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Abstract: Monitoring temporal dynamics of rangelands to detect and understand change in vegeta-
tion cover and composition provides a wealth of information to improve management and sustain-
ability. Remote sensing allows the evaluation of both abrupt and gradual rangeland change at un-
precedented spatial and temporal extents. Here, we describe the production of the National Land 
Cover Database (NLCD) Back in Time (BIT) dataset which quantified the percent cover of rangeland 
components (bare ground, herbaceous, annual herbaceous, litter, shrub, and sagebrush (Artemisia 
spp. Nutt.) across the western United States using Landsat imagery from 1985 to 2018. We evaluate 
the relationships of component trends with climate drivers at an ecoregion scale, describe the nature 
of landscape change, and demonstrate several case studies related to changes in grazing manage-
ment, prescribed burns, and vegetation treatments. Our results showed the net cover of shrub, sage-
brush, and litter significantly (p < 0.01) decreased, bare ground and herbaceous cover had no signif-
icant change, and annual herbaceous cover significantly (p < 0.05) increased. Change was ubiqui-
tous, with a mean of 92% of pixels with some change and 38% of pixels with significant change (p < 
0.10). However, most change was gradual, well over half of pixels have a range of less than 10%, 
and most change occurred outside of known disturbances. The BIT data facilitate a comprehensive 
assessment of rangeland condition, evaluation of past management actions, understanding of sys-
tem variability, and opportunities for future planning. 

Keywords: fractional components; rangeland; remote sensing; sagebrush; time-series; trends anal-
ysis; climate impacts 
 

1. Introduction 
Rangelands are a spatially extensive land cover type worldwide and in the Western 

United States. Many ecosystem goods and services are provided by rangelands including 
wildlife habitat, livestock forage, erosion control, recreational, and cultural resources. At 
the same time rangelands are subject to increasing pressure from climate change, altera-
tions to historical fire dynamics, energy development, and recreation. Moreover, many 
western United States rangelands have large interannual variations in climate conditions 
(e.g., [1,2]), gradual change related to succession and long-term climate change [3] and are 
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affected by perhaps the second worst drought in 1200 years [4]. The high evaporation rates 
coupled with the low, and highly variable, precipitation make arid and semiarid regions 
acutely sensitive to climate variability and various other perturbations. 

Remote sensing offers the means of evaluating abrupt and gradual rangeland change 
at unprecedented spatial and temporal extents [5]. Dense time-series data over regional 
extents provide opportunities to comprehensively analyze the condition of rangeland re-
sources, evaluate the success of past management actions, understand system variability, 
and plan for the future. Many of these efforts have relied on Landsat imagery (e.g., [6,7] 
whose 30-m resolution typically reflects the mean landscape structure [8] to quantitatively 
monitor change at ecosystem scales. This approach increases product accuracy, increases 
the detection of subtle changes related to ecosystem health and condition, and facilitates 
the determination of change drivers [9]. Data at these scales allows researchers to better 
match the spatial and temporal scale of monitoring data to that of the phenomena being 
studied [3,8]. 

Ecosystems are in a constant state of flux, some of this change may be considered 
noise in one application, but may be critical signal in another [9]. For most rangeland ap-
plications, fractional cover maps are needed to successfully parameterize state-and-tran-
sition models (e.g., calculate transition probabilities among states). Fractional cover maps 
can capture abrupt (e.g., fire, and land clearing), gradual (e.g., succession, and drought), 
and seasonal (e.g., interannual variability due to weather) changes [10]. Though not a di-
rect measure of rangeland health, fractional cover maps can be used to determine the ef-
fectiveness of past management practices and to improve future management, when eval-
uated over long time scales. 

Several recent studies have created time-series fractional component datasets across 
the western United States. Jones et al. [6] used National Resources Inventory (NRI) and 
Analysis, Inventory, and Monitoring (AIM) field data, Random Forest models, and 
Google Earth Engine to predict the fractional cover of components across the western 
United States over the Landsat 5–8 archive. The National Land Cover Database (NLCD) 
Back in Time (BIT) dataset quantifies the percent cover of rangeland components (bare 
ground, herbaceous, annual herbaceous, litter, shrub, and sagebrush (Artemisia spp. Nutt.) 
across the western United States using Landsat imagery at an annual time-step from 1985 
to 2018 [3]. The BIT dataset was produced using extensive field observations, change de-
tection, and Regression Tree (RT) models. Previous generations of BIT predictions pro-
duced only for the Great Basin were analyzed by Rigge et al. [3] and Shi et al. [11]. The 
current generation of BIT components have been robustly validated through comparison 
to high resolution imagery [12] and long-term field monitoring plots [13]. 

Relative to the previous generation of BIT products described by Rigge et al. [3], we 
have made several key improvements in the current iteration. First, we have pooled train-
ing data through space and time to make more comprehensive and robust models for each 
component. Next, we implemented more aggressive change detection and simultaneously 
used algorithms to identify and remove noise in the time-series predictions. Our main 
objectives are to fully describe the methodology used to produce the BIT data and inves-
tigate component trends over the time-series. The overall BIT approach emphasized (1) a 
temporally harmonious product and (2) detection of gradual change. Secondary goals are 
to evaluate correspondence in ecoregion-scale climate and component cover trends, assess 
component relationships with disturbance, and describe the nature of landscape change. 
We demonstrate case studies of BIT data application in several resource management con-
cerns. 

2. Materials and Methods 
2.1. Study Area 

Our study area encompasses nearly 3 million km2 across much of the western United 
States, of which 71% was identified as rangeland [14] (Figure 1). We include most of the 
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base mapping area described by Rigge et al. [14] but exclude several Channel Islands and 
small sections of the California coast. The region spans 33 U.S. Environmental Protection 
Agency (EPA) level III (i.e., moderate-scale) ecoregions [15], 16 states, and a large range 
of biophysical conditions and vegetation communities. Our mapping region includes 
nearly all the sagebrush biome, as defined by Jeffries and Finn [16]. Much of the region is 
federally managed by the Bureau of Land Management (BLM) or U.S. Forest Service 
(USFS). Fire is the most widespread disturbance, with 14.2% burned between 1985 and 
2018 according to Monitoring Trends in Burn Severity (MTBS) data. Other frequent driv-
ers of change are interannual climate variation, energy development, mining, infrastruc-
ture (pipelines, roads, etc.) development, vegetation treatments, and grazing. 

 
Figure 1. Environmental Protection Agency Level III ecoregions. 

2.2. Method Overview 
The BIT suite quantified the percent cover of bare ground, herbaceous, annual her-

baceous, litter, shrub, and sagebrush (Artemisia spp. Nutt) components across the western 
United States using 30-m Landsat imagery from 1985 to 2018. We use an automated 
method, extending from Rigge et al. [3] to identify change in spectral conditions between 
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each year in the Landsat archive and the circa 2016 base map [14] (Figure 2). Next, we use 
the unchanged portion of the circa 2016 base map to train RT models predicting compo-
nent cover in each year. We pooled training data in areas identified as having no spectral 
change relative to the base across all years in the time-series and used a series of proce-
dures to remove the most spatially and temporally common values. Yearly fractional com-
ponent cover outputs were inserted in the changed area while the base map was main-
tained in the unchanged area. We used a series of post-processing models to ensure accu-
rate and unbiased post-burn trajectories and eliminate noise and illogical change in the 
predictions. Processing occurred on individual Landsat path and rows which were sub-
sequently mosaicked to a regional level. 
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Figure 2. Flow chart of major processing steps for Back-in-Time (BIT) data production. Cubist Regression Tree (RT) models 
were used to generate spatial outputs. 

2.3. Base Map-Training Data Development 
The training data for the BIT time-series were obtained from the circa 2016 base frac-

tional component cover maps developed across the western United States [14]. Briefly, 
these data were produced by training a series of 2-m high-resolution satellite images (n = 
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331) using observations collected in the field. High-resolution predictions for each com-
ponent were completed using Cubist RT models [17]. For a complete description of com-
ponents, see Supplement 1 of [14]. Because component cover can change throughout the 
course of a growing season [5], our predictions were targeted to capture the highest veg-
etation cover within the year. Using the degraded high-resolution training, field plots col-
lected directly at a Landsat scale (n = 5382), and BLM Analysis, Inventory, and Monitoring 
(AIM) plots (n = 3226) as training, we predicted component cover at a regional scale using 
three seasons of Landsat imagery. Non-rangeland pixels (forest, urban, etc.) were masked 
out from the final products [14]. The circa 2016 base fractional cover products used to train 
the BIT were validated using a series of independent field data collected across the west-
ern United States (n = 1860) and with cross-validation relative to training data. Component 
accuracy at independent validation sites across all components had a mean coefficient of 
determination (R2) of 0.46 and a root mean squared error (RMSE) of 10.37%, and cross-
validation accuracy had a mean R2 value of 0.72 and an RMSE of 5.09% For more detail on 
the methods used to prepare the base fractional components, see [14]. 

2.4. BIT Process 
2.4.1. Image processing 

We selected a summer and fall Landsat 5, 7, or 8 image for each year in the 1985–2018 
study period. We used two seasons of imagery in the BIT process compared to three in 
the production of the 2016 base as it was determined that doing so sufficiently captured 
change. The year 2012 was excluded because only scan line corrector-off Landsat 7 im-
agery were available. Images were selected based on a balance of several competing cri-
teria. First, the date (but more importantly the phenology) of the summer and fall images 
of a given target year correspond to that of the base year summer and fall images. Second, 
cloud, shadow, snow cover, and active burns within the analysis extent of the image are 
minimized. A total of 172 Worldwide Reference System (WRS) path-rows were used for 
the mapping region covering the western United States. Selected imagery were Landsat 
Collection 1 Level-2, top of atmosphere products at 30-m resolution in the Albers Equal 
Area map projection. The Quality Assessment (QA) band for each selected image was 
used to exclude clouds, shadows, haze, and snow cover. 

2.4.2. Ancillary Data 
In addition to Landsat imagery, we included several ancillary variables in the regres-

sion modelling of fractional components. We obtained topographic data from a 30-m dig-
ital elevation model from the National Elevation Dataset, including slope, aspect, and 
topographic position index. For each selected Landsat image, three spectral indices were 
calculated, the Soil Adjusted Vegetation Index (SAVI), Normalized Difference Burn Index 
(NDBI), and Normalized Difference Water Index (NDWI). Monitoring Trends in Burn Se-
verity (MTBS) and GeoMac burn data were used to produce a suite of burned area prod-
ucts. We obtained 800-m gridded climate data from PRISM (Parameter-elevation Rela-
tionships on Independent Slopes Model) [18] to conduct climate analysis and accuracy 
assessment. The monthly PRISM data were used to calculate the growing season (GS) 
(April–September) and non-growing season (NGS) (October–March) mean minimum and 
maximum temperature (TMIN and TMAX, respectively), and the GS and NGS precipita-
tion (PRCP) totals for each year from 1985 to 2018. This process yielded six annual climate 
variables GSPRCP, NGSPRCP, GSTMAX, NGSTMAX, GSTMIN, and NGSTMIN. 

2.4.3. Land Cover Masking 
Products were masked using the base land cover mask [14] which included pixels 

identified as non-rangeland in circa 2016. Some pixels identified as rangeland in the base 
year were previously (or later) non-rangeland land covers. We developed a series of ER-
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DAS Imagine (Hexagon Geospatial) models to detect and mask out pixels that were inun-
dated with water or were actively farmed (i.e., agriculture) at any point in the time-series. 
Specifically, to exclude water, we calculated the maximum NDWI through the time-series, 
adding pixels with 0% topographic slope and a high NDWI value to the land cover mask. 
Next, to exclude potential agriculture, we highlighted pixels with both a high maximum 
SAVI value and a high amount of mean variance between summer and fall. We used ele-
vation, land ownership, and ecoregion data to remove commission from pixels identified 
as agriculture. The water and agriculture masks were added to the base mask and applied 
throughout the process for each path-row and to the final components. 

2.4.4. Normalization 
An approach was developed to normalize the individual scenes in the same season 

to the base year image [11,19]. This approach improves the harmonization of images from 
different Landsat sensors and reduces differences among scenes within a time period. Lin-
ear regression models were fit for the spatial relationship between band x of a given sum-
mer/fall target year image and band x of the summer/fall image from the base year. Pixels 
with cloud, shadow, or snow cover and those that were recently burned were removed 
from the normalization regressions. This procedure is completed for all six spectral bands 
and for both seasons. The regression parameters of slope, y-intercept, and correlation were 
used to adjust the spectral band values of the target year image, so that spatial mean 
matched that of the base year. If the R2 value of a given seasonal pair regression was less 
than 0.30, the scene was flagged, and either additional cloud masking was applied, or a 
new image was selected. Normalization serves to minimize spectral differences related to 
difference among Landsat sensors, phenological variability, sun angle, and atmospheric 
contamination. The normalized imagery was only used for identifying change pixels, with 
non-normalized imagery reserved for component predictions. One consequence of nor-
malization is that it can subdue the map depiction of real change occurring on the land-
scape; however, in most cases the change removed by normalization is overwhelmingly 
noise. 

2.4.5. Change detection 
Each normalized target and base image pair (i.e., summer target and summer base, 

fall target and fall base) is compared using a Change Vector (CV) approach, finding dif-
ferences in spectral values by band [3,11,19]. These are summed across bands to produce 
a change vector magnitude value for each image pair. If a pixel has a CV magnitude be-
yond a standard deviation threshold in a given target image, for a given NLCD 2016 land 
cover class, it is flagged as changed [3,11,19]. Two out of two seasons (summer and fall) 
agreement is needed for a pixel to be flagged as changed between a target and base year. 
The requirement for two season agreements is critical to remove cloud, shadow, and haze 
influence missed by the QA bands. 

In addition to the CV value approach, we include a secondary change detection 
method that considers the range of CV values through time at each pixel. We determine 
how each yearly CV magnitude compares to the range, allowing us to better contextualize 
the nature of change. We define this metric as Change Fraction (CF), which considers three 
weighted attributes. First, the seasonal CV magnitude score for a given image in relation 
to the CV magnitude range per pixel constituted 50% of the total score. This gives a high 
value to pixels with a high amount of spectral change relative to the total range of varia-
tion in the time-series. Second, the CV magnitude range per pixel, relative to the maxi-
mum in each path-row, was 25% of the total score. This gives a high value to pixels with 
a high total variation in the time-series relative to those pixels with lower variation 
through time. Third, the CV magnitude per pixel relative to the maximum CV magnitude 
in each path-row, each year, was 25% of the total score. This gives a high value to pixels 
with a high amount of spectral change relative to the maximum change in that given im-
age. 
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The total CF score for each season is calculated in addition to the difference in score 
between summer and fall. Because pixels with a high amount of difference in CF score 
between seasons in a year are often indicative of haze/atmospheric contamination (in ad-
dition to real change), we calculate two versions of the CF, one for defining changed areas 
(CFdetection), and a second for labeling change (CFlabel). Specifically, in this advancement in 
methodology relative to Rigge et al. [3], we use a more aggressive approach (i.e., detect 
more change) to define changed areas, CFdetection, given as the maximum CF across seasons. 
To define areas in which component change should be labeled, CFlabel, we again take the 
maximum of the seasonal CF scores, unless the difference between seasons is large, in 
which case we take the minimum of the two seasons. In both CF approaches, areas of 
cloud cover are ignored in the calculation. The benefits of creating two versions of CF are 
that doing so reduces the impacts of haze/clouds/shadow/other atmospheric issues in the 
training data (i.e., it creates more pure training data), and it gives us the ability to retain 
the base predictions in these same areas where the evidence of change is low/suspect. In 
other words, it creates spectral change “buffer” between pixels used as training and those 
labeled as change. 

We used a convergence of evidence approach to produce the final change area in each 
target year, considering both the CV and CFdetection. The combination of CV and CFdetection 
scenarios that best captured known change and minimized false change were selected 
based on testing multiple combinations in areas known to have changed and not changed. 
Specifically, change was captured if the CV indicates change and CFdetection > 30 or if the 
CV does not indicate change and CFdetection > 80. If either scenario is satisfied, then the pixel 
is flagged as changed in that target year. Determination of change in pixels with cloud 
cover in one season is based on the CV and CFdetection values from the non-cloudy season, 
if both seasons are cloudy, no change can be detected in that target year. This procedure 
produces a time-series of changed/unchanged areas which allow changed areas to be la-
beled with the appropriate fractional component cover and unchanged areas to be used 
to train target year predictions. 

2.4.6. Training 
Within the potential training area, we randomly sampled 200,000 pixels for every 

target year. To these points, we extract the dependent and independent variables and the 
SAVI temporal mean per pixel. Independent variables included slope; aspect; topographic 
position index; non-normalized target year Landsat images; SAVI; NDWI; NDBI; and 
summer thermal band of each target year. Next, we append all yearly sampled data files 
per components into a combined spatiotemporal database. We apply two procedures to 
the training database to improve prediction spatiotemporal dynamic range. First, to im-
prove dynamic range through space, we randomly remove half the observations within 
one standard deviation of the mean for each component [20]. Next, to improve temporal 
dynamic range, we compare the ratio of the yearly summer SAVI conditions relative to 
the long-term mean. Wet years will have values over 100, dry years lower than 100. We 
again remove half of the observations within one standard deviation of the mean. The 
overall objective being to stretch out component histograms through space and time. For 
shrub and sagebrush only, we placed 30,000 points in recently burned areas (those burned 
in the target year and preceding four years) to which we assigned a dependent variable 
value of 0% cover. We then appended those observations to train burned areas in the 
shrub and sagebrush components. The presence of non-zero observations within the main 
data pool ensures that we do often predict >0% cover in burned areas, especially in un-
burned islands. 

The training data selection procedure produces a unique changed/unchanged foot-
print for each year, with the mean component cover value potentially varying over 
through time within the unchanged (i.e., training data) area. Because training data are 
pooled through time, the differences in training data available in each year, a potentially 
confounding effect, are eliminated. Instead, the differences in component cover mapped 
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through time are related only to differences in the spectral conditions in the Landsat im-
ages. Pooling training data through time also has the benefit of exposing the RT models 
to a greater dynamic range of values; additionally sites that were changed in a given year 
still influence the prediction in that year if they were unchanged in other years. There are 
two important and unavoidable limitations to our training data approach. First, all train-
ing data are derived from the well-trained and validated (see Section 2.3) 2016 base map; 
however, they are linked to unique spectral conditions in each target year. Second, there 
is some spectral change below our thresholds in the “unchanged” training area in each 
target year. This change below the thresholds is small but is critical to calibrate training 
data to the specific yearly conditions and results in predictions that are more robust to the 
range of conditions occurring through time. 

2.4.7. Component Prediction 
We developed Cubist RT models for each component using the spatiotemporal train-

ing pool and the full set of independent variables. We developed the Cubist models for 
the spatiotemporal training dataset but applied the model to data from each target year 
to produce component cover predictions. A second set of predictions was run for shrub 
and sagebrush, using training data that included the burned area observations. This 
burned area prediction for shrub and sagebrush was inserted in pixels that burned in the 
target year or preceding 4 years, while the standard prediction was kept elsewhere. In 
pixels with cloud or shadow cover in either season of the target year, we filled the target 
year prediction with that of the prediction from the preceding target year. 

2.4.8. Change Labeling 
In pixels meeting the criteria of change, described in Section 2.4.5, except using CFlabel 

data, we apply the target year prediction. If the pixels are identified as non-changed, the 
base year prediction was maintained. Next, we limited component cover change in three 
situations. First, if component change between a given target and base year was greater 
than thresholds described in Table 2 of Rigge et al. [3], we lowered it to the maximum of 
the limit range. Second, we summed the primary fractional components (bare ground, 
litter, herbaceous, and shrub) in each pixel, which should sum to near 100%. We identified 
pixels with a primary component summation over 110% or less than 90% and adjusted 
the bare ground value so the sum of primary components was 110 and 90%, respectively. 
For example, if the summation of primary components was 115%, and bare ground was 
55%, we lowered the bare ground to 50% so the summation would then be 110%. In cases 
where the sum was >90 and <110, no correction to bare ground occurred. Third, we deter-
mined the total number of components with change in each target year. If only 1 out of 6 
components in a pixel had change, the base year fractional component cover was main-
tained for all fractional components. The logic is that if one component changes, then other 
component(s) should change in response. 

2.5. Post Processing 
We created a series of models to ensure accurate post-burn temporal trajectories in 

shrub and sagebrush. First, we created a time since most recent fire layer where the value 
(years) accrues with subsequent years without a burn, resets to zero with every new burn, 
and accrues again thereafter. We created second-order polynomial regressions of shrub 
and sagebrush cover limits [3] by time since fire based on expert knowledge which allow 
more change than in the unburned area. If a shrub or sagebrush cover prediction is greater 
than this regression line, it is lowered to the limit; in practice this occurred in less than 
10% of cases. It is important to note that these limits are somewhat subjective and based 
on mean recovery conditions across the study area. However, this procedure is very con-
servative in lowering the rate of recovery in shrub and sagebrush following burns, influ-
encing ~1% of burned area predictions. Shrub and sagebrush cover would recover too 
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quickly in some cases in post-fire conditions based on spectral data alone (i.e., without 
this procedure), as the burn signature vanishes more quickly than the ecological impact. 
Such post-fire procedures are not possible for other components as they tend to not follow 
a recovery pattern as predictable as shrub and sagebrush. 

To correct for noise in the time-series we developed a model to detect and remove 
outliers, defined under two conditions. First, if pixel component cover in target year x is 
unchanged relative to the base, but the previous and following target years are changed, 
we replaced the component value in target year x with the mean of the previous and fol-
lowing years. Second, we compared each target year prediction to the prediction of the 
previous year, to determine if change is beyond broad limits set by expert knowledge. The 
limits for increase between years was 100% for bare ground, 5% for shrub and sagebrush, 
100% for litter, and 15% for herbaceous and annual herbaceous. The limits of decrease 
between years was −20% for bare ground, −100% for shrub and sagebrush, −10% for litter, 
and −100% for herbaceous and annual herbaceous. If change was beyond these limits, we 
replaced the predicted value with the limit. These noise removal procedures were imple-
mented only in pixels that never burned during the time-series. 

2.6. Mosaicking 
We used the mosaicking functions in ERDAS Imagine to mosaic data from all 172 

Landsat path-rows together to produce seamless products. First, automated seamlines 
were generated in overlap areas with the lowest component value difference. From these 
seams, feathering was applied to 990-m on either side of the cutline. After the ERDAS 
processing we did a visual inspection and addressed any seam lines or data voids within 
the mapping region. The pixel counts were reconciled for all components, for the mask 
value of 101 and the area outside the mapping region with a value of 102. Finally, we 
ensured that fractional component relationships were intact, (shrub > sagebrush and her-
baceous > annual herbaceous). If not, we forced the relationships to be intact by lowering 
sagebrush and/or annual herbaceous cover to be equal to shrub and herbaceous cover, 
respectively. 

2.7. Validation 
Two robust validation approaches have been previously applied by Rigge et al. [12] 

and Shi et al. [13] to evaluate the accuracy of the BIT product generation described in the 
current manuscript. Rigge et al. [12] compared BIT data to predictions of component cover 
on high-resolution satellite images over multiple locations and years (n = 77) in Wyoming, 
Nevada, and Montana. Results showed strong temporal correlations with a mean R2 of 
0.63 and RMSE of 5.47% and robust spatio-temporal correlations with a mean R2 of 0.52 
and RMSE of 7.89% across components. 

The second major validation approach compared BIT results to data from two long 
term monitoring sites in southwest Wyoming [13]. The field data included 10 years of 
consistent observation at 126 plots over the period of 2006–2018. The spatial-temporal cor-
relation across all 126 plots showed robust correlations for all components, with an R2 (and 
RMSE) of 0.69 (10.8) for bare ground, 0.40 (7.5) for shrub cover, and a mean of 0.46 (8.1) 
across components. Moreover, the BIT and field data generally showed similar responses 
to interannual variation in weather. Changes observed in both the field and BIT data at 
these sites were typically gradual, within-state, changes that are most difficult to resolve, 
but were successfully captured. In both BIT validation studies [12,13], the authors found 
no evidence that accuracy varies as a function of time. In the current study, we addition-
ally validate the BIT data through (1) comparison to weather data and (2) comparison to 
ancillary data in several case studies (methods described in Section 2.9). 

2.8. Trends Analysis 
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We calculated temporal trends in each component across the time-series using linear 
models applied to the mosaiced products. For each pixel, we calculated the slope, t-statis-
tic, and standard error using ordinary least squares linear regression. The slope represents 
the mean percent cover change per year over the times-series, given in units of (cover 
change%·year−1). 

The standard error measures the degree of departure from the linear slope model 
across all yearly observations in each pixel. Higher values indicate more variance about 
the mean. The t-statistic reflects the confidence of change in each pixel relative to the null-
hypothesis of no-change and is coded negative and positive according to the direction of 
change. The t-statistic can be used in a Student’s t-test to determine if a pixel has statisti-
cally significant change in component cover over the time-series. 

2.9. Statistics and Case Study Methods 
We evaluated yearly component cover change and annual climate in a sample of 

150,000 randomly located points across the study area. From this set of points we calcu-
lated the proportion of pixels that had changed at any point in the time-series, the propor-
tion with significant (p < 0.10) increase or decrease in component cover, and the mean 
component cover and climate variable trends for each level III ecoregion present in the 
study area. Next, we correlated ecoregion mean climate trends against mean component 
cover trends. 

We demonstrated the local scale accuracy and applicability of our fractional product 
time-series in three case studies. For the first case study we leveraged a study evaluating 
experimental prescribed (Rx) burn and control treatments conducted in Hart Mountain 
National Antelope Refuge, Oregon [21]. In this study, four pastures were burned in fall 
1997 and four adjacent pastures were unburned throughout our time-series. We digitized 
the pasture boundaries using Google Earth and calculated the mean component cover 
among treated and untreated pasture in each year of our study period. Next, we evaluated 
component change in riparian areas related to the removal of domestic livestock and wild 
horses. We obtained a repeat-photo (1990 and 2013) and plot location from Batchelor et al. 
[22] and compared our component cover values at these same time periods. 

In our second case study we evaluate component cover changes related to woody 
encroachment by honey mesquite (Prosopis glandulosa Torr.), vegetation treatments in the 
Land Treatment Digital Library [23], and energy development in southeast New Mexico. 
We demonstrate the departure in component cover related treated compared to untreated 
sites. 

In our third case study, we investigate the impacts of wildfire on component cover 
values and the trajectories of recovery following burns (n = 4) in southwest Idaho and 
North Central Nevada. We calculate the mean shrub, herbaceous, and bare ground cover 
in each fire for all years in the time-series, independently. Next, for clearer visualization, 
we calculated the departure from the time-series mean component cover in each burned 
area separately, where positive values indicate higher component cover than the long-
term mean in that year. 
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3. Results 
3.1. Overall Trends 

Component cover varied substantially though space and time (Figures 3 and 4). Our 
results showed the net cover of shrub, sagebrush, and litter significantly (p < 0.01) de-
creased, bare ground and herbaceous cover had no significant change, and annual herba-
ceous cover significantly (p < 0.05) increased (Figure 4). Temporal trends were somewhat 
different in pixels that did not burn during the study period, specifically shrub and annual 
herbaceous cover had no significant change and sagebrush cover increased significantly 
(p < 0.10). Most pixels changed at least once over the study period (Supplement 1), ranging 
from 58.8% in sagebrush to 98.9% in bare ground (Table 1). Significant temporal trends (p 
< 0.10) occurred in a substantial minority of pixels, ranging from 26.1% in sagebrush to 
45.9% in shrub. The ratio of significant change direction varied among components—de-
crease was predominant in shrub, sagebrush, herbaceous, and litter, and increase more 
common in annual herbaceous and bare ground (Table 1). Across the study period a slight 
net increase in GSPRCP (0.75 mm) and slight decrease in NGSPRCP (−5.4 mm) was ob-
served on average across the study area. Temperature variables were more temporally 
dynamic with a large net increase in NGSTMAX (+1.12 °C), GSTMIN (+0.94 °C), and es-
pecially NGSTMIN (+1.54 °C). 

Spatial patterns of component trends were highly inter-related; for example, bare 
ground slope was negatively related to herbaceous slope (r = −0.46, p < 0.05), litter slope (r 
= −0.57, p < 0.05), and shrub slope (r = −0.41, p < 0.05). Clear patterns in the temporal slope 
of component cover are evident in burned areas; for example, shrub cover has dramatic 
increases within the 1988 burned areas in Yellowstone National Park in northwest Wyo-
ming (Figure 3). Conversely, in the more recent large burns in California chaparral (e.g., 
Mendocino Complex and Camp Fire in 2018), shrub cover decreased, and herbaceous 
cover and bare ground increased. While change in burned areas is common, it represents 
a minority of the overall significant change in the study area, with only 17.3% and 22.3% 
of significant change in the bare ground and shrub components related to burns, respec-
tively (Table 1). Regional patterns in component cover trends are also evident, with in-
creased bare ground in the desert Southwest and Southern Great Plains and decreased 
bare ground in the Northern Great Plains (Northwestern Great Plains and Northwestern 
Glaciated Plains) (Figure 3). 

Table 1. Summary statistics for linear trends in fractional component cover observed over the 1985–2018 study period. 
Total percentage of pixels with any change in component cover, significant (p < 0.10) decrease, significant increase, with 
significant change in either direction, and the ratio of significant decrease pixels to significant increase (where positive 
values indicate decrease is more common). 

Linear Trend Shrub Sage. Herb. Annual Herb. Bare Ground Litter 
Changed (%) 98.1 58.8 97.2 98.5 98.9 97.5 

Decrease (p < 0.10) (%) 26.7 14.8 22.2 12.6 20.9 24.5 
Increase (p < 0.10) (%) 19.2 11.3 18.6 18.6 21.1 16.7 

Total (p < 0.10) change (%) 45.9 26.1 40.9 31.2 42.0 41.3 
Ratio of decrease to increase 1.39 1.31 1.19 0.68 0.99 1.47 

Change (p < 0.10) in burns (%) 1 22.3 23.4 18.6 33.8 17.3 18.5 
1 Proportion of significant change occurring in areas burned during the 1985–2018 study period. 
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Figure 3. Temporal slope of component cover from 1985 to 2018 calculated using linear models developed for each pixel. 
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Figure 4. Fractional component cover averaged yearly across the study area (black line) and in areas unburned across the 
study period (gray line) (A–F). Mean growing season (April–September, black line) and non-growing season (October–
March, gray line) climate variables for 1985–2018 (G–I). Significance is indicated as *, **, and *** for significance levels p < 
0.10, p < 0.05, and p < 0.01, respectively. 

3.2. Level III Ecoregion Trends 
Component cover (Figure 5) and climate (Figure 6) trends strongly differed by level 

III ecoregions. Shrub cover decreased considerably in ecoregions with extensive burn his-
tories, namely the Canadian Rockies, Idaho Batholith, Sierra Nevada, and Southern Cali-
fornia Mountains. Shrub and sagebrush cover increased in the Northern Great Plains and 
Wyoming, and Middle Rockies with more limited burn history and increasing GSPRCP 
and NGSPRCP. Herbaceous cover tended to increase, and bare ground tended to de-
crease, in many of the same areas. Large increases in bare ground were observed in Ari-
zona, New Mexico, and Texas, especially in the Chihuahuan Desert. This increase in bare 
ground appears to be related to decreased herbaceous cover in the same regions, itself 
related to decreased GSPRCP and NGSPRCP (Figure 6). Annual herbaceous cover in-
creased in most ecoregions, except in some portions of California through Washington 
(e.g., Southern California/Northern Baja Coast, Central California Foothills and Coastal 
Mountains, and Columbia Plateau). In many ecoregions (13/33) annual herbaceous cover 
increased despite a decrease in herbaceous cover overall. 

A strong dichotomy exists in precipitation trends where NGSPRCP decreased in the 
south and increased in the north (Figure 6). GSPRCP trends showed increases in the north-
east and southwest and decrease elsewhere. Temperature variables increased nearly eve-
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rywhere across the study period, with the largest increases observed in the Southern Rock-
ies, Middle Rockies, Idaho Batholith, and Sierra Nevada ecoregions (Figure 6). Con-
versely, GSTMIN and GSTMAX decreased in the Northern Great Plains. Ecoregion aver-
age climate trends were related to component trends, with the strongest drivers across 
components being GSTMAX, NGSTMAX, and GSPRCP. Bare ground was by far the most 
sensitive to climate, especially to GSTMAX and NGSTMAX, which are critical drivers of 
plant vapor pressure deficit. At an ecoregion scale, we found GSPRCP trends were nega-
tively associated with bare ground trends (r = −0.34), and positively related with shrub 
cover (r = 0.30). The impact of NGSPRCP tends to be somewhat weaker than GSPRCP, 
with a weak association with shrub cover (r = 0.06), but stronger influence on herbaceous 
trends (r = 0.23) than GSPRCP (r = 0.03). Maximum temperature variable trends were more 
strongly related to component cover trends (r = 0.28) than minimum temperature trends 
(r = 0.16) across all components. 

 
Figure 5. Component cover trends from 1985 to 2018 in rangeland pixels averaged by Environmental Protection Agency 
Level III ecoregions. 
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Figure 6. Growing season (April–September) and non-growing season (October–March) climate variable trends from 1985 
to 2018 in rangeland pixels averaged by Environmental Protection Agency Level III ecoregions. 
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3.3. Case Studies 
We evaluated component change related to fire, vegetation treatments, and grazing 

management in three case studies to demonstrate the local relevance and applicability of 
our data in disparate environments and change drivers. The first case study evaluates 
change in component cover related to a prescribed burn and control treatment study im-
plemented in Hart Mountain National Antelope Refuge in southeast Oregon [21] (Figure 7). 
Prescribed fire was implemented in 1997 in four units, with four unburned as a control. 
No other wildfire occurred within these treatments. Within the burn treatments, the se-
verity of burn varied substantially (Figure 7B inset, [21]). Our data show a downward 
trend in shrub (Figure 7D) and upward trend in herbaceous cover in burned units. Bare 
ground increased in some burned units, and decreased in others, but changed more than 
in control units (Figure 7C). Averaged across the control and burn treatments our data 
show a clear decline in shrub and increase in herbaceous cover immediately following the 
1997 fires, and little net change in the control units (Figure 7E). Cover differences among 
treatments persisted for the remainder of the time-series, with a gradual recovery of shrub 
(and decline in herbaceous) cover starting ~2005. Within the same management unit, live-
stock grazing was eliminated by 1991, and wild horse gathers occurred [22]. Our data 
show decreasing bare ground cover and increasing shrub cover in the riparian areas (lin-
ear red feature in upper left to center of Figure 7D) within the case study area. Two inset 
photos (Figure 7C,D) indicate the change in riparian vegetation between 1990 (grazed by 
livestock) and 2013 (no grazing). At the corresponding pixel, our data show a 17% reduc-
tion in bare ground, and a 22% and 4% increase in herbaceous and shrub cover, respec-
tively. 
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Figure 7. Component change related to experimental prescribed (Rx) burn and control treatments conducted by Ellsworth 
et al. [21] and altered management in Hart Mountain National Antelope Refuge, Oregon related to the removal of domestic 
livestock and wild horses [22]. (A) Landsat Image from August 8, 1997, (B) Landsat image from July 12, 2018, with inset 
Google Earth image from September 5, 2014, showing the heterogeneity in a burn severity in a treatment pasture 17 years 
after fire, and a second inset with the case study location, (C) temporal slope of bare ground from 1985 to 2018, inset is 
plot photo from August 15, 1990, (D) temporal slope of shrub cover from 1985 to 2018, inset is plot photo from August 8, 
2013, with text below showing change in fractional component cover in the pixel representing the photo location, (E) mean 
annual herbaceous and shrub cover in Rx burn and treatment pastures. For C and D, refer to Figure 3 for interpretation of 
slope symbology. Photo credit [22]. 
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Our second case study in southeast New Mexico demonstrates component cover 
change related to the invasion/densification of honey mesquite, the vegetation treatments 
intended to control its spread, and energy development (Figure 8). The vegetation treat-
ments in the case study area consisted of herbicide application, targeted to eliminate 
shrubs in general. Our data demonstrate mixed success in these treatments (implemented 
from 1981 to 2010), with overall decreasing shrub cover and bare ground in treated areas 
(Figure 8A,B). Patchy areas of increasing shrub cover remain within the treated areas, pos-
sibly a result of missed areas in treatment or the re-sprouting of shrubs including 
Havard/Shinnery oak (Quercus havardii Rydb.). In a plot treated in 2006, bare ground and 
shrub cover decreased by 1% and 11%, respectively, and herbaceous increased by 6% from 
1985 to 2018. In a plot untreated throughout the study period, bare ground, and herba-
ceous cover both decreased by 3% and shrub cover increased by 11% from 1985 to 2018. 
The impacts of energy development are also clear in the component cover trends, where 
oil pad sites and roads have a dramatically declining shrub and increasing bare ground 
cover. 
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Figure 8. Component cover changes related to woody encroachment by honey mesquite, vegeta-
tion treatments, and energy development in southeast New Mexico. (A) Temporal slope of shrub 
cover from 1985 to 2018, with Bureau of Land Management (BLM) vegetation treatments (herbi-
cide applications) outlined in black and year of treatment indicated. Inset map shows location of 
case study within the study area. Stars indicate the location of corresponding plot photos for a site 
treated with herbicide in 2006 and one without a treatment history, left and right, respectively. 
Photos include the fractional cover change from 1985 to 2018 in each plot. Photos taken on August 
20, 2016, credit M. Rigge, (B) temporal slope of bare ground cover from 1985 to 2018. For A and B, 
refer to Figure 3 for interpretation of temporal slope symbology. 

Our third case study demonstrates the impact of large (2300 to 20,500 ha) burns (n = 
4) on component cover, and subsequent recovery in southwest Idaho and north central 
Nevada (Figure 9). In all fires we document an increase in bare ground cover of 5 to 8% in 
the 5 to 10 years following fire. Shrub cover decreased by 6 to 10% immediately after fire, 
to near 0% cover. Recovery of shrubs occurred over the following 5 to 10 years. Herba-
ceous cover increased following only the Wilson Complex fire in 2005, in other fires it 
appeared that vegetation cover was lower overall, replaced with higher amounts of bare 
ground. Our analysis encompassed the entire burned perimeters, including many areas 
identified in the MTBS burn severity products as unburned areas or lightly burned which 
may impact the strength of changes related to fire. 
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Figure 9. Examples of the impacts of wildfire (timing indicated with vertical red line) on component cover values and the 
trajectories of recovery following burns in southwest Idaho and north central Nevada (location shown on inset map). The 
impacts of fire were plotted by calculating the departure from the time-series mean component cover in each burned area 
separately, where positive values indicate higher component cover than the long term mean in that year. Data reflect the 
mean condition within each burned area. 

3.4. Change Fraction Sensitivity 
This multi-level CF approach is possible due to the usage of two seasons of Landsat 

imagery per target year and is instrumental in reducing the influence of haze and other 
contamination (Supplement 2). Throughout our data we found no evidence of 
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cloud/shadow/haze contamination. The lower values of CFlabel in cloud/haze/shadow 
cover relative to the CFdetection results in a lower likelihood of false change being labeled in 
the final products. However, if there is meaningful change in the non-cloudy season, it 
will be captured. Moreover, the CF is instrumental to our focus of capturing gradual 
change. Figure 10 shows the sensitivity of the CF to modeled component cover difference 
in WRS path/row 37/31. Component cover absolute difference between base and target 
years increase robustly and nearly linearly with CFlabel values. These data indicate that on 
average, a 4.5% and 2.1% cover change is the minimum detection limit for bare ground 
and shrub cover, respectively. On the other extreme, we expect to capture bare ground 
and shrub cover change of >6.1% and >2.9%, respectively, in most cases. These data are 
based on means, our minimum detection limit could vary in practice through space and 
time. Annual herbaceous cover is limited in this path/row, resulting in a weak relation-
ship. 

 
Figure 10. Change Fraction (CF) sensitivity to fractional component change in WRS path/row 
37/31 (southwest Wyoming). Mean of the absolute fractional component change between base and 
target years by CF confidence level. Data are from across unburned portions of the path/row and 
span all target years from 1985 to 2018. CF values less than 30 are not displayed because no labeled 
change can occur below this threshold. 

4. Discussion 
Several biotic and abiotic mechanisms (e.g., climate changes, cheatgrass invasion, 

livestock fencing, industrial/energy development, land use change, and fire regimes) have 
driven declines in the quality and extent of sagebrush habitat (and rangelands overall) 
[24]. In many cases component cover change may be associated with change in commu-
nity state, making restoration of these lands difficult, especially in areas of low ecosystem 
resilience [24]. Modern management practices and land use decisions are often applied at 
the scale of individual pastures or ranches, which limits the opportunities related to land-
scape scale processes like fire, animal migrations, and metapopulation dynamics [25]. Our 
shrubland component cover estimates provide a wide lensed view of ecosystems, neces-
sary for assessing landscape and ecosystem scale patterns [24], that is also relevant to local 
decision making (e.g., gradients within a pasture). While both error and bias exist in our 
predicted component cover values, the latter is remediated when looking across relative 
changes through time, thus still providing valuable information. 

Net changes over the study area resulted in decreased shrub, sagebrush, herbaceous, 
and litter cover by 14,828, 2238, 3567, and 6575 km2, respectively and increased annual 
herbaceous and bare ground of 3707 and 5036 km2, respectively (Figures 3 and 4). Aver-
aging the component change across the study area does cancel out many regional specific 
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patterns (Table 1). Moreover, temporal variation in vegetation tends to be lower than that 
of spatial variability which widely varies by orders of magnitude across scales of meters 
to kilometers [8]. The ratio and intensity of change between increase and decrease drives 
the overall mean, with litter and shrub cover skewed most strongly to decreases and an-
nual herbaceous skewed most strongly to increases (Table 1). Indeed, when looking at 
pixels with significant (p < 0.10) change in either direction, between 661,313 km2 in annual 
herbaceous and 972,893 km2 in shrub experienced a change in component cover. Change 
is ubiquitous (e.g., Supplement 1); however, most of the change is gradual and/or small. 
Indeed, given the 33 years in the time-series a gradual change could be statistically signif-
icant. Looking at the range in component cover over the time series, well over half of pixels 
have a range of less than 10%, except for bare ground which has higher mean cover values 
(Table 2). Given the prevalence of relatively small cover ranges, paucity of pixels with no 
change, and that only 14.2% of the study area burned at any point between 1985 and 2018, 
clearly much of the change observed is occurring outside known disturbances (Table 1). 
Thus, it is likely that most component cover trends are related to gradual change such as 
range management practices, change in species composition, long-term climate trends, 
interannual climate variation, or invasion of annual grasses [10,19]. 

Table 2. Proportion (%) of study area by component cover range throughout the 1985–2018 time-
series. Range was calculated as the minimum cover value subtracted from the maximum cover 
value. 

Range (% Cover) Shrub Sage. Herb. Annual Herb. Bare Ground Litter 
0 1.46 0.67 2.34 0.53 0.66 1.99 

1 to 5 27.87 36.58 25.57 24.58 7.57 44.27 
6–10 35.84 39.34 27.43 44.55 21.74 37.91 

11–15 16.76 15.08 19.88 17.20 22.08 12.38 
16–20 7.45 5.93 12.17 8.23 17.21 2.81 
21–25 3.89 1.91 6.56 4.11 12.08 0.51 
26–30 2.29 0.43 3.19 2.21 7.81 0.09 
31–35 1.77 0.05 1.51 1.10 4.74 0.02 
>35 2.66 0.01 1.35 1.22 6.11 0.00 

Mean 10.54 7.93 11.18 10.35 17.14 6.59 

4.1. Ecoregion Level Trends 
Component cover trends varied dramatically among (Figure 5) and within ecore-

gions (Figure 3). Summarizing trends at an ecoregion level facilitates a gross understand-
ing of ecosystem scale change. One of the major ecoregion-scale patterns was the increase 
in shrub and sagebrush cover in the Northern Great Plains, Wyoming, and Middle Rock-
ies (Figure 5). In a study combining long-term field observations and a BIT data in south-
west Wyoming, Shi et al. [13] found that shrub and sagebrush cover were increasing, os-
tensibly related to climatic changes in the region, confirming in part our trends in the re-
gion. Bromley et al. [26] investigated climate trends over the Northern Great Plains from 
1970–2015, finding increased temperatures in winter months, but cooling trends in the 
spring, countering the prevailing global patterns (as seen in Figure 6 GSTMAX). Moreo-
ver, vapor pressure deficit mostly decreased, and precipitation increased (Figure 6) indi-
cating better growing conditions for plants, especially in grasslands where productivity 
is strongly related to precipitation [27,28]. The anomalous patterns in northern Great 
Plains, relative to global patterns, may be due to the reduction of summer fallow and ex-
pansion of agricultural land cover [26]. The climatic changes in the northern Great Plains 
are paralleled by significant long-term trends of increasing productivity and water and 
Nitrogen use efficiency, especially in the driest and warmest portions of this region 
[28,29]. Reeves et al. [28] also suggest that some increases in productivity in the northern 
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Great Plains may be driven by woody encroachment, which is suggested by the increasing 
shrub cover observed in the BIT over the same ecoregions (Figure 5). 

Severe droughts have occurred during the study period across the West [4], notably 
in the Chihuahuan Desert [2] and surrounding ecoregions. Droughts in the Chihuahuan 
Desert have reached such intensity that livestock grazing has been temporarily halted in 
some locations, or reduced as a hedge against drought, and perennial grass cover declined 
by 50% during drought years [2]. Perennial grass production decreased 43% in the Chi-
huahuan Desert of New Mexico from 1967–1992 to 1993–2018, with lower and more vari-
able precipitation and increased temperature in the latter time period [30]. At the same 
time, Asner et al. [31] found up to a 500% increase in woody cover in untreated areas from 
1937 to 1999 in northern Texas, and −75% to +280% woody cover change in areas that had 
been managed with herbicides, mechanical treatment, or fire. Our data echo these findings 
in the increase in bare ground cover and decrease in herbaceous cover in the Chihuahuan 
Desert, and adjacent ecoregions such as the Madrean Archipelago and Sonoran Basin and 
Range (Figure 5). The ecoregion scale climate trends show decreases in both GSPRCP and 
NGSPRCP and increases in all seasonal temperature variables in these ecoregions (Figure 6). 
Our findings support predictions that increased temperature and drought, and lower and 
more variable precipitation will decrease perennial grass cover in the southwest United 
States [30]. 

Some ecoregion-scale patterns were predominately driven by fire history. Ecoregions 
with extensive fire history earlier in the time-series tend to demonstrate increasing shrub 
and sagebrush cover, and vice versa for those with fires mostly in the second half of the 
time-series (e.g., Idaho Batholith, Canadian Rockies, Sierra Nevada, Arizona/New Mexico 
Mountains, and Central California Foothills and Coastal Mountains) (Figure 5). In these 
ecoregions, net trends are related to the direct impact of fires and succession thereafter 
(e.g., [11,32]. Indeed, the proportion of each ecoregion burned over the study period is 
strongly negatively related to the mean shrub cover slope (r = −0.81, p < 0.05). Similarly, 
annual herbaceous cover is increasing overall due to increases in its cover in burned areas. 
The overall declining herbaceous trend countered with the overall increase in annual her-
baceous shows that total herbaceous cover is becoming increasingly annual (Figure 4). 

4.2. Going Forward 
We plan to update the source of imagery to Landsat Analysis Ready Data (ARD) 

composited at a regional or larger scale for the production of data from 2019, 2020, and 
onward. We are investigating other methodological improvements to the process, such as 
incorporating high-resolution training data into the BIT process and use of other machine 
learning approaches. Our annual herbaceous cover data from 2016 to 2018 was integrated 
with data from Rangelands Analysis Platform [3] and U.S. Geological Survey Harmonized 
Landsat Sentinel exotic annual grass maps [33] to produce weighted mean estimates of 
annual herbaceous cover [34]. This map is a foundational component of the Western Gov-
ernors Association toolkit for invasive grass management and shows the promise of com-
bining multiple data streams. The current BIT data are available for download [35] and a 
web application to visualize data and download custom extents is available 
atwww.mrlc.gov/rangeland-viewer/. 

5. Conclusions 
Our results show that the net study area cover of shrub, sagebrush, herbaceous, and 

litter decreased, and bare ground and annual herbaceous cover increased over the study 
period. Most pixels changed at least once over the study period, and significant temporal 
trends (p < 0.10) occurred in a substantial minority of pixels. While change was ubiquitous, 
most of the change is gradual and/or small, with well over half of pixels having a range of 
less than 10% over the time-series. Thus, it is likely that most component cover trends are 
related to generally slow/gradual processes such as range management practices, change 
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in species composition, long-term climate trends, interannual climate variation, or inva-
sion of annual grasses. Xian et al. [19] reported that such gradual change constituted 
greater than 60% of total change in southwest Wyoming. 

The BIT fractional component time-series provides a wide lensed view of ecosystems, 
necessary for assessing landscape and ecosystem scale patterns, which is also relevant to 
local decision making. As with all remote sensing and monitoring datasets error does exist 
in our products, which needs to be carefully considered. BIT components have been ro-
bustly validated through comparison to high resolution imagery [12] and to long-term 
field observations [13], lending confidence to our data. Moreover, the changes observed 
in relation to climate variation and management/disturbance (e.g., the case studies pre-
sented here) show the BIT data reasonably track these patterns. Our case studies demon-
strate but a few of the potential applications of the BIT to track long-term changes. Data 
facilitate a comprehensive assessment of rangeland condition, evaluation of past manage-
ment actions, understanding of system variability, and opportunities for long-term plan-
ning. 

Supplementary Materials: Supplemental Figures 1 and 2 are available at: 
https://susy.mdpi.com/user/manuscripts/displayFile/25a988fa1219357a70f0fd20a1be3a8f/sup-
plmentary. 
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