1 shows the sum
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of actual net irrigation amounts and precipitation for each treatment. Details can be found
in [38] for the calculation of maximum ET.

Table 1. Irrigation treatment and total irrigation and precipitation amount (mm) in different growing stages. In 2015 and
2016, irrigation treatment 5 (TRT5) (80/50) was replaced by TRT13 (40/80).

Treatment
Late Vegetative Stage Reproductive Stage Maturation Stage Total

2013 2015 2016 2013 2015 2016 2013 2015 2016 2013 2015 2016

TRT1(100/100) 228 176 164 127 139 177 254 264 198 609 579 539
TRT2(100/50) 228 176 165 122 113 169 165 98 74 515 387 408
TRT3(80/80) 180 136 141 128 131 169 217 211 155 525 478 465
TRT4(80/65) 181 136 141 128 121 179 196 152 96 505 409 416
TRT5(80/50) 180 / / 128 / / 165 / / 473 / /
TRT6(80/40) 180 136 141 128 133 195 137 65 56 445 334 392
TRT7(65/80) 136 94 99 149 134 185 217 224 155 502 452 439
TRT8(65/65) 136 94 97 149 135 189 196 134 96 481 363 382
TRT9(65/50) 136 95 98 150 135 189 165 89 73 451 319 360
TRT10(65/40) 136 95 93 150 137 195 138 65 56 424 297 344
TRT11(50/50) 101 64 97 158 136 200 165 89 73 424 289 370
TRT12(40/40) 83 50 76 158 136 211 137 65 56 378 251 343
TRT13(40/80) / 50 76 / 134 194 / 214 155 / 398 425
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2.2. Canopy Temperature and Meteorological Data Measurements

Infrared thermometers (IRT, model: SI-121, Apogee Instruments, Inc., Logan, UT,
USA) were used to continuously monitor maize canopy temperature. The view angle and
accuracy were 36◦ and ±0.2 ◦C, with a temperature range of −10 ◦C to 65 ◦C. To ensure
the maize canopy was primarily included in the field of view, the IRTs were attached to
telescoping posts and angled 23◦ below horizon and 45◦ from north (looking northeast).
The IRTs were kept at a height of 0.8 m above the top of canopy with the viewing area of
13.35 m2 and adjusted twice per week during the vegetative stage. In 2013, IRT sensors were
installed in six of the twelve treatments: TRT1 (100/100), TRT2 (100/50), TRT3 (80/80),
TRT6 (80/40), TRT8 (65/65), and TRT12 (40/40). In 2015 and 2016, IRT sensors were
installed for all treatments except for: TRT4 (80/65) and TRT6 (80/40).

Meteorological data were taken by the on-site Colorado Agricultural Meteorological
Network station GLY04 (CoAgMet), including daily precipitation, air temperature, relative
humidity (and subsequent vapor pressure deficit), solar radiation, and wind speed taken at
2 m above a grass reference surface. The canopy temperature and meteorological data were
used to calculate the crop water stress index (CWSI), which is one of the most frequently
adopted indicators of crop water stress [39].

2.3. Crop Water Stress Index (CWSI)

The empirical CWSI method defined by [40] was adopted in this study. It is calculated
as in Equation (2):

CWSI =
dTm − dTLL

dTUL − dTLL
(2)

where dTm is the difference between measured canopy and air temperature; dTLL and
dTUL are the lower and upper limits of canopy-air temperature differential. CWSI values
of 0 indicate no stress and values of 1 indicate maximum stress. In this study, 5 ◦C was
used as the upper baseline. The actual CWSI could be slightly greater than 1, due to the
fact that measured dTm values could be occasionally greater than the upper baseline [41].
The lower baseline for 2013, 2015, and 2016 can be found in Equations (3)–(5), respectively:

dTLL = −1.79×VPD + 2.34 (3)

dTLL = −1.97×VPD + 3.43 (4)

dTLL = −2.76×VPD + 4.98 (5)

where VPD is the vapor pressure deficit of the atmosphere with the unit of kPa. VPD is
related to air temperature and relative humidity, and can be calculated by Equation (6) [42]:

VPD = 0.6108× exp
(

17.27Ta

Ta + 237.3

)
× (

100− RH
100

) (6)

where Ta is air temperature with the unit of ◦C, and RH is relative humidity.

2.4. RGB Image Acquisition

A Canon EOS 50D DSLR camera (Canon Inc., Tokyo, Japan) was attached to a boom
that was mounted on a high clearance tractor and then elevated about 7 m above the
ground. The sensor size and resolution were 22.3 mm × 14.9 mm and 4752 × 3168 pixels.
The target view of the ground was about 5.7 m × 3.8 m at the center row of each plot
(encompassing 5 rows, Figure 1b), and due to the adoption of the small resolution mode
(2352 pixels × 1568 pixels), the pixel size of images was about 0.24 cm. Nadir view RGB
images were taken near solar noon from each treatment plot. Figure 1a shows the capturing
route of RGB images. Detailed RGB image collection dates are shown in Table 2.
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Table 2. Red-Green-Blue (RGB) images and crop water stress index (CWSI) data measurements with
respect to the day of year (DOY). ”

√
” represents that there are corresponding CWSI data.

Growing Stages
2013 2015 2016 *

DOY CWSI DOY CWSI DOY CWSI

Other vegetative stage 169 174 /
176 181 175

Late vegetative stage

183 195
√

180
√

192 198
√

188
197 204

√
194

√

206
√

209
√

202
√

Reproductive stage 211
√

218
√

207
√

227
√

233
√

215
√

Maturation stage
232

√
237

√
228

√

247
√

244
√

/
/ 253 /

* Severe hail damage occurred on 19 August 2016 (DOY 232).

2.5. Image Selection

To better evaluate the adaptability of the proposed method in this study to different
FVC levels and water stress levels, a total of 102 RGB images were selected from 2013,
2015, and 2016 growing seasons. These images cover the full range of FVC from open
to nearly closed. Of these images, 54 were taken from fully irrigated plots (TRT1) to test
the adaptability of the new method to different FVC levels, and 48 were taken from plots
under different irrigation treatments to test the adaptability of the new method to different
water stress levels. Specifically, water stress levels were defined using CWSI: no water
stress (NWS) when CWSI was less than 0.20; intermediate water stress (MWS) when CWSI
was between 0.20 and 0.60; and severe water stress (SWS) when CWSI was greater than
0.60. The 54 images taken from TRT1 were divided into the test image group (hereinafter
referred to as Test_full) and the validation image group (hereinafter referred to as Val_full)
with a ratio of 2:1. In the same way, the 48 images with different levels of water stress were
divided into Test_ws and Val_ws groups. Deficit irrigation started from the late vegetative
stage when FVCref reached about 0.50 for maize from fully irrigated plots, and images from
Test_ws and Val_ws sets were captured after the late vegetative stage. Therefore, compared
with the Test_full and Val_full image sets, the lower limits of FVCref of Test_ws and Val_ws
image sets were higher. The details of all these 102 images are listed in Table 3.

Table 3. A total of 102 RGB images were selected, with 54 images from fully irrigated plots and 48 images from plots under
different levels of water stress. FVCref represents the reference fractional vegetation cover (FVC) of the image. NWS, MWS,
and SWS represent no water stress, intermediate water stress, and severe water stress, respectively.

Image Details Images Taken from Fully Irrigated Plots Images Taken from Plots with Different Irrigation Treatments

Test_Full Val_Full Test_ws Val_ws

Number of images 36 18 32 16

Range of FVCref 0.07~0.90 0.03~0.87 0.29~0.75 0.25~0.69

Water stress level NWS NWS
NWS NWS
MWS MWS
SWS SWS

3. Methodology

Three main steps were taken to estimate maize FVC based on RGB images: (1) ex-
traction of four color features, namely, a*_I, a*, ExG, and H; (2) classification threshold
computation and analysis; and (3) removal of background scatters based on the morpho-
logical differences between maize plant and background scatters. Details can be found
hereafter for these three steps. Figure 2 shows the procedure of maize FVC estimation using
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three different threshold-based methods. In this study, proximally sensed RGB images
were processed and analyzed by using custom-written scripts programmed in R language
(R-3.5.3, https://www.r-project.org/ (accessed on 1 June 2020)).
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3.1. Aquisition of Four Color Features

The selection of an appropriate color feature contributes to a better performance in
image segmentation. In this study, four color features, a*_I, a*, ExG, and H, were extracted
from CIE L*a*b*, RGB, and HIS color spaces. The calculation process is shown in Figure 3,
and the four color features are highlighted using rectangles covered with orange lines.
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3.2. Approaches to Calculating the Thresholds for Image Segmentation

In proximally sensed images, the distributions of vegetation and backgrounds were
assumed to follow GMM on one color feature. With the assumption of only two classes in
these images [20], the GMM function can be given by:

F(x) = ωv × N(µv, σ2
v ) + ωb × N(µb, σ2

b ) (7)

where ω, µ, σ and are weight, mean value, and standard deviation, respectively; subscript v
and b represent vegetation and backgrounds, respectively; N(µ, σ2) represents the Gaussian
distribution function; and x is the value of image on the color feature. The GMM function
was fitted using the “mixtools” package in R [43].

Two classic threshold methods: the two Gaussian distribution curves of GMM shown
in Figure 4 represent the distributions of green vegetation and backgrounds, respectively.
Based on the GMM fitted on one color feature, T1 can be calculated by solving Equation (8).

ωv × N(µv, σ2
v ) = ωb × N(µb, σ2

b ) (8)
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Secondly, the threshold obtained using the T2 method made the misclassification
probabilities of green vegetation and backgrounds equal. As shown in Figure 4, T2 can be
calculated by solving a complementary error function as in Equation (9):

ωv × er f c(µv, σ2
v ) = ωb × er f c(µb, σ2

b ) (9)

where er f c is the complementary Gaussian error function. Classification thresholds and
FVC estimation were obtained using these two approaches. To distinguish different com-
binations of two threshold calculation methods and four color features, they are denoted
using the color feature name and threshold calculation name with an underscore between
them. For example, a*_I_T1 is used to represent the combination of the T1 method and the
a*_I color feature.

The fixed-threshold method was proposed based on the statistical analysis of one of
the classic methods which performs better in FVC estimation. If a real threshold which
generates the reference FVC (FVCref) of maize exists, the smaller the absolute estimation
error, the closer the thresholds calculated from the T1/T2 method are to the real threshold.
In this study, we set the upper limit of absolute estimation error at 0.025 to get a more
accurate threshold. Therefore, in the statistical analysis, only the thresholds which made
the absolute estimation error of FVC less than 0.025 were used. The thresholds calculated



Remote Sens. 2021, 13, 1009 9 of 19

from RGB images with FVCref less than 0.5 were averaged. Then, the average value was
referred to as the initial threshold of the fixed-threshold method. On the other hand, the
average of thresholds obtained from the images with FVCref greater than 0.5 was used as
the adjusted threshold of the fixed-threshold method.

3.3. Removal of Scatters and Spurs Using Morphological Method

Considering that the GMM model is fitted based on the distribution of color features
of each pixel, there are two main drawbacks when estimating FVC using this method: it
may generate misclassified scatters with a high probability, and the edge of the extracted
vegetation may not be well preserved [22]. In this study, to remove misclassified scatters
and to trim the edge of extracted vegetation, the morphological algorithm was adopted.
After vegetation pixels were recognized, all extracted pixel clusters (including misclas-
sified scatters) could be treated as regions with different numbers of pixels. In general,
misclassified scatters were regions with small numbers of pixels. Therefore, the size of
the pixel cluster area was used as the criterion to decide whether it was a misclassified
scatter. The optimal threshold used to remove the scatters was determined by comparing
the differences between the FVC estimations and FVCref. The smallest difference was ob-
tained when the threshold of 500 was used. It is worth noting that similar differences were
obtained around the optimal threshold of 500. Thus, in this study, if the area of the pixel
cluster was less than 500 pixels, it was treated as a misclassified scatter and was removed.
As for trimming the edge of extracted vegetation, maize leaves should be closed regions
with smooth edges. However, after vegetation pixels were recognized, small spurs often
appeared on the edge. If the area of the pixel cluster on the edge of extracted vegetation
was less than 500 pixels, it was treated as a spur and was removed.

3.4. Assessment of FVC Extraction Accuracy

The FVCref of all test images was obtained by supervised classification via Environ-
ment for Visualizing Images (ENVI; Exelis, Inc., Boulder, CO, USA). Due to the high
resolution of proximal RGB images, the FVCref values obtained from this method are reli-
able [18,44]. Specifically, to get the accurate FVCref, training samples of about 12,000 pixels
including pure green vegetation and pure backgrounds were selected for each image using
the tool of New Region of Interest in ENVI. Then, a supervised classification using support
vector machine algorithm [45] was performed based on these training samples. Finally,
a classified image was obtained, and the proportion of green vegetation was calculated
as the FVCref. In addition, a set of test samples of about 8000 pixels was selected for each
test image using the tool of New Region of Interest in ENVI, and was used to evaluate the
accuracy of the classified image. For all classified images, the average of kappa coefficient
was 0.983, and the average of overall accuracy was 99.1%. The results demonstrated that
the FVCref values calculated from the classified images were accurate enough to assess the
performance of FVC estimations of other methods. In this study, the performance of FVC
estimations was assessed using the estimation error (EE) and mean absolute error (MAE),
which were defined as:

EE = FVC− FVCref (10)

MAE =
1
N

N

∑
i=1

EEi (11)

where FVCref and FVC are reference FVC and FVC estimations derived from three threshold
methods. N and i represent the total number of images and image index, respectively. In
addition, the root mean squared error (RMSE) and the coefficient of determination (R2) were
used to assess the correlation between FVCref and FVC obtained using different methods.
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4. Results
4.1. Deficit Irrigation Results Evaluated by CWSI

The sensitivity of the CWSI empirical method for maize water stress has been verified
within the same research field in previous studies [46,47]. Significant correlations were
found between CWSI and classical water stress indicators (soil water deficit and sap
flow). Figure 5 shows the seasonal trends of CWSI for TRT1(100/100), TRT3(80/80),
TRT8(65/65), and TRT12(40/40). Clear differences among TRT1, 3, 8, and 12 were found
for the 2015 growing season during the late vegetative stage when deficit irrigation was
applied. The corresponding mean CWSI values for TRT1, 3, 8, and 12 were 0.06, 0.23, 0.69,
and 0.90, respectively. With the release of deficit irrigation during the reproductive stage, all
deficit irrigation treatments (TRT3, 8, and 12) had clear deceases, with mean CWSI values
decreased to 0.02, 0.15, and 0.18, respectively. When deficit irrigation was re-imposed
during the maturation stage, clear differences among TRT1, 3, 8, 11, and 12 showed again,
with average CWSI values of 0.09, 0.26, 0.47, and 0.51. At the same time, it could be
observed that the differences in CWSI became more obvious as deficit irrigation progressed,
with values of 0.15, 0.32, 0.57, and 0.69 for TRT1, 3, 8, and 12 on DOY 253. Similar patterns
were also observed for the 2013 and 2016 growing seasons. Overall, different levels of
water stress were observed for all three maize growing seasons.
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Figure 5. Time series of crop water stress index (CWSI) for TRT1(100/100), TRT3(80/80), TRT8(65/65),
and TRT12(40/40) in the 2013 (a), 2015 (b), and 2016 (c) growing seasons. The black dotted lines are
boundaries between different growing stages. Late Veg, Rep, and Mat are the abbreviations for late
vegetative, reproductive, and maturation stages, respectively.

4.2. Comparison of Two Classic Methods on Four Color Features

The mean absolute error (MAE) of maize FVC estimations was calculated based on
Test_full and Test_ws image sets (Table 4). Compared with the T2 method, the T1 method
performed better with lower MAEs for all four color features. When the T1 method was
used, the a*_I color feature performed best for both Test_full and Test_ws image sets with



Remote Sens. 2021, 13, 1009 11 of 19

an MAE of 0.021 and 0.047, respectively. The H color feature resulted in the greatest MAE
for Test_full (0.122) and Test_ws (0.150) among the four color features. The a* color feature
generated greater MAEs than the ExG color feature for both Test_full and Test_ws image
sets. All these results showed that the T1 method was better than the T2 method, and the
a*_I color feature had the best robustness for images with the wide range of FVCref and
with different water stress levels.

Table 4. Mean absolute error (MAE) of T1 and T2 methods on four color features.

Image Sets Color Features Threshold Methods MAE

Test_full

a*_I
T1 0.021
T2 0.073

a*
T1 0.093
T2 0.169

ExG
T1 0.032
T2 0.06

H
T1 0.122
T2 0.146

Test_ws

a*_I
T1 0.047
T2 0.168

a*
T1 0.099
T2 0.2

ExG
T1 0.047
T2 0.114

H
T1 0.15
T2 0.189

4.3. Calculation Results of Two Threholds in the Fixed-Threshold Method

Considering that a*_I_T1 outperformed all other methods used above, statistical anal-
ysis of thresholds was implemented based on the results of the a*_I_T1 method. The
classification thresholds with absolute estimation error less than 0.025 obtained by the
a*_I_T1 method are shown in Figure 6. For images with FVCref less than 0.5, the classi-
fication thresholds showed a small variation with a mean value of −2.72 and standard
deviation of 0.39. Thus, the mean value of −2.72 was used as the initial threshold of the
fixed-threshold method. On the other hand, there is a decreasing trend for classification
thresholds when FVCref is greater than 0.5. To make the second fixed threshold applicable
to most images with FVCref greater than 0.5, the average value of −4.60 was used as the
adjusted threshold of the fixed-threshold method.
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4.4. Results of FVC Estimations of Different Methods
4.4.1. Comparison based on Test Image Groups

Considering that a*_I outperformed all other color features, the following comparison
was based on the a*_I color feature. The performance of FVC estimation using the T1
method, T2 method, and fixed-threshold method on the a*_I color feature is shown in
Table 5. For both of the Test_full and Test_ws image groups, the fixed-threshold method
performed best with smallest MAE and RMSE, and greatest R2, followed by the T1 method
and then the T2 method. Compared with the T1 method, the MAE obtained by using
the fixed-threshold method was decreased by 0.06 and 0.033 for Test_full and Test_ws,
respectively. Compared with the T2 method, the MAE obtained by the fixed-threshold
method was decreased by 0.058 and 0.154 for Test_full and Test_ws, respectively.

Table 5. Performance of FVC estimation using three methods on a*_I color feature.

Image Set Method MAE R2 RMSE

Test_full
T1 0.021 0.99 0.03
T2 0.073 0.97 0.05

Fixed-threshold 0.015 1 0.02

Test_ws
T1 0.047 0.89 0.03
T2 0.168 0.5 0.05

Fixed-threshold 0.014 0.99 0.01

The correlation between FVCref and FVC estimations obtained by using three methods
based on the test group images (Test_full and Test_ws) is shown in Figure 7. On one
hand, for the images with high FVCref, captured from fully irrigated plots, the T1 and T2
methods performed unstably with some FVC estimations being underestimated, as shown
in Figure 7a,b. However, it can be observed from Figure 7c that the fixed-threshold method
worked well on all these images. Figure 8 shows the comparison of FVC maps obtained by
applying three different methods to an image with high FVCref. It could be observed that
the result of the fixed-threshold method was closer to the RGB image and the FVCref map.
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On the other hand, for the images with different levels of water stress, the FVC results
of T1 and T2 methods were overestimated as shown in Figure 7a,b, especially the FVC
estimations by the T2 method. However, Figure 7c shows that the fixed-threshold method
improved the FVC estimation accuracy of those images with different levels of water
stress. In addition, for the T1 and T2 methods, the more severe the water stress, the more
overestimated the FVC estimations. To provide a better explanation of this phenomenon,
EEs of all test group images with FVCref ranging from 0.3 to 0.6 are shown in Figure 9. The
limit condition of FVCref used to select an image can ensure that the effect only comes from
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different levels of water stress. As shown in Figure 9a,b, compared with the images taken
in NWS and MWS plots, the EEs of images taken in SWS plots were higher when the T1 or
T2 method was used. When the fixed-threshold method was used, the EEs of these images
showed no big differences among the images regardless of water stress level, as shown in
Figure 9c.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 8. Part of the (a) RGB image captured from fully irrigated plots, with FVCref of 0.67; (b) the 
FVCref obtained by supervised classification via Environment for Visualizing Images (ENVI); and 
comparison of FVC maps obtained by using (c) T1 method, (d) T2 method, and (e) the fixed-thresh-
old method proposed in this study. 

On the other hand, for the images with different levels of water stress, the FVC results 
of T1 and T2 methods were overestimated as shown in Figure 7a,b, especially the FVC 
estimations by the T2 method. However, Figure 7c shows that the fixed-threshold method 
improved the FVC estimation accuracy of those images with different levels of water 
stress. In addition, for the T1 and T2 methods, the more severe the water stress, the more 
overestimated the FVC estimations. To provide a better explanation of this phenomenon, 
EEs of all test group images with FVCref ranging from 0.3 to 0.6 are shown in Figure 9. The 
limit condition of FVCref used to select an image can ensure that the effect only comes from 
different levels of water stress. As shown in Figure 9a,b, compared with the images taken 
in NWS and MWS plots, the EEs of images taken in SWS plots were higher when the T1 
or T2 method was used. When the fixed-threshold method was used, the EEs of these im-
ages showed no big differences among the images regardless of water stress level, as 
shown in Figure 9c. 

 
Figure 9. Estimation errors (EEs) of all test group images with FVCref ranging from 0.3 to 0.6, obtained by (a) T1 method, 
(b) T2 method, and (c) fixed-threshold method. NWS, MWS, and SWS represent no water stress, intermediate water stress, 
and severe water stress, respectively. 

4.4.2. Validation of the Fixed-Threshold Method 
To validate the performance of the fixed-threshold method, the initial threshold 

(−2.72) and the adjusted threshold (−4.60) were applied to the validation image groups 

Figure 8. Part of the (a) RGB image captured from fully irrigated plots, with FVCref of 0.67; (b) the
FVCref obtained by supervised classification via Environment for Visualizing Images (ENVI); and
comparison of FVC maps obtained by using (c) T1 method, (d) T2 method, and (e) the fixed-threshold
method proposed in this study.
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4.4.2. Validation of the Fixed-Threshold Method

To validate the performance of the fixed-threshold method, the initial threshold (−2.72)
and the adjusted threshold (−4.60) were applied to the validation image groups (Val_full
and Val_ws). The Val_full image group includes 18 images captured in fully irrigated plots.
The Val_ws image group includes 16 images captured in plots suffering different levels
of water stress. A high correlation (R2 = 0.99, RMSE = 0.02) between FVC estimations
obtained by the fixed-threshold method and FVCref can be observed in Figure 10a. The EEs
shown in Figure 10b were concentrated near 0, with a mean value of 0.012 and standard
deviation of 0.018.
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5. Discussion
5.1. Selecting the Appropriate Color Feature for a GMM-Based Threshold Method

The first key step to estimate crop FVC using a GMM-based threshold method is
the selection of the appropriate color feature. In previous studies [25,26], the separability
distance index (SDI) was proposed as the criterion to select the color feature. A larger SDI
means that it should be easier to separate vegetation from non-vegetated backgrounds.
However, in this study, the H channel had the largest SDI with mean values of 1.50 and 1.45
for Test_full and Test_ws image sets (Figure 11). At the same time, the greatest MAE was
observed for the H channel among the four color features when the T1 method was used.
The a*_I color feature outperformed other color features, with MAEs of 0.021 and 0.047 for
Test_full and Test_ws image sets using the T1 method. These results indicate that the color
feature with the largest SDI may not always result in a low FVC EE, and the SDI cannot
be used as the sole criterion to choose an appropriate color feature. Once the Gaussian
distributions of green vegetation and backgrounds can be successfully fitted within all the
color features, the ability of each color feature to identify green vegetation may be the key
to influence the FVC estimation accuracy [21]. Future studies are needed to quantify the
ability of SDI to separate green vegetation from backgrounds within a color feature, and to
find the threshold where the Gaussian distributions of vegetation and backgrounds can be
accurately fitted.
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5.2. The Fixed-Threshold Method Provides the Most Accurate FVC Estimations

Threshold-based approaches have been widely applied to RGB images with high
spatial resolution. Some threshold methods are based on a GMM, which is fitted on one
color feature derived from RGB images, representing the distribution of green vegetation
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and backgrounds [26]. However, these methods perform unstably when the canopy is
nearly closed [9,48] and show an obvious overestimation when crops suffer from severe
water stress. Firstly, to investigate the performance of GMM fitting of images with different
levels of FVC, a sequence that fits the GMM was simulated and white noise was added to
it. To make the sequence more practical, mean values and standard deviations similar to
those from green vegetation and backgrounds on the a*_I color feature were used. Different
levels of FVC were simulated by changing the weight of the distribution of backgrounds.
All sequences representing different levels of FVC were processed to fit the GMM, and R2

was calculated based on the real GMM and the GMM fitted from the sequence. The change
of R2 with the weight of the distribution of backgrounds is shown in Figure 12. The R2 was
not stable and was less than 0.90 when the weight of the distribution of backgrounds is less
than 0.2, which means that the GMM fitting and threshold results are not accurate when
FVC is high.
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Second, the FVC of crops under water stress was overestimated by these threshold
methods based on GMM. More severe water stress led to higher MAE (Table 6). When
the T1 method was used, the MAEs obtained from MWS and SWS plots were increased
by 0.016 (61.5%) and 0.031 (119%), respectively, compared with those from NWS plots. A
similar phenomenon was observed for the T2 method. This may result from the spectral
changes of crops caused by pigment changes at the leaf level. Water stress can affect the leaf
pigment content, such as chlorophyll content [36]. The leaf chlorophyll content decreases
as crop water stress increases, resulting in a minimal reflectance in the green spectrum.
The T1 and T2 methods were applied on the a*_I color feature, which is relative to the
green-red opponent colors, with negative values toward green and positive values toward
red. Therefore, green vegetation with lower chlorophyll content has a higher a*_I value,
which makes it more difficult to distinguish green vegetation from the background. Further
study is needed to explain this specifically.

In this study, the proposed fixed-threshold method addressed the problems mentioned
above. Compared with the T1 and T2 methods, the new method exhibits stronger robust-
ness, especially when the canopy is nearly closed (Table 5) and provides similar accuracy
for images with different levels of water stress (Table 6). The new method is highly accurate
and robust to different vegetation cover levels and water stress levels, with an overall
RMSE of 0.02 and R2 of 0.99 for both test group images (Figure 7c) and validation group
images (Figure 10a). Similar results were observed in [12], which showed that the optimal
threshold of VARI images for sugar beet segmentation tends to be around a constant value
of 0.14.
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Table 6. The mean absolute errors (MAEs) obtained from plots with no water stress (NWS), interme-
diate water stress (MWS), and severe water stress (SWS) using different methods.

Method Water Stress Level MAE

T1

NWS 0.026
MWS 0.042
SWS 0.057

T2

NWS 0.082
MWS 0.189
SWS 0.207

Fixed-threshold
NWS 0.014
MWS 0.013
SWS 0.014

In the fixed-threshold method, the initial threshold was −2.72 for maize with FVCref
less than 0.5, and the adjusted threshold was −4.60 for maize with FVCref equal to or
greater than 0.5. The adjusted threshold is smaller than the initial threshold, which may be
due to the changes in spectral reflectance at different FVC levels. In the visible spectrum,
the reflectance of blue and red bands is negatively correlated with the FVC of maize [49].
However, there was no obvious correlation between the reflectance of the green band and
the FVC of maize [49]. With the increase in maize FVC, the decrease in the reflectance of
red and blue bands leads to a decrease in the a*_I color feature. Hence, for the maize with
greater FVCref, the threshold is slightly lower than that of maize with smaller FVCref. The
critical point was set at the FVC of 0.5 because there was an obvious change in threshold
before and after 0.5 (Figure 6). The reason why the threshold changes a lot around an FVC
0.5 still needs to be studied in the future.

In addition to having higher FVC estimation accuracy and robustness, the proposed
fixed-threshold method is simpler and more efficient. Once the initial threshold and the
adjusted threshold have been obtained, the time to extract FVC of maize using the fixed-
threshold method is less than the time using the T1 or T2 method. Taking the test group
image as an example, the time to extract FVC using the fixed-threshold method is 43.63
and 56.05 s/per image faster than T1 and T2, respectively (Table 7).

Table 7. The time to estimate FVC of maize using three different threshold methods in R with a
2.4 GHz computer processor.

Method Time (s/per Image)

T1 48.01
T2 60.43

Fixed-threshold 4.38

6. Conclusions

This study proposed a fixed-threshold method based on the statistical analysis of the
thresholds obtained using the T1 method. In this method, some images were selected and
processed to obtain the initial threshold and the adjusted threshold, which can be applied
to all images collected from plots with different levels of FVC and water stress. As such,
the proposed method addressed the problems of robustness and accuracy that occur when
the canopy is nearly closed, or when crops are subjected to water stress. Compared with
the two threshold methods (T1 and T2 methods), the fixed-threshold method generated
more accurate and robust FVC estimations, especially for maize with high FVC or under
severe water stress. The performance of the fixed-threshold method was assessed based
on FVCref with an RMSE of 0.02 and R2 of 0.99 for both test group images and validation
group images. The results strongly suggest that the fixed-threshold method could provide
an efficient and accurate way to obtain reference FVC used for validating FVC estimations
obtained from UAV or satellite remote sensing platforms.
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