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Abstract: This paper presents a composite kernel method (MWASCK) based on multiscale weighted 

adjacent superpixels (ASs) to classify hyperspectral image (HSI). The MWASCK adequately exploits 

spatial-spectral features of weighted adjacent superpixels to guarantee that more accurate spectral 

features can be extracted. Firstly, we use a superpixel segmentation algorithm to divide HSI into 

multiple superpixels. Secondly, the similarities between each target superpixel and its ASs are cal-

culated to construct the spatial features. Finally, a weighted AS-based composite kernel (WASCK) 

method for HSI classification is proposed. In order to avoid seeking for the optimal superpixel scale 

and fuse the multiscale spatial features, the MWASCK method uses multiscale weighted superpixel 

neighbor information. Experiments from two real HSIs indicate that superior performance of the 

WASCK and MWASCK methods compared with some popular classification methods. 

Keywords: hyperspectral image (HSI); multiscale superpixel; spectral-spatial classification;  

composite kernel 

 

1. Introduction 

Hyperspectral images can be regarded as a collection of corresponding single image 

obtained in response to different spectral bands. The abundant spectral bands contain a 

large amount of spectral information, which makes hyperspectral images (HSIs) have a 

wide range of application prospects [1], such as classification [2], unmixing [3], target de-

tection [4,5], etc. In recent decades, HSI classification has been widely concerned by schol-

ars in the remote sensing field. Hyperspectral research in the domain of classification 

means that given a labeled training set, classification is to label each pixel with a corre-

sponding category according to the spectral features of the target pixel. Hence, many ap-

proaches have emerged to classify HSI, such as a powerful pixel-wise classifier called sup-

port vector machine (SVM) [6], maximum likelihood [7], sparse representation classifica-

tion (SRC) [8–10], Collaborative representation (CRC) [11], etc. 

Most approaches only exploit spectral features to classify the HSI without any spatial 

information, which makes them sensitive to noise and cannot obtain satisfactory results. 

As demonstrated in [12], hyperspectral data should be viewed as a textured image, not 

simply as a few unrelated pixels. For this reason, many HSI classification methods com-

bining spectral and spatial features have been proposed continuously, and the well-pleas-

ing classification results have also been obtained. The classical spatial feature extraction 

methods include wavelets [13], Gabor filter [14], 3-D Gabor filter [15], and other spatial 

feature extraction operators that can exploit the image texture information. The extended 

morphological profiles [16] method utilizes a series of continuous morphological filter to 

capture spatial features of adjacent pixels. Moreover, the methods based on Markov ran-

dom fields (MRF) [17–19] have achieved excellent classification performance to classify 

hyperspectral images. The joint sparse representation [20–24] methods achieve a 

smoother result by jointly representing the adjacent pixels while representing the target 
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pixels. Furthermore, the low-rank representation [25–30] approaches have also been ap-

plied to classify the HSI. Moreover, several kernel-based spatial-spectral approaches are 

developed to integrate spatial-spectral features. For instance, the composite kernel (CK) 

[31] method (i.e., SVMCK) replaces each target pixel with the mean value of the square 

neighborhood centered on the target pixel, so as to extract spatial features and thus show 

good classi-fication performance. On this basis, many multiple kernels learning methods, 

such as extreme learning machine with CK [32], CK discriminant analysis [33], and sub-

space multiple kernels learning [34], have also been used to classify HSI, effectively im-

proving the classification accuracy. Unlike CK, the spatial-spectral kernel (SSK) only con-

structs a kernel function to exploit the spatial and spectral features in feature space. Many 

SSK-based [35–37] methods have also achieved satisfactory results. In CK and SSK, their 

classification results tend to be too smooth, with blurred edges and small targets lost, since 

the region used to extract spatial information is usually set as a square region centered on 

the target pixel, and the fixed size square neighborhood leads to insufficient use of the 

spatial information of the target pixel. 

The ideal neighborhood should be one that can accommodate different HSI struc-

tures in size and shape and has a similar spectrum. The adaptive non-local strategy and 

global-based non-local strategy are the most commonly used methods to obtain homoge-

neous regions. Both of them assume that the original cluster is composed of two non-

overlapping subclusters, and only one of them is effective, achieving excellent classifica-

tion performance in [38–40]. Superpixel segmentation has been extensively developed in 

computer vision [41–43] in recent years. According to texture structure of the image, su-

perpixel segmentation algorithm can cluster the image into many non-overlapping homo-

geneous regions. Each superpixel can change its shape and size adaptively through its 

different texture structure. Hence, various superpixel-based approaches are proposed to 

classify HSI. For instance, in [44], the composite kernel based on superpixel (SCK) method 

captures spatial features by calculating the mean of each superpixel. In [45], the super-

pixel-based multiple kernels (SCMK) method utilizes the spectral and spatial features be-

tween and within superpixels by three kernels. In [46], the relaxed multiple kernels based 

on region (RMK) method achieves multiscale feature fusion to obtain the spatial features 

by kernel fusion. In [47], the multiscale spatial-spectral kernel based on adjacent super-

pixel (ASMGSSK) method utilizes the adjacent superpixels (ASs)-based strategy and mul-

tiscale feature fusion to obtain the spatial-spectral information. The aforementioned meth-

ods can achieve outstanding classification performance. However, in HSI, the adjacent 

pixel information belongs to different classes influence each other [47]. Based on this rea-

son, most superpixel-based methods only consider the inner information of each super-

pixel, which makes it hard to preserve edge region. 

In this paper, we present a composite kernel based on multiscale weighted adjacent 

superpixel (MWASCK) method to classify HSI. Firstly, we divide the HSI into multiscale 

superpixels by adopting the entropy rate superpixel segmentation (ERS) [43] algorithm. 

Secondly, on each scale, the similarities between each current AS and its neighbor ASs are 

calculated to construct the spatial features. At this time, we can obtain multiscale spatial 

features. Finally, a multiscale composite kernel approach combining original spectral fea-

tures with multiscale spatial features is proposed. 

The remainder of this paper is organized as follows. Section 2 introduces SVM with 

CK and superpixel multiscale segmentation techniques. In Section 3, we closely describe 

the details of the proposed methods. Experimental results and related parameter analysis 

are given in Sections 4. Section 5 concludes this paper. 

2. Related Work 

2.1. CK with SVM 

At present, SVM is one of the best supervised learning algorithms. Its purpose is to 

find a hyperplane, which can divide the data correctly on both sides of the hyperplane. 
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Given a set of labeled training data {(𝑥1, 𝑦1), ⋯ , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥𝑖 ∈ 𝑅𝑁, 𝑦𝑖 ∈ {−1, +1}, 

and a mapping function 𝜙, which maps data from the current dimensional space to a 

higher dimensional space to change the nonlinear distribution of data into a linear distri-

bution. SVM attempts to find a classification hyperplane with a maximum interval by 

solving Lagrangian dual problem:  

max {∑ 𝛼𝑖 −
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉𝑖,𝑗𝑖 }, (1) 

which is constrained to 0 ≤ 𝛼𝑖 ≤ 𝐶 and ∑ 𝛼𝑖𝑦𝑖 = 0𝑖 , 𝑖 = 1, ⋯ , 𝑛. 𝛼𝑖 is the Lagrange mul-

tiplier. The kernel function 𝐾 can be expressed as the inner product between two in-

stances after a nonlinear transformation, which is as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉, (2) 

Using kernel function 𝐾 instead of inner product, the decision function of nonlinear 

SVM obtained by solving dual problem is as follows: 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑛
𝑖=1 ), (3) 

where 𝑏 is a linear classifier parameter. 

The following radial basis function (RBF) kernel can achieve the same performance 

as other nonlinear kernel functions with fewer parameters, and is one of the most widely 

used kernel functions in SVM: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−‖𝑥𝑖 − 𝑥𝑗‖
2

/2𝜎2), (4) 

The CK function is formulated by the spectral and spatial information, which should 

fulfil Mercer’s condition [48]. Let 𝑥𝑖
𝑠𝑝𝑒 denote the spectral information of a pixel 𝑥𝑖. The 

CK method utilizes the mean or variance of the square region of the target pixel 𝑥𝑖 to 

obtain spatial information 𝑥𝑖
𝑠𝑝𝑎 . The spectral kernel 𝐾𝑠  and spatial kernel 𝐾𝑤  can be 

computed via (4): 

𝐾𝑠(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−‖𝑥𝑖
𝑠𝑝𝑒

− 𝑥𝑗
𝑠𝑝𝑒

‖
2

/2𝜎𝑠
2), (5) 

𝐾𝑤(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−‖𝑥𝑖
𝑠𝑝𝑎

− 𝑥𝑗
𝑠𝑝𝑎

‖
2

/2𝜎𝑤
2) , (6) 

where, 𝜎𝑠  and 𝜎𝑤  are respectively the hyperparameters of 𝐾𝑠 and 𝐾𝑤 . Thus, the CK 

can be constructed as follows: 

𝐾𝐶𝐾 = 𝜇𝐾𝑠(𝑥𝑖
𝑠𝑝𝑒

, 𝑥𝑗
𝑠𝑝𝑒

) + (1 − 𝜇)𝐾𝑤(𝑥𝑖
𝑠𝑝𝑎

, 𝑥𝑗
𝑠𝑝𝑎

), (7) 

where 𝜇 is a spectral kernel weight. 

2.2. Superpixel Multiscale Segmentation 

In recent years, more and more HSIs classification methods exploit spatial infor-

mation through superpixels. According to texture features, the image can be segmented 

into homogeneous regions (i.e., superpixels) of similar size and non-overlapping. Pixels 

in HSI usually have hundreds of spectral bands. Most of the information in these spectral 

bands has little influence on the classification results. Therefore, we use principal compo-

nent analysis (PCA) [49] to remove the information which has little effect on classification 

to improve the segmentation efficiency. 

In this paper, due to the most important information of the HSI is contained in first 

principal component (PC), we adopt a powerful entropy rate superpixel (ERS) [43] seg-

mentation algorithm for obtaining segmentation map through first PC image. Firstly, the 

superpixel number is given as 𝑄, the first PC image is represented by a graph 𝐺 = (𝑉, 𝐸). 

where 𝑉 is the vertex set corresponding to pixels in PC image, 𝐸 is the edge set repre-
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senting the similarity among adjacent pixels. Then, ERS aims to form a compact and ho-

mogeneous superpixel by finding a subset of edges 𝐴 ⊆ 𝐸. The following is the objective 

function: 

max
𝐴

{𝐻(𝐴) + 𝜆𝐵(⋅)}  𝑠. 𝑡.  𝐴 ⊆ 𝐸, (8) 

where 𝐻(𝐴) represents the entropy rate of random walk of the first PC image, 𝐵(⋅) is the 

balance term, which makes the size of superpixels similar, and 𝜆 represents the equilib-

rium parameter between 𝐻(𝐴) and 𝐵(⋅). The first PC image is segmented into superpix-

els by using the greedy algorithm [50] to maximize the above objective function. For su-

perpixel multiscale segmentation, a variety of multiscale segmentation methods are pro-

posed. In this paper, we take the approach in [47] directly. Given the number of base su-

perpixel 𝑄 and the scale number 𝑀, the number of superpixels per scale can be obtained 

by using the following formula: 

𝑄𝑠 = 𝑄 × 2𝑠−1, 𝑠 = 1, ⋯ , 𝑀, (9) 

After we figure out 𝑄𝑠, the segmentation map per scale can be obtained by ERS di-

rectly. 

3. The Proposed Method 

3.1. Weighted Adjacent Superpixel-Based Composite Kernel (WASCK) 

We proposed the WASCK method to classify the HSI by utilizing the spectral-spatial 

features. The spatial neighborhood used in CK is constructed in a square region centered 

on each target pixel, which makes the objects be affected by backgrounds. In order to re-

duce this effect, the SCK method uses the information of superpixels to find the homoge-

neous region. Furthermore, we use adjacent superpixels information and its location in-

formation of each superpixel to construct a weighted ASs. The weighted ASs strategy can 

reduce the impact of undesired superpixels by assigning different weights to adjacent su-

perpixels. Figure 1 shows a simple example of different spatial region selection strategies. 

It can be seen that there are two different ground object targets, denoted as green and red 

respectively. Figure 1a–c show the strategies of the square neighborhood, superpixel 

neighborhood and weighted ASs neighborhood, respectively. Figure 1d–f show the cor-

responding features extracted under three strategies. Since the size of square neighbor-

hood is artificially chosen and fixed, for a target pixel 𝑥𝑖, if the size is too large, it will 

contain irrelevant pixels (i.e., red pixel). On the contrary, if the size is too small, more 

effective spatial information cannot be considered. It is difficult to find a suitable size for 

all target pixels, so the spatial features cannot be fully extracted to the classification (see 

Figure 1d). Figure 1b is the superpixel-based strategy. The size and shape of each super-

pixel can be adapted to vary based on different spatial structures. However, this strategy 

may cause the problem that each superpixel is too small to obtain effective spatial infor-

mation on account of over-segmentation (see Figure 1e). Figure 1c is the weighted ASs-

based strategy, where {𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3, 𝑆𝑖4} are superpixels adjacent to the target superpixel 𝑆𝑖 

and {𝐷𝑖1 , 𝐷𝑖2, 𝐷𝑖3 , 𝐷𝑖4} are the corresponding centroids. By assigning smaller weights to 

dissimilar superpixels (i.e., 𝑆𝑖4), this strategy can maintain ASs-based homogeneous re-

gions to a large extent, and effectively reduce the adverse effects of dissimilar superpixels. 

The color of feature also demonstrates that the weighted ASs neighborhood will produce 

the most accurate result (see Figure 1f). Therefore, the weighted ASs strategy can effec-

tively exploit spatial-spectral features of ASs. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 1. Different spatial region selection. (a) Square; (b) Superpixel; (c) Weighted adjacent superpixels (ASs). (d) Features 

of square region; (e) Features of superpixel region; (f) Features of weighted ASs region. Note that the greener the color in 

(d,e,f), the more accurate the features. 

The WASCK method integrates the weighted ASs strategy and CK together. Let 𝑋 ∈

𝑅𝐵×𝐼 be the HSI, where 𝐵 is the depth of HSI and 𝐼 is the number of pixels. Firstly, given 

a superpixel number 𝑃 , the HSI 𝑋  can be segmented into 𝑃  superpixels 
{𝑆1, … , 𝑆𝑖 , … 𝑆𝑃} ∈ 𝑅𝐵×𝑃 by ERS on the first PC image. For each superpixel 𝑆𝑖, its adjacent 

superpixels can be denoted as {𝑆𝑖1, … , 𝑆𝑖𝑘 , … , 𝑆𝑖𝑝}, where 𝑝 is the number of adjacent su-

perpixels. At the same time, we can get the corresponding centroids {𝐷𝑖1, … , 𝐷𝑖𝑘 , … , 𝐷𝑖𝑝} 

to each adjacent superpixel. Since the feature of each superpixel can be represented by its 

mean pixel 𝑆𝑖𝑘
𝑚𝑒𝑎𝑛, the weight of each superpixel can also be calculated by 𝑆𝑖𝑘

𝑚𝑒𝑎𝑛 (𝐷𝑖𝑘). In 

order to exploit spatial features and location information of adjacent superpixels, the spa-

tial information of 𝑥𝑖 can be denoted as: 

𝑥𝑖
𝑊𝐴𝑆 =

1

∑ 𝑑𝑖𝑘𝑤𝑖𝑘𝑘
∑ 𝑑𝑖𝑘𝑤𝑖𝑘𝑆𝑖𝑘

𝑚𝑒𝑎𝑛𝑝
𝑘=1 , (10) 

where 𝑑𝑖𝑘 = 𝑒𝑥𝑝(−‖𝐷𝑖 − 𝐷𝑖𝑘‖2/2𝜎𝑑
2) and 𝑤𝑖𝑘 = 𝑒𝑥𝑝(−‖𝑆𝑖

𝑚𝑒𝑎𝑛 − 𝑆𝑖𝑘
𝑚𝑒𝑎𝑛‖2/2𝜎𝑟

2) represent 

the correlation of location information and spatial information between the current super-

pixel and its adjacent superpixels, respectively. 𝜎𝑑 and 𝜎𝑟 are the broadband parameter 

of the function, which controls the radial action range. Then, the WASCK we constructed 

can be expressed as follows: 

𝐾𝑊𝐴𝑆𝐶𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜇𝐾𝑠(𝑥𝑖
𝑠, 𝑥𝑗

𝑠) + (1 − 𝜇)𝐾𝑤(𝑥𝑖
𝑊𝐴𝑆, 𝑥𝑗

𝑊𝐴𝑆), (11) 

After the kernel function is obtained, the decision formula is obtained by substituting 

Equation (11) into Equation (3). 
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3.2. Multiscale Weighted Adjacent Superpixel-Based Composite Kernel (MWASCK) 

The WASCK method only uses the single-scale weighted ASs to extract the spatial 

features. Here, the fusion of superpixel spatial information under different segmentation 

scales is considered to improve classification performance. Considering that it is possible 

to avoid seeking for the optimal superpixel scale and fuse the spatial multiscale features, 

the MWASCK method is utilized in the framework of WASCK as follows: 

𝐾𝑀𝑊𝐴𝑆𝐶𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜇𝐾𝑠(𝑥𝑖
𝑠, 𝑥𝑗

𝑠) + (1 − 𝜇)
1

𝑀
∑ 𝐾𝑠

𝑤(𝑥𝑖
𝑊𝐴𝑆 , 𝑥𝑗

𝑊𝐴𝑆)𝑀
𝑠=1 , (12) 

where 𝑀 can be selected empirically and represents the number of total scales. 𝐾𝑠
𝑤 can 

be acquired by the spatial kernel 𝐾𝑤 of Equation (11) directly and represents spatial ker-

nel on scale 𝑠. As in the above case, we can obtain the decision formula by substituting 

Equation (12) into Equation (3). Figure 2 shows the flowchart of using weighted ASs fea-

tures to classify HSI via MWASCK. 

 

Figure 2. Flowchart of the proposed composite kernel based on multiscale weighted adjacent su-

perpixel (MWASCK) method. 

4. Experimental Results 

4.1. Datasets 

Indian Pines: This is a 145 × 145 image taken from a test site for Indian Pine in 

Northwest Indiana by AVIRIS sensor. Each pixel in the image contains 220 wavelengths, 

covering wavelengths from 0.4 to 2.5 μm. By removing the 20 wavelengths that are ab-

sorbed by water vapor we end up with 200 wavelengths. Table 1 details the 16 available 
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reference categories. The training samples required for the experiment are randomly se-

lected from 3% of each category and the rest for testing. 

Table 1. The number of training and test samples in two real hyperspectral image (HSI) datasets. 

Indian Pines University of Pavia 

Class Name Train Test Class Name Train Test 

C01 Alfalfa 2 52 C1 Asphalt 30 6601 

C02 Corn-no till 44 1390 C2 Meadows 30 18,619 

C03 Corn-min till 26 808 C3 Gravel 30 2069 

C04 Corn 8 226 C4 Trees 30 3034 

C05 Grass/pasture 15 482 C5 Metal sheets 30 1315 

C06 Grass/trees 23 724 C6 Bare soil 30 4999 

C07 Grass/pasture-mowed 2 24 C7 Bitumen 30 1300 

C08 Hay-windrowed 15 474 C8 Bricks 30 3652 

C09 Oats 2 18 C9 Shadows 30 917 

C10 Soybeans-no till 30 938     

C11 Soybeans-min till 75 2393     

C12 Soybean-clean 19 595     

C13 Wheat 7 205     

C14 Woods 39 1255     

C15 Building-Grass-Trees-Drives 12 368     

C16 Stone-Steel-Towers 3 92     

Total 322 10,044 Total 270 42,506 

University of Pavia: This is a 610 × 340 image taken from the University of Pavia by 

ROSIS sensor. Each pixel in the image contains 115 wavelengths, covering a wavelength 

from 0.43 to 0.86 μm. By removing 12 wavelengths affected by the noise we end up with 

103 wavelengths. Table 1 details the 9 available reference categories. The training samples 

required for the experiment are randomly selected from 30 of each category and the rest 

for testing. 

4.2. Experimental Results 

In the experiments, several kernel-based classification methods are used to compare 

with our method: support vector machine with RBF kernel (SVM-RBF) [6] method, the 

classic support vector machine with composite kernel (SVMCK) [31] method, the super-

pixel-based multiple kernels (SCMK) [45] method, the relaxed multiple kernel based on 

region (RMK) [46] method and the multiscale spatial-spectral kernel based on adjacent 

superpixel (ASMGSSK) [47]. The overall accuracy (OA), average accuracy (AA) and 

Kappa coefficient are used as evaluation criterion of algorithm performance. Moreover, 

the average results of ten randomized tests are used as the final experimental data. The 

optimal parameters of the proposed WASCK and MASCK approaches are set as follows. 

For proposed methods, the value chosen for spectral kernel weight 𝜇 is 0.1, the value 

chosen for 𝜎𝑑 is 2−3, the 𝜎𝑟 and 𝜎𝑠 in Equation (5) are set to 2−2, the 𝜎𝑤 in Equation (6) 

is set to 2−7 in Indian Pines dataset and is set to 2−6 in University of Pavia dataset. To 

simplify the statement, we use 𝑠𝑛𝑢𝑚 to represent the number of superpixels. The optimal 

𝑠𝑛𝑢𝑚 for the WASCK is set to 1400 in Indian Pines dataset and is set to 1100 in University 

of Pavia dataset. The multiscale 𝑠𝑛𝑢𝑚  for the MWASCK is set to 
{100,200,400,800,1600,3200}  in Indian Pines dataset and is set to 
{200,400,800,1600,3200,6400} in University of Pavia dataset. The comparison methods 

choose their optimal parameter settings. In addition, after fivefold cross-validation, SVM 

training parameters are selected. The multiple methods based on SVM in this paper are 

calculated by using LIBSVM [51] toolbox. 
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Figures 3 and 4 show classification maps of multiple approaches for two datasets. 

Obviously, the map of SVM-RBF method shows many noisy estimations, which only con-

siders the spectral information. SVMCK method uses the spatial features of HSI to acquire 

a smoother classification map. However, the detail and edge regions still have a lot of 

misclassified pixels. The SCMK and RMK methods achieve better classification maps by 

considering the multiple kernels and the spatial information of ASs. The ASMGSSK 

method further achieves satisfactory classification maps by integrating the ASs strategy 

and multiscale feature fusion together. Moreover, the WASCK method also provides a 

smoother classification map and maintains the details. The MWASCK approach achieves 

the best classification map than the other compared classifiers by considering the 

weighted ASs strategy and multiscale structures of HSI.  

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 

Figure 3. Classification maps for the Indian Pines image. (a) Ground truth; (b) SVM-RBF; (c) SVMCK; (d) SCMK; (e) 

RMK; (f) ASMGSSK; (g) WASCK; (h) MWASCK. 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 

Figure 4. Classification maps for the University of Pavia image. (a) Ground truth; (b) SVM-RBF; (c) SVMCK; (d) SCMK; 

(e) RMK; (f) ASMGSSK; (g) WASCK; (h) MWASCK. 

Tables 2 and 3 present the experimental data of multiple approaches for two datasets. 

Obviously, SVM-RBF method achieves very poor accuracy, which only considers the spec-

tral features. The SVMCK method improves the OA value by adding spatial features 

within a square region. SCMK and RMK methods achieve higher accuracy by considering 

the multiple kernels and spatial information of ASs, respectively. By taking into consider-

ation the spatial features of the ASs and multiscale structures of HSI, The ASMGSSK 

method also achieves satisfactory classification accuracy. In addition, the WASCK ap-

proach has obtained excellent classification accuracy by considering the weighted ASs 

strategy. Moreover, the MWASCK method achieves the best accuracy than the other com-

pared classifiers by considering the weighted ASs strategy and multiscale structures of 

HSI.  
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Table 2. Classification accuracy for the Indian Pines dataset. 

Class SVM-RBF SVMCK SCMK RMK ASMGSSK 
Proposed Approaches 

WASCK MWASCK 

C01 57.12 31.35 87.69 100 95.77 88.85 94.42 

C02 74.06 81.27 85.27 94.32 97.18 93.7 97.14 

C03 65.61 78.49 83.86 98.09 99.01 97.49 98.9 

C04 46.95 66.64 81.11 92.48 94.34 89.42 94.42 

C05 85.56 82.86 86.85 91.58 92.55 91.95 92.51 

C06 94.65 95.03 96.42 97.73 98.48 98.19 98.67 

C07 72.92 66.25 92.5 96.25 96.25 94.58 96.25 

C08 95.11 94.81 98.78 99.49 99.87 99.94 99.7 

C09 86.11 74.44 100 100 97.22 84.44 96.67 

C10 66.59 78.9 91.34 93.14 95.54 94.21 95.7 

C11 79.64 86.46 93.17 98.25 98.54 98.09 98.53 

C12 70.94 70.24 85.48 95.9 97.5 95.66 97.66 

C13 98.49 91.71 95.85 99.07 99.02 97.32 99.02 

C14 95.41 95.85 98.1 99.69 99.19 99.8 99.94 

C15 39.59 68.59 88.37 97.99 98.1 96.03 97.93 

C16 84.78 86.09 90.43 95.65 93.91 96.63 95.87 

OA (%) 78.18 84.09 91.08 96.82 97.73 96.56 97.85 

Std (%) 0.99 1.52 1.11 0.48 0.36 0.47 0.4 

AA (%) 75.84 78.06 90.95 96.85 97.03 94.77 97.09 

Std (%) 2.52 2.22 0.93 0.48 0.81 1.17 0.74 

Kappa 0.7507 0.8187 0.8982 0.9637 0.9742 0.9608 0.9755 

Std 0.0111 0.0175 0.0127 0.0054 0.0041 0.0053 0.0046 

Table 3. Classification accuracy for the University of Pavia dataset. 

Class SVM-RBF SVMCK SCMK RMK ASMGSSK 
Proposed Approaches 

WASCK MWASCK 

C1 69.21 86.14 90.83 95.98 97.9 98.93 97.23 

C2 72.49 92.06 92.6 97.52 97.83 97.85 98.15 

C3 72.57 80.12 92.64 99.31 99.73 99.57 99.86 

C4 92.41 94.34 92.36 96.25 91.82 95.34 97.82 

C5 99.33 99.48 98.71 99.03 98.73 98.82 99.43 

C6 74.47 88.93 94.04 99.05 99.06 99.24 99.93 

C7 89.65 93.99 98.78 99.6 99.04 98.9 99.72 

C8 77.74 82.26 96.38 99.41 98.61 97.89 99.47 

C9 97.67 99.54 94.58 97.84 98.55 99.21 98.99 

OA (%) 75.99 89.96 93.23 97.74 97.8 98.18 98.5 

Std (%) 2.16 1.9 1.89 0.81 0.77 0.67 0.48 

AA (%) 82.84 90.76 94.55 98.22 97.92 98.42 98.96 

Std (%) 0.8 0.61 0.75 0.40 0.56 0.23 0.32 

Kappa 0.6953 0.8684 0.9112 0.9701 0.9709 0.9759 0.9801 

Std 0.0239 0.0236 0.0240 0.0106 0.0101 0.0088 0.0063 

Deep learning approaches have been used to classify HSIs in recent years. This paper 

also compares several excellent CNN-based deep learning methods: the deep CNN [52] 

method, the CNN based on contextual deep (CD-CNN) [53] method and the CNN based 

on diverse region (DR-CNN) [54] method. Table 4 shows the classification accuracies un-

der the selection of different number of training samples in each category. For Indian Pines 

dataset, we only chose to use the first nine larger categories. Obviously, in the case of a 
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small number of training samples, the MWASCK shows a better classification result com-

pared with the deep learning methods. Since CNN needs more training samples to reach 

its maximum capacity. Therefore, the advantage of our method is that it still has excellent 

classification performance when the training samples are limited. In addition, we further 

compared the MWASCK with another a fully dense multiscale fusion network (FDMFN) 

[55] method under the same training samples on the Indian Pines and Kennedy Space 

Center (KSC) datasets. The details of the KSC datasets can be found in [55]. The classifica-

tion results are shown in Table 5. Obviously, our method also shows an outstanding clas-

sification performance. 

Table 4. Overall accuracy (OA) values of different methods under different training samples on 

two datasets. 

 Indian Pines University of Pavia 

Samples CNN CD-CNN DR-CNN MWASCK CNN CD-CNN DR-CNN MWASCK 

50 80.43 84.43 88.87 98.82 86.39 92.19 96.91 99.02 

100 84.32 88.27 94.94 99.19 88.53 93.55 98.67 99.48 

200 87.01 94.24 98.54 99.49 92.27 96.73 99.56 99.62 

Table 5. Classification accuracy of the MWASCK and the FDMFN on Indian Pines and Kennedy 

Space Center datasets. 

 Indian Pines Kennedy Space Center 
 FDMFN MWASCK FDMFN MWASCK 

OA (%) 96.72 98.17 99.66 99.98 

AA (%) 95.06 97.53 99.41 99.97 

Kappa 0.9626 0.9791 0.9962 0.9998 

4.3. Discussion 

Figure 5 illustrates the line graph of the OA values of WASCK method under differ-

ent number of superpixels (𝑠𝑛𝑢𝑚). The weighted ASs-based strategy requires smaller size 

of superpixels to form larger homogeneous regions. Hence, when 𝑠𝑛𝑢𝑚  is large, the 

WASCK has better classification performance. However, it will result in over-segmenta-

tion and cannot extract spatial information effectively when 𝑠𝑛𝑢𝑚 is too large, and then 

the classification performance will decline. As it can be observed, the optimal 𝑠𝑛𝑢𝑚 for 

two datasets is 1400 and 1100, respectively. It can also be found that when the optimal 

𝑠𝑛𝑢𝑚 is exceeded, classification performance of the WASCK will degrade. 

  

(a) (b) 

Figure 5. OA values of WASCK under different number of superpixels. (a) Indian Pines; (b) University of Pavia. 
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Figure 6 illustrates the OA values of single-scale and multi-scale MWASCK under 

different training samples. SN marked in the figure represents the number of superpixels. 

Obviously, with a limited training sample, single-scale MWASCK with fewer superpixels 

can obtain higher OA, while single-scale MWASCK with more superpixels can obtain 

higher OA with sufficient training samples. Therefore, it has been confirmed that spatial 

information cannot be effectively utilized by small scale superpixels with limited labeled 

samples. In addition, when a large number of superpixels are selected to achieve better 

experimental data, the spatial information of weighted ASs cannot be exploited effectively, 

resulting in poor classification performance (see SN = 3200 and SN = 6400 in Figure 6b). 

Meanwhile, when enough training samples are selected, the limitation of the segmenta-

tion algorithm will lead to the failure to improve the OA value. The proposed MWASCK 

method not only improves the OA values, but also avoids selecting the optimal 𝑠𝑛𝑢𝑚 

and sufficient number of samples. 

  

(a) (b) 

Figure 6. OA values of single-scale and multi-scale MWASCK under different training samples. (a) Indian Pines; (b) Uni-

versity of Pavia. 

Figure 7 illustrates the effect of the spectral kernel weight associated with WASCK 

and MWASCK. The interval between 0 and 1 as the value of the spectral kernel weight. 

Obviously, the WASCK and MWASCK show poor classification performance on two da-

tasets when we assign a value of 0 or 1 to the spectral kernel weight (i.e., only using spatial 

features of weighted ASs or spectral features). On the contrary, the proposed methods 

show good classification performance when the spatial information is utilized (i.e., the 

spectral kernel varies from 0.1 to 0.9). This suggests that we should combine spectral fea-

tures with spatial features of the weighted ASs to classify HSI. It is worth noting that when 

the interval between 0.1 and 0.9 as the value of the spectral kernel weight, the performance 

of the proposed methods on two datasets generally degrades. This tells us that we should 

assign a relatively large weight to the spatial kernel. 
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(a) (b) 

Figure 7. OA values under different spectral kernel weights. (a) WASCK; (b) MWASCK. 

Figure 8 illustrates the effect of the kernel width 𝜎𝑤 on two datasets. We can observe 

that the MWASCK has a more robust kernel width value than WASCK. Meanwhile, the 

proposed WASCK and MWASCK can show better classification performance when 𝜎𝑤 

goes from 2−5 to 2−10 on Indian Pines dataset and goes from 2−3 to 2−10 on University 

of Pavia dataset. 

  

(a) (b) 

Figure 8. OA values under different kernel width 𝜎𝑤. (a) Indian Pines; (b) University of Pavia. 

Figure 9 shows the line chart of OA values of several methods for two datasets under 

different training sample numbers. As can be observed, with the increase of training sam-

ple numbers, classification accuracy is getting higher and higher. At the same time, the 

WASCK and MWASCK methods provide superior performance compared with other 

classification approaches. It is worth noting that classification accuracies of the MWASCK 

are higher than other compared methods on different training samples. 
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(a) (b) 

Figure 9. Effect of training sample numbers for different algorithms. (a) Indian Pines; (b) University of Pavia. 

Table 6 presents the time costs of the WASCK and MWASCK on the Indian Pines 

dataset and University of Pavia dataset. All of our experiments are run on a laptop com-

puter with an Intel Core i5-8265U CPU 1.60 GHz and 8GB of RAM. Obviously, the super-

pixel segmentation and kernels computation processes take up most of the computation 

time. In addition, since the segmentation algorithm in [43] is efficient, the superpixel seg-

mentation stage does not consume much time. For the MWASCK on the University of 

Pavia dataset, since the maximum number of superpixel segmentation reaches 6400, the 

calculation cost of segmentation and kernels computation is greatly increased. It is worth 

noting that once the segmentation of superpixels has been completed, the pixels within 

each superpixel share the same spatial information, and additional costs of this process 

will not increase with the increase of the number of samples. 

Table 6. Time costs (in seconds) of the WASCK and MWASCK on two datasets. 

Time Cost 
Indian Pines University of Pavia 

WASCK MWASCK WASCK MWASCK 

Superpixel segmentation 0.09 0.45 1.15 6.84 

Kernels computation 0.82 4.46 4.28 61.76 

SVM training 2.05 2.18 1.06 0.87 

SVM testing 0.11 0.13 0.75 0.84 

Total 3.07 7.22 7.24 70.31 

5. Conclusions 

In this paper, WASCK and MWASCK methods are proposed to classify the HSI. The 

WASCK fully utilizes spatial and location information of the weighted ASs. In addition, 

the multiscale method is adopted in the framework of WASCK (i.e., MWASCK) to effec-

tively exploit multiscale superpixel spatial and location information of the HSI. Experi-

ment results have indicated that the WASCK and MWASCK achieve the desired excellent 

classification performance. 

In the experiments, the optimal spectral kernel weight was not selected for each test 

pixel. The spectral kernel weight was only selected as a fixed value empirically and used 

jointly by all the test pixels. Therefore, the optimal spectral kernel weight can be obtained 

adaptively through the local distribution of target pixels. In addition, an excellent super-

pixel segmentation technique will also show better classification performance. 

In the future, deep features [56–59] will be considered to be exploited and integrated 

into the composite kernel framework for obtaining more accurate results. Moreover, how 
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to adaptively decide the weight of each base kernel is also an open problem, optimal al-

gorithm such as particle swarm optimization [60,61] will be considered and studied. 
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