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Abstract: The variability in sea surface salinity (SSS) on different time scales plays an important
role in associated oceanic or climate processes. In this study, we compare the SSS on sub-annual,
annual, and interannual time scales among ten datasets, including in situ-based and satellite-based
SSS products over 2011–2018. Furthermore, the dominant mode on different time scales is compared
using the empirical orthogonal function (EOF). Our results show that the largest spread of ten
products occurs on the sub-annual time scale. High correlation coefficients (0.6~0.95) are found in
the global mean annual and interannual SSSs between individual products and the ensemble mean.
Furthermore, this study shows good agreement among the ten datasets in representing the dominant
mode of SSS on the annual and interannual time scales. This analysis provides information on the
consistency and discrepancy of datasets to guide future use, such as improvements to ocean data
assimilation and the quality of satellite-based data.

Keywords: sea surface salinity; sub-annual variability; annual cycle; interannual variability; inter-
comparison; SMOS

1. Introduction

Sea surface salinity (SSS) is widely used as an indicator for monitoring the hydrologi-
cal cycle [1–4], oceanic processes (such as sea-level changes [5], instability waves [6,7], and
Rossby waves [8]), and climate variability [9–15]. An accurate representation of SSS, espe-
cially its variations, is highly dependent on observational data. Salinity observations have
undergone dramatic changes over recent decades. Before the 2000s, salinity observations
were generally obtained from research vessels and moorings. These observations were
generally sparse in both space and time. After 2004–2005, hundreds of Argo profilers were
released [16]. Until recently, Argo profilers covered only one 3◦ grid every 10 days [17].
In the last decade, SSS measurements from space have become possible due to improved
methods depending on L-band sensors [18–20]. The advantage of retrieving SSS from
space is that it provides global coverage of surface salinity every three days with a spatial
resolution of >40 km for most satellites [21,22].

SSS maps that are based on different observational methods have unique strengths
and limitations. For example, some in situ-based SSS products can reveal the SSS near
the coast and ice. However, uncertainties in satellite SSS measurements near coastal
or marginal sea-ice regions are large due to L-band contamination [23,24]. Satellite SSS
measurements can provide a quasi-simultaneous map over the global ocean, while in
situ-based products still have relatively low spatial and temporal resolutions compared to
satellite-based SSS products. Furthermore, the penetration depth of a satellite in the L-band
is generally 1~2 cm. Thus, satellite SSS measurements can provide only the “skin SSS”,
which is different from in situ-based SSS measurements. The in situ-based SSS maps mostly
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provide salinity below 1 m, and this type of SSS is called bulk SSS. The difference between
the skin SSS and bulk SSS is determined by multiple processes. For example, during
precipitation events, the persistence of related “skin” surface freshening can strongly vary
depending on local conditions (e.g., winds); their spatial pattern is also likely related to rain
cells, thus not necessarily reflecting “bulk” upper ocean features [21,25]. Therefore, a large
difference exists between the satellite-based and in situ-based SSSs [26–28]. Furthermore,
these differences also can be attributed to mapping techniques, baseline climatological
values, and other factors [29].

Even though gridded products based on satellites, in situ measurements, or both
provide fruitful and invaluable information on SSS, how the information should be handled
remains an open question. The basis for retrieving useful SSS information from multiple
observational products is to understand how different types (satellite and in situ-based)
of SSSs differ. A few analyses have provided an intercomparison of the performance of
salinity products; however, several aspects remain to be resolved. Most of the previous
analyses (e.g., Reagan et al. [30]; Bao et al. [31]; Liu et al. [28]; Stammer et al. [17]) provided
assessments of the mean state or one or two selected time scales for SSS products. A
comprehensive comparison of salinity on different time scales among multiple in situ-
based and satellite-based products over the global ocean is still lacking.

Questions associated with SSS variability remain open, including on which time scale
the SSS shows the largest variance over a long period and how the sub-annual/interannual
variability in SSS is distributed over the global ocean. In this analysis, we intend to offer
an intercomparison of SSS from six in situ-based datasets, three satellite-based products,
and one combined satellite-in situ product to assess the SSS variance on all available time
scales. The in situ and satellite-based SSS products differ in terms of temporal coverage,
temporal resolution, and spatial coverage (Table 1). The temporal coverage of the satellite
SSS data is generally shorter than that of in situ products. The satellite-based SSS products
derived from Laboratoire d’Océanographie et du Climat: Expérimentations et Approches
Numériques (LOCEAN) cover from January 2010 to September 2019, and the satellite-based
SSS products from Barcelona Expert Center (BEC) cover 2011 to 2019. For consistency, the
period from 2011–2018 is chosen for all SSS fields to be used in the analysis. The in situ
datasets are provided on a monthly basis. SSS maps from Soil Moisture Ocean Salinity
(SMOS) LOCEAN are given every four days, and those from SMOS BEC are provided
on a daily basis. The LOCEAN and BEC SSSs are reconstructed on a monthly basis. The
comparison in this analysis is based on monthly gridded data, indicating that we cannot
analyze SSS variances that are shorter than 30 days. Thus, daily to weekly variability
is excluded in this analysis. Few in situ SSS observation are available in seasonally ice-
covered regions (60◦S to 65◦N [32]). SSS retrievals in cold water at high latitudes show large
uncertainty [33] and are not commonly validated [34]. Thus, the focus of this analysis is the
open ocean between 50◦S and 50◦N. The topmost layers from in situ-based salinity data
differ between products. Furthermore, the SSS derived from satellites generally penetrates
1~2 cm, far above the in situ-based product. To remain consistent for the intercomparison,
all in situ-based products are extrapolated to the 0 m isobar.

The purpose of this analysis is to identify the consistent and robust features of SSS
variability among the ten products and discuss the discrepancies in SSS among products.
An intercomparison among SSS products is presented in three steps. The first step is to
examine the total SSS variance from 2011 to 2018. The second step is to identify the sub-
annual (>1 month and <12 months), annual (i.e., seasonal cycle), and interannual variability
in the SSS and quantify their contributions to the total SSS variances. The third is to examine
the dominant spatiotemporal pattern of the SSS variations on different time scales and
quantify the leading SSS mode. This paper is organized as follows. A description of the
ten SSS products used and the analytical method is given in Section 2. Section 3 examines
the temporal and spatial variabilities in the SSS data from ten products. A discussion is
included in Section 4, and a summary is provided in Section 5.
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Table 1. Characteristics of the ten products used in this analysis.

SSS Product Data Source First Guess Objective Analysis or
Correction Method Temporal Coverage Domain Reference

EN4 ARGO, GTSPP, others WOA98 Optimal interpolation
(OI) algorithm 1900–2019 83◦S–89◦N

180◦W–180◦E Good et al. [35]

JAMSTEC Argo Argo, CTD,
and moorings WOA01 OI algorithm 2001–2019 60.5◦S–70.5◦N

180◦W–180◦E Hosoda et al. [36]

IAP Argo, CTD, and Bottles An ensemble of
CMIP5 simulations Ensemble OI algorithms 1940–2019 89◦S–89◦N

180◦W–180◦E Cheng et al. [37]

IPRC Argo, Dynamic Height WOA01 Variational interpolation 2005–2020.4 62.5◦S–63.5◦N
180◦W–180◦E

http://apdrc.soest.hawaii.edu/
projects/argo (accessed on

20 February 2021)

SIO Argo Argo OI algorithm 2004–2019 64.5◦S–79.5◦N
180◦W–180◦E Roemmich and Gilson [32]

BOA Argo Argo Barnes successive
correction method 2004–2019 79.5◦S–79.5◦N

180◦W–180◦E Li et al. [38]

SMOS LOCEAN Satellite
In situ-sea surface
salinity gridded

fields (ISAS)

Ocean target
transformation 2010–2019.9 83.5◦S–83.5◦N

180◦W–180◦E Boutin et al. [39]

SMOS BEC Satellite WOA 2013 Non-Bayesian retrieval
of SSS 2011–2019 89◦S–89◦N,

180◦W–180◦E Olmedo et al. [40]

ESA CCI Satellite None Multiple error
corrections steps 2010–2019 83.5◦S–83.5◦N

180◦W–180◦E
https://climate.esa.int/

(accessed on 20 February 2021)

CMEMS Satellite CTD, and Argo
“MULTIOBS_GLO_PHY

_REP_015_002” from
CMEMS

Multidimensional OI
algorithm 1993–2019 89.875◦S–89.875◦N,

0.125–359.875◦E
Nardelli et al. [41];
Droghei et al. [42]

http://apdrc.soest.hawaii.edu/projects/argo
http://apdrc.soest.hawaii.edu/projects/argo
https://climate.esa.int/
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2. Materials and Methods

Six in situ-based SSS products, three satellite-based SSS products and one combined
satellite and in situ SSS product were used in this study. Links to access the data are provided
in the data availability. A brief description of each dataset is shown in Table 1 as follows.

2.1. SMOS Satellite-Based Product
2.1.1. SMOS LOCEAN

The SMOS SSS maps (http://www.catds.fr/ (accessed on 20 February 2021)) are
produced by the LOCEAN/IPSL (UMR CNRS/UPMC/IRD/MNHN) laboratory and
ACRI-ST company, which participates in the Ocean Salinity Expertise Center (CECOS) of
the CNES-IFREMER Centre Aval de Traitement des Donnees SMOS (CATDS). This product
is distributed by CECOS of CATDS. The SMOS LOCEAN applies systematic corrections to
the SSS retrieved by CATDS RE05 (version) [43] derived from the self-consistency across
swaths to reduce coastal and latitudinal biases [34]. The 7-year median of “In situ-Sea
Surface Salinity gridded fields” (ISAS SSS, https://www.seanoe.org/data/00444/55600/
(accessed on 20 February 2021)) is introduced in the correction algorithm for calibration
of the absolute value of the SMOS in each pixel. The ISAS SSS does not influence the
variability in the SMOS SSS. The level 3 debiased version 4 of the 18-day running mean
maps is used in this analysis. This product has a horizontal resolution of 25 km and
temporal sampling every 4 days.

2.1.2. SMOS BEC

The level 3 version 2 of BEC SSS maps are used in this analysis. SMOS BEC data [40]
employ a non-Bayesian SSS retrieval algorithm and systematically correct the SSS from
individual brightness temperatures (TBs) obtained from SMOS MIRAS L1B TBs v620
by the Earth Observation CFI v3.x branch (http://eop-cfi.esa.int/index.php/mission-cfi-
software/eocfi-software/branch-3-x (accessed on 20 February 2021)). The absolute value
of the SMOS SSS is adjusted by the climatological SSS derived from the World Ocean Atlas
2013. The running 9-day objectively analyzed SSS maps are obtained in this analysis. These
data provide daily SSS maps with a horizontal resolution of 0.25◦ × 0.25◦.

2.1.3. ESA CCI SSS

The SSS maps of the European Space Agency Climate Change Initiative (ESA CCI)
are produced by the ACRI-ST company and the LOCEAN laboratory. Version 2.31 is used
in this analysis (https://climate.esa.int/en/projects/sea-surface-salinity/data/ (accessed
on 20 February 2021)). The ESA CCI SSS products [44] are generated from all available
satellite L-band radiometer measurements, including SMOS Level 2 products, the SMAP
Level 2 v3.0 product, and Aquarius Level 3 v5.0 products. The main processing steps
are available at https://climate.esa.int/en/projects/sea-surface-salinity/key-documents/
(accessed on 20 February 2021). The ESA CCI produces weekly and monthly SSS maps.
The meridional spacing is approximately 0.26◦, and the zonal spacing is approximately
0.2◦ near the equator and gradually increases to 1.5◦ at high latitudes.

2.1.4. CMEMS SSS

The European Copernicus Marine Environment Monitoring Services (CMEMS) SSS
was developed by Consiglio Nazionale delle Ricerche (CNR) and distributed by E.U.
Copernicus Marine Service Information. The CMEMS SSS is obtained from a multivariate
optimal interpolation method [41,42] using SMOS and in situ salinity measurements. The
in situ salinity measurements are derived from the Coriolis In situ Analysis System (ISAS)
distributed by the European CMEMS. The E.U. Copernicus Marine Service Information
offers a weekly and monthly SSS map with a horizontal resolution of 0.25◦ × 0.25◦.

http://www.catds.fr/
https://www.seanoe.org/data/00444/55600/
http://eop-cfi.esa.int/index.php/mission-cfi-software/eocfi-software/branch-3-x
http://eop-cfi.esa.int/index.php/mission-cfi-software/eocfi-software/branch-3-x
https://climate.esa.int/en/projects/sea-surface-salinity/data/
https://climate.esa.int/en/projects/sea-surface-salinity/key-documents/
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2.2. In Situ-Based SSS Products
2.2.1. EN4

The EN4 product is provided by the Met Office Hadley Center [35], and version 4.2.1
is used in this analysis. The dataset offers monthly gridded salinity and temperature data
comprising in situ temperature and salinity profiles, including the Global Temperature
and Salinity Profile Program (GTSPP), Argo datasets, World Ocean Database 2013, and
others (details are available at https://www.metoffice.gov.uk/hadobs/en4/en4-0-2-data-
sources.html (accessed on 20 February 2021)). Salinity data are obtained by an optimal
interpolation method. Hence, the results from EN4 are highly dependent on its first guess,
search region, and uncertainty associated with the observations. The horizontal resolution
is 1◦ × 1◦, and the topmost layer is 5.02 m below the sea surface.

2.2.2. JAMSTEC Argo

The JAMESTEC Argo [36] data are also called the “Grid Point Value of the Monthly Ob-
jective Analysis using the Argo data” (MOAA GPV). These data are released by the Japan
Agency for Marine-Earth Science and Technology (http://www.jamstec.go.jp/ARGO/
argo_web/argo/?page_id=83&lang=en (accessed on 20 February 2021)). The data com-
prise Argo profilers, the Triangle Trans-Ocean Buoy Network, and available conductivity-
temperature-depth casts. Details of the source for JAMESTEC are provided in Hosoda
et al. [36]. Gridded salinity data are obtained by the optimal interpolation method. The
horizontal resolution is 1◦ × 1◦.

2.2.3. IAP

The Institute of Atmospheric Physics (IAP) ocean gridded products provide global
salinity data at a resolution of 1◦ × 1◦ and 41 vertical levels from 1 m to 2000 m [37]. The
salinity field was released by the IAP, Chinese Academy of Science (http://159.226.119.
60/cheng (accessed on 20 February 2021)). The gridded salinity product is sourced from
the World Ocean Database 2018, and all available instruments, including Argo, Bottle,
and CTD, are used. The salinity fields are reconstructed from simulations of the CMIP5
models [45] using an ensemble optimal interpolation approach.

2.2.4. IPRC

The International Pacific Research Center (IPRC) dataset provides monthly temperature and
salinity data (http://apdrc.soest.hawaii.edu/projects/argo/ (accessed on 20 February 2021)).
The source of IPRC for salinity data is mainly Argo profilers. The IPRC is derived from the varia-
tional interpolation algorithm, which is based on minimizing the misfit between the predefined
grid and the irregularly distributed data. The data are available in 1◦ × 1◦ squares. The topmost
layer is at 0 m.

2.2.5. SIO

The Scripps Institution of Oceanography (SIO) Argo [32] data are released by the
Scripps Institution of Oceanography (http://sio-argo.ucsd.edu/RG_Climatology.html
(accessed on 20 February 2021)). Version 2019 is used in this analysis. These data provide
gridded salinity data in 1◦ × 1◦ grids. The SIO data are based solely on Argo floats and
use a weighted least-squares fit to the nearest 100 Argo profiles within a given range to
estimate the background fields (first guess). Salinity is produced by using the optimal
interpolation method. The topmost layer is at 2.5 m.

2.2.6. BOA

The Global Ocean Argo Gridded datasets (also named as BOA) is distributed by
the China Argo Real-time Data Center (CARDC, http://www.argo.org.cn (accessed
on 20 February 2021)) [38]. The gridded salinity is interpolated by using the Barnes
successive correction method from Argo profiles. The salinity is gridded in a 1◦ box
with 58 levels. The topmost layer is at 0 m.

https://www.metoffice.gov.uk/hadobs/en4/en4-0-2-data-sources.html
https://www.metoffice.gov.uk/hadobs/en4/en4-0-2-data-sources.html
http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=83&lang=en
http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=83&lang=en
http://159.226.119.60/cheng
http://159.226.119.60/cheng
http://apdrc.soest.hawaii.edu/projects/argo/
http://sio-argo.ucsd.edu/RG_Climatology.html
http://www.argo.org.cn
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2.3. Methods

The satellite-based salinity measured at 1~2 cm are compared with in situ-based
salinity at 0 m. The IPRC and BOA provide salinity at 0 m, and they are directly used in the
intercomparison. However, Salinity from JAMSTEC, SIO, EN4, and IAP provide topmost
salinity at a depth deeper than 1 m. In these products, we used the linear extrapolation
based on salinity profile at each grid points to construct salinity at 0 m. Most of the salinity
products at top layers from the four products are built from salinity profiles at 5~10 m.
One exception is IAP. IAP provides salinity at 1 m, 5 m, and 10 m. The 1m salinity is
constructed from salinity shallower than 5 m, which is independent of salinity at 5~10 m.
To be consistent with results from other datasets, we have extrapolated salinity from IAP
using the salinity from 5 m and below.

To identify the consistency and difference among SSS products, the ensemble mean
SSS fields and their spread are introduced in this analysis. At each grid point, the ensemble
mean SSS (S) and ensemble spread of SSS (SSTD) are calculated as follows:

S =
1
N ∑N

n=1 Sn, (1)

SSTD =

√√√√ 1
N

N

∑
n=1

(Sn − S)2
, (2)

where N is the total number of SSS products, and Sn represents the salinity from different
products. The ensemble mean SSS fields infer the median SSS values based on different
products, and the ensemble spread of SSS denotes the deviations from the mean fields or
uncertainties that are induced by the different data sources, the mapping methods, and
the first guess for fill-in when a data gap is encountered. A small SSTD value indicates
good agreement among datasets and vice versa. Notably, the ensemble mean values of
SSS should not be considered as the “true” fields for SSS due to uncertainties, including
discrepancies in measured depths for satellite- and in situ-based SSS and errors induced by
objective analysis methods in SSS mapping.

The temporal variability in SSS at each grid point was divided into three components:
the sub-annual (the period between 1 month and 11 months, including the semiannual
signal), the annual cycle (i.e., the seasonal cycle or seasonality), and the interannual SSS
variations. The first step is to calculate the annual cycle of SSS based on annual harmonics
least-square fitting [46]. The annual cycle of SSS is calculated as follows:

Ss(t) = S0 + Acos(ω12t +ϕ12), (3)

where S0 is the climatological SSS, t is the time, A is the amplitude of the annual cycle, and
ϕ12 denotes the phases. The annual frequencies are denoted by ω12 = 2π/12. Then, we
subtract the annual cycle of SSS from the original time series. We named the remaining
signal Sresidual. The sub-annual cycle was estimated by applying a high-pass Hanning
filter to the Sresidual to remove signals longer than 12 months. The interannual variability
was derived from applying a 12-month low-pass Hanning filter to Sresidual. One standard
deviation (STD) was applied to SSS signals with different time scales as a measure of SSS
variability. The STD mainly shows the magnitude of the variance excluding information
about the leading pattern or the sign of the variations. We used an empirical orthogonal
function (EOF) analysis to extract the main feature and its spatial loadings from the SSS
matrix on different time scales [47]. The EOF analysis decomposes the temporal and spatial
signatures and reveals the internal variability in the specific field.

3. Results
3.1. Mean State and Variability

The ensemble-averaged SSS derived from ten products (Figure 1) shows an overall
consistent pattern with surface freshwater fluxes [48,49]: salty surface waters mostly occur
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within subtropical gyres due to excessive evaporation, and fresh waters are located over
tropical and subpolar regions (Figure 1a) due to overwhelming precipitation or river
discharge. The SSS patterns from the ten products agree well over the open oceans, and
notable differences (>0.1 g/kg, Figure 1c) occur near some coastal regions and some of
the boundary currents or their extensions. JAMSTEC, BEC, IAP, and LOCEAN SSSs make
larger contributions to the spread of the ensemble mean SSS over the global ocean than the
SSSs from other datasets. The spread of the long-term mean SSS varies among seasons. For
example, the SSS in June-July-August (JJA, Figure 1A) shows a large difference (>0.1 g/kg)
over the 40~50◦N region of the Pacific Ocean.
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Figure 1. The horizontal distribution of (a) the ensemble mean (S), (c) STD (SSTD ), and (e) largest spread of the climatological
SSS derived from ten products averaged over 2011–2018. (b), (d) and (f) are the same as (a), (c), and (e) but for the variability
in SSS estimated by STD over 2011–2018. Blank regions denote that no existing data were available for at least one product.

The STDs of the monthly mean SSS over 2011–2018 derived from the ensemble mean
fields (Figure 1b) show the largest values (>0.3 g/kg) over the Intertropical Convergence
Zone (ITCZ) and South Pacific Convergence Zone (SPCZ) regions, the Arabian Sea and
the Bay of Bengal, on the southern flanks of the grand banks of Newfoundland, and in
the vicinity of Rio de la Plata. Small SSS STDs (<0.05 g/kg) are mostly located over the
supergyre in the Southern Hemisphere, where the variability of SSS caused by ocean
dynamics and surface fluxes is small over all time scales [50]. The spread of STDs among
the ten products is relatively small over the low-latitude open ocean. A large difference
(>0.1 g/kg) in SSS variability occurs in the vicinity of the Kuroshio/Oyashio current and
gulf streams, the northern Bay of Bengal and the Arabian Sea, the southern sections of
Madagascar, and in the vicinity of the tropical Pacific Ocean. The largest spread of the SSS
variability is caused by the LOCEAN SSS, which dominates the variability over most of the
world (Figure 1f), indicating that it contributes most to the spread of the SSS variability
between products. JASMTEC and BEC SSS cause the spread between products over the
tropical Pacific.

To further illustrate the difference in SSS between each product, the differences in
the climatological mean and variability in the SSS between an individual product and
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ensemble mean fields are presented in Figures 2 and 3, respectively. EN4, IAP, SIO, BOA,
ECA CCI, and CMEMS show good agreement in representing the ensemble mean fields of
the climatological SSS (Figure 2). The differences are generally less than 0.02 g/kg except for
coastal regions and gulf streams. These localized differences are possibly related to the lack
of Argo floats over the coastal region, where different underlying data sources are used to
fill in data gaps in only Argo-based data products (e.g., SIO, BOA) and CTD/mooring and
Argo combined data products (e.g., IAP, EN4). The JAMSTEC displays negative anomalies
relative to the ensemble mean fields over most of the subtropical gyre with a magnitude of
less than 0.1 g/kg. Positive anomalies (<0.2 g/kg) occur over the tropical Atlantic Ocean,
the tropical Indian Ocean, and the western tropical Pacific Ocean and between 40◦S and
50◦S in the South Atlantic and South Indian Oceans. Anomalies in the IPRC show zonal
patterns because the dynamic height model is used for the mapping method [28], in which
the position of zonal currents probably influences the spatial distribution of the grid. The
magnitude of the anomalies from the IPRC is greater than 0.2 g/kg near the eastern tropical
Pacific Ocean, the western tropical Atlantic Ocean, and the southern side of Madagascar.
The residual SSS from LOCEAN shows poor agreement with the ensemble mean SSS in the
Arabian Sea, near the western tropical Atlantic Ocean, and the gulf stream. The residual
SSS from BEC shows a positive sign over the tropical Pacific Ocean, the subpolar North
Pacific Ocean, and the eastern tropical Indian Ocean, with magnitudes of 0.05~0.2 g/kg.
Aside from these locations, the BEC is generally fresher than the ensemble mean SSS fields.
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The JAMSTEC, IAP, IPRC, SIO, and CMEMS show consistent SSS variability (Figure 3).
The magnitude of the residual from the ensemble mean SSS variability derived from those
products is less than 0.02 g/kg. EN4, BOA and ECA CCI show strong variability in the
tropical Pacific Ocean, the tropical Atlantic Ocean, the tropical Indian Ocean, from 40–45◦N
in the North Pacific Ocean, and from 40–50◦S in the south Indian Ocean, with magnitudes
between 0.02 and 0.2 g/kg. SMOS LOCEAN shows strong variability (i.e., positive sign of
residuals) over most of the global ocean. The SMOS BEC shows strong variability near the
Kuroshio current, in the northern Arabian Sea, and over the band of 40◦S–50◦S. Over the
tropical oceans, the BEC generally shows weak variability.

3.2. Sub-Annual SSS Variability

The STD of the 11-month high-pass SSS time series is used here to measure the magni-
tude of the sub-annual variability in SSS (Figure 4). Most of the large STDs (>0.3 g/kg) are
observed near the major river outlets [51]. For example, large sub-annual SSS variations
are located near the Congo plume area, the Rio de la Plata Estuary, and near the Ganges,
Brahmaputra/Irrawaddy and Salween Rivers. Large STDs are also observed in the eastern
tropical Pacific Ocean, which is strongly impacted by rainfall. Thus, all the regions with
high sub-annual SSS variability are in direct response to freshwater fluxes originating from
river discharge or rainfall, highlighting the important role of freshwater fluxes in modu-
lating the sub-annual SSS variability. Oceanic circulation also plays a role. For example,
large sub-annual SSS variations are found to the north of the Amazon River mouth due to
strong northward flows. Other important causes of the sub-annual SSS variations could
be sub-annual changes in the wind stress. For example, Li et al. [52] reported that wind
stress-forced ocean processes driven by Madden-Julian oscillations are the main driver of
sub-annual SSS variability in the tropical Indo-Pacific Ocean.



Remote Sens. 2021, 13, 811 10 of 28
Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 29 
 

 

 

Figure 4. (a) The STD of the ensemble mean of SSS on the sub-annual time scale. (b) The spread of the STD of the sub-

annual SSS time series based on ten products. (c–j) The difference between the STDs of the sub-annual SSS signal from 

individual products and the ensemble mean. The blue lines in (a–l) denote the major rivers worldwide. 

Considerable differences (>0.08 g/kg) between products (Figure 4b) also occur where 

the STDs (Figure 4a) are relatively large (i.e., near the eastern and western tropical Atlantic 

Ocean or the northern Bay of Bengal). This difference is expected because these locations 

are mainly near the coastal region, where satellite SSS is affected by land-sea contamina-

tion [34], and only Argo-based products is biased because the number of Argo profilers is 

low. Thus, insufficient data sources also contribute to the large spread among datasets. 

Good agreement in the STDs among products occurs in the tropical and subtropical open 

ocean, where the spread is generally less than 0.04 g/kg. 

For individual products, BOA, and ECA CCI are generally consistent with the en-

semble mean sub-annual SSS variations over most of the global ocean. An exception oc-

curs near the strong current regions in BOA, which shows a large magnitude in the SSS 

sub-annual variations. EN4, IAP, SIO, IPRC, and CMEMS generally show weaker sub-

annual variabilities in SSSs than the ensemble mean STDs at each grid point. There are 

exceptions. For example, in the IPRC product, high STDs with anomalies larger than 0.1 

g/kg are found on the southeastern side of Madagascar. The relationships between JAM-

STEC, and BEC and the ensemble mean SSS STDs vary depending on location. JAMSTEC 

shows the largest STDs among the ten products near the dateline in the tropical Pacific 

Ocean, but small STDs occur in the subpolar region. BEC shows small STDs over the trop-

ical ocean but large STDs in the subpolar region. LOCEAN shows stronger sub-annual 

SSS variability than the ensemble mean value over most of the global ocean. The largest 

difference (>0.1 g/kg) occurs near the eastern tropical Pacific, in the western tropical west-

ern Atlantic, in the western North Pacific, and over the subpolar gyre, and all the above 

locations are consistent with regions with large spreads of the STDs (Figure 4b). Therefore, 

LOCEAN contributes most to the spread of STDs on the sub-annual time scale. 

The ratio of the square of the sub-annual SSS STD to the total variance (Figure 5) is 

used here to assess to what degree the sub-annual SSS is representative of the total signal 

in each product. The contribution of sub-annual variability to the total variance is gener-

Figure 4. (a) The STD of the ensemble mean of SSS on the sub-annual time scale. (b) The spread of the STD of the sub-annual
SSS time series based on ten products. (c–j) The difference between the STDs of the sub-annual SSS signal from individual
products and the ensemble mean. The blue lines in (a–l) denote the major rivers worldwide.

Considerable differences (>0.08 g/kg) between products (Figure 4b) also occur where
the STDs (Figure 4a) are relatively large (i.e., near the eastern and western tropical Atlantic
Ocean or the northern Bay of Bengal). This difference is expected because these locations are
mainly near the coastal region, where satellite SSS is affected by land-sea contamination [34],
and only Argo-based products is biased because the number of Argo profilers is low.
Thus, insufficient data sources also contribute to the large spread among datasets. Good
agreement in the STDs among products occurs in the tropical and subtropical open ocean,
where the spread is generally less than 0.04 g/kg.

For individual products, BOA, and ECA CCI are generally consistent with the ensem-
ble mean sub-annual SSS variations over most of the global ocean. An exception occurs
near the strong current regions in BOA, which shows a large magnitude in the SSS sub-
annual variations. EN4, IAP, SIO, IPRC, and CMEMS generally show weaker sub-annual
variabilities in SSSs than the ensemble mean STDs at each grid point. There are exceptions.
For example, in the IPRC product, high STDs with anomalies larger than 0.1 g/kg are found
on the southeastern side of Madagascar. The relationships between JAMSTEC, and BEC
and the ensemble mean SSS STDs vary depending on location. JAMSTEC shows the largest
STDs among the ten products near the dateline in the tropical Pacific Ocean, but small
STDs occur in the subpolar region. BEC shows small STDs over the tropical ocean but large
STDs in the subpolar region. LOCEAN shows stronger sub-annual SSS variability than
the ensemble mean value over most of the global ocean. The largest difference (>0.1 g/kg)
occurs near the eastern tropical Pacific, in the western tropical western Atlantic, in the
western North Pacific, and over the subpolar gyre, and all the above locations are consistent
with regions with large spreads of the STDs (Figure 4b). Therefore, LOCEAN contributes
most to the spread of STDs on the sub-annual time scale.

The ratio of the square of the sub-annual SSS STD to the total variance (Figure 5) is
used here to assess to what degree the sub-annual SSS is representative of the total signal in
each product. The contribution of sub-annual variability to the total variance is generally
between 0% and 20% in EN4 and IPRC. In IAP, SIO, BOA, and CMEMS, the contribution
of the sub-annual SSS to the total SSS variations is 0–20% over the tropical Pacific Ocean
and 20–40% over most of the Atlantic and Indian Oceans. In JAMSTEC, LOCEAN, BEC,
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and ECA CCI, the contributions are 20–50% for most regions worldwide. The sub-annual
SSS in LOCEAN, BEC, and ECA CCI can explain 20–60% of the variance in the SSS signal
in the subtropical and subpolar gyres and 0–20% in the tropical Pacific Ocean and the
tropical Indian Ocean. Thus, all ten products show a consistent pattern over the tropical
Indian and tropical Pacific Oceans, in which the sub-annual variability accounts for only
0~20% of the total variance. The largest contribution made by the sub-annual signal to the
total SSS variance is generally observed from satellite data rather than in situ-based data,
which is due to the low temporal sampling resolution of in situ observations. However,
this difference is not always the case. For example, for JAMSTEC, most of the grid points
in the section poleward of 20◦S sometimes show larger contributions to the total variance
made by sub-annual SSS than those from LOCEAN and BEC. These regions with a high
percentage of sub-annual SSSs compared with the total variances (Figure 5b) are generally
associated with high STDs (Figure 4d) in JAMSTEC.
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Figure 5. Percentage of the total SSS variance explained by sub-annual variability.

To further explore the characteristics of the sub-annual SSS variability over the globe,
an EOF is performed for the ten products. There are two cycles in one year in for most of
the products (Figure 6), indicating that the semiannual cycle is the leading mode of the
sub-annual SSS variances. However, the two cycles in one year show different amplitude,
indicating an higher frequency variability contributes to the first mode of the sub-annual
SSS. The exceptions are the EN4 (Figure 6b) and IAP (Figure 6c). The EN4 shows one
dominant peak and two troughs in one year, and IAP shows multiple peaks and troughs
in one year. EN4, IPRC, SIO, BOA, LOCEAN, BEC, ECA CCI, and CMEMS show similar
spatial patterns of the first mode by EOF over the tropical oceans (Figure 7). In IAP,
negative anomalies spread over extratropical oceans. The first leading mode can account
for less than 20% of the total sub-annual SSS variance from each product (Figure 6k), with
the largest contribution found in IAP (18%). As mentioned above, the differences in the
temporal and spatial patterns of the first leading modes for the sub-annual SSS between
products are possibly attributed to the differences among products, including temporal
sampling, underlying data, and mapping methods.



Remote Sens. 2021, 13, 811 12 of 28

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 29 
 

 

poral and spatial patterns of the first leading modes for the sub-annual SSS between prod-

ucts are possibly attributed to the differences among products, including temporal sam-

pling, underlying data, and mapping methods. 

 

Figure 6. (a–j) The principal components for sub-annual SSS time series and (k) their contributions to the total variability 

in the sub-annual SSS signal. The dark blue line and bar in (k) denote EN4, blue represents JAMSTEC, light blue represents 

IAP, green represents IPRC, yellow represents SIO, orange represents BOA, red represents LOCEAN, purple represents 

BEC, dark green denotes ECA CCI and bright green denotes CMEMS. 

 

Figure 7. The spatial loadings of the first EOF modes for the sub-annual SSS derived from an individual product. 

Figure 6. (a–j) The principal components for sub-annual SSS time series and (k) their contributions to the total variability in
the sub-annual SSS signal. The dark blue bar in (k) denote EN4, blue represents JAMSTEC, light blue represents IAP, green
represents IPRC, yellow represents SIO, orange represents BOA, red represents LOCEAN, purple represents BEC, dark
green denotes ECA CCI and bright green denotes CMEMS.
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3.3. The Annual Cycle of SSS

The STDs of the estimated annual harmonics (Figure 8a) in the ensemble mean fields
show the regions with large seasonal variations (>0.3 g/kg) in the ITCZ and SPCZ and
strong salinity gradient regions (Figure 2 from Yu [48]), including the eastern Arabian Sea,
the western and northern Bay of Bengal, the central tropical Indian Ocean, the eastern
side of Japan, and the western coast of the North Atlantic. The results are consistent with
those from Bingham et al. [53], which were derived from in situ profiles before 2010, and
agree with the results from Yu et al. [54], which were derived from 4 satellite products and
two gridded in situ datasets from 2016 to 2018. The seasonal SSS variability in the tropical
ocean is dominated by evaporation-minus-precipitation (EMP), especially precipitation [53].
Ocean dynamics, including horizontal advection and diffusion, play an important role in
the establishment of the seasonality of surface salinity over extratropical regions [50].
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ten products. (c–j) The difference between the STD of the annual SSS signal from individual products and the ensemble
mean.

The regions of the pronounced SSS annual cycle are also regions of large spread from
the ensemble mean (>0.05 g/kg). The maximum spread (>0.1 g/kg) occurs over the eastern
Arabian Sea, the northern Bay of Bengal, to the eastern side of Japan, the eastern tropical
Pacific, along the gulf streams, the western tropical Atlantic, and the western subtropical
South Atlantic (near 40◦S). Most of the regions in which the largest spread occurs are caused
by strong annual SSS variability from LOCEAN (especially at tropical Atlantic and North
Pacific). Exceptions include the eastern tropical Pacific Ocean, the western tropical South
Pacific Ocean, the subpolar gyres of the North Pacific and South Indian Oceans, the eastern
Arabian Sea, and along the gulf streams, where LOCEAN shows a weak annual cycle. The
BEC shows the smallest variances over most of the subtropical and tropical oceans among
the ten products. Hence, a major difference in annual SSS variability exists between the two
SMOS-based satellite SSSs. This finding indicates that the annual SSS variability in satellite
SSS data is highly dependent on the difference between bias correction methods. The ECA
CCI shows a larger annual variance than the ensemble mean over the tropical ocean. The
horizontal distribution of the annual cycle of SIO, CMEMS and BOA SSS generally agrees
well with that of the ensemble mean with a difference smaller than 0.02 g/kg over most
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of the global ocean. Relatively large STDs (between 0.02 and 0.1 g/kg) are found in EN4,
JAMSTEC, and IPRC over tropical oceans.

The contribution of the annual SSS variance to the total variance (Figure 9) for most
of the SSS products is relatively small, with a magnitude of 0~0.4 over most of the Pacific
Ocean. A large ratio of annual SSS variation to the total variance (>60%) occurs over the
Arabian Sea, the western tropical Indian Ocean, in the vicinity of the Kuroshio extension,
over the eastern tropical and subtropical South Pacific, the eastern subtropical North
Atlantic, the tropical Atlantic Ocean, and the central/eastern subtropical South Atlantic.
Our results show a smaller percentage of the total variance than those shown in Yu et al. [54].
Yu et al.’s results are based on a short period from 2016 to 2018, while our coverages are
from 2011 to 2018. Thus, the difference could be due to a difference in the low-frequency
variability, which is not present in Yu et al.’s result, or a difference in the magnitude of
high-frequency variability between before 2016 and after 2016.
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Figure 9. Percentage of total SSS variance explained by annual variability.

The leading spatial loadings and their principal components derived from the annual SSS
time series show consistency among the ten products (Figure 10, and Appendix A Figure A2).
The times series of the principal components derived from individual product are aligned with
each other (Figure 10a). The maximum SSS occurs in September for the ten SSS products, and
the minimum SSS occurs in March for all products. The principal components account for
55~75% of the seasonality. The results are consistent with those from Boyer and Levitus [55]
and Bingham et al. [53]. The spatial loadings for the leading annual SSS mode derived from
individual products are consistent with each other (Figure A2). The ensemble mean of spatial
loading for the leading annual SSS mode shows that positive anomalies generally occur
over the central and eastern North Pacific and North Atlantic Oceans, the central to eastern
tropical South Pacific and South Atlantic Oceans, the western tropical South Pacific Ocean, the
central and western tropical Indian Ocean, and the eastern Arabian Sea. Negative anomalies
occur elsewhere.
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Figure 10. (a) The principal components for the annual SSS time series derived from individual
product and (b) their contributions to the total variability in the annual SSS signal. The dark blue
line/bar in (a) and (b) denotes EN4, blue represents JAMSTEC, light blue represents IAP, green
represents IPRC, yellow represents SIO, orange represents BOA, red represents LOCEAN, purple
represents BEC, dark green denotes ECA CCI and bright green denotes CMEMS. (c) The ensemble
mean for the spatial loadings of the first EOF modes.

3.4. Interannual Variability in SSS

The maximum in the interannual SSS variability (>0.2 g/kg) from the ensemble mean
fields occurs over the tropical Pacific Ocean, the northeastern North Pacific Ocean, the
northern Bay of Bengal, the eastern tropical Indian Ocean, and the western tropical Atlantic
Ocean (Figure 11). The large interannual SSS variability in the tropical Indian Ocean
and the northern Bay of Bengal can be attributed to the Indian Ocean dipole [56–58].
The interannual SSS variations over the tropical Atlantic and Pacific are caused by the
interannual meridional displacements of the ITCZ [59], which are probably associated with
ENSO in the Pacific Ocean [60] or the Atlantic Meridional Dipole in the Atlantic. In the
eastern tropical South Atlantic Ocean and the northeastern North Pacific Ocean, relatively
strong interannual variabilities with magnitudes of 0.15 g/kg~0.25 g/kg are observed.
The SSS variations are attributed to changes in the discharge of the Congo River [61].
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The cause of the interannual SSS variability in the northeastern North Pacific Ocean is
probably associated with changes in the ocean dynamic processes (Figure 2 from [50]), but
the key force is still an open question. Over other regions, the interannual SSS variability is
generally between 0 and 0.1 g/kg.
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The largest spread (>0.06 g/kg) occurs over the tropical Pacific Ocean (Figure 11b), the
northern Bay of Bengal and the Arabian Sea, to the north of the Amazon River plume, over
the eastern subpolar gyre in the North Atlantic Ocean and to the southeastern section of
Madagascar (60◦E and 40◦S). The JAMSTEC, IAP, IPRC, SIO, BOA, ECA CCI, and CMEMS
show consistent interannual variations with the ensemble mean over most of the global
ocean. The large spread in the interannual SSS variations mainly results from two SMOS
satellite-based products. The interannual SSS variability from LOCEAN displays large
variances over most of the global ocean, and BEC displays a smaller variance than the
ensemble means in the tropical Pacific Ocean.

The regions with large interannual SSS variability also make a large contribution to
the total SSS variance (Figure 12). The regions in which the interannual SSS accounts for
over 60% of the total variance are in most of the Pacific Ocean and the northeastern Atlantic
Ocean. The ratio of interannual SSS to the total SSS variance from in situ-based products
(40~90%) is generally larger than those observed from only satellite-based products (20~80%
for LOCEAN, BEC, and ECA CCI) over most of the Pacific Ocean. This result could be
partially explained by the larger high-frequency variability observed from satellite data than
those observed from in situ-based products (Figure 5), which leads to a small contribution
of the low-frequency variances to the total variance.
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The first leading (Figure 13) mode can generally account for approximately 33% to
40% of the total interannual SSS variability. The time series of the first leading mode of the
interannual SSS shows consistent variations in ten products: a steady increase from 2011
to 2016 followed by a sharp decrease from 2016 to 2018 (Figure 13a). These changes are
consistent with the ENSO signal, in which extremely strong El Niño events occurred in
2015–2016 and La Niña events occurred in 2018–2019. The spatial distribution of the first
mode shows consistent variations among the ten products (Figure 3A). The spatial pattern
of the first mode of the interannual SSS derived from the ensemble mean in the Pacific
shows horseshoe-like patterns in the tropical Pacific Ocean: positive anomalies stretch
from the west coast to the northeast/southwest in the Northern/Southern hemisphere
(Figure 13c). Positive anomalies are also found over the northeastern North Pacific Ocean,
the eastern South Pacific Ocean, the eastern Indian Ocean, the tropical Atlantic Ocean, and
the western subtropical South/North Atlantic Ocean. SSS shows contrasting variations
between the eastern and western Maritime Continent (MC), which is probably associated
with a change in the Walker circulation [62].

3.5. The Dominant SSS Signal

This section evaluates the largest SSS STDs among different time scales for ten products
over the global ocean (Figure 14). We emphasize that this section compares SSS STDS over
the 2011–2018. Results will change if a different period is chosen, For EN4, JASMTEC,
IAP, IPRC, SIO, BOA, and CMEMS SSS products, the interannual and annual SSSs play
the dominant roles over most of the global oceans. Over most of the Pacific Ocean, the
interannual SSS plays the dominant role in the total variances. In the northwestern North
Pacific, the eastern South Pacific, under the ITCZ, and some regions in the tropical Indian
Ocean, the SSS variability is dominated by the annual signal. In the Atlantic Ocean, the
annual SSS shows a larger horizontal extent than others on different time scales for EN4,
JASMTEC, IAP, IPRC, SIO, BOA, and CMEMS. The dominance in total variances from
sub-annual SSS are mostly found on the southern side of 30◦S, some places in the Bay of
Bengal, and subpolar North Atlantic and North Pacific Ocean for EN4, JASMTEC, IAP,
IPRC, SIO, BOA, and CMEMS.
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Figure 13. (a) The principal components for the interannual SSS time series and (b) their contributions
to the total variability in the interannual SSS signal. The dark blue line/bar in (a) and (b) denotes
EN4, blue represents JAMSTEC, light blue represents IAP, green represents IPRC, yellow represents
SIO, orange represents BOA, red represents LOCEAN, purple represents BEC, dark green denotes
ECA CCI and bright green denotes CMEMS. (c) The ensemble mean for the spatial loadings of the
first EOF modes.

For only satellite-based SSS products (LOCEAN, BEC, and ECA CCI), the sub-annual
SSS displays a wider horizontal extent in SSS variance than the other products. For
LOCEAN and BEC, the sub-annual SSS variability plays the leading role over the high
latitude regions in the Southern Hemisphere, the northern subpolar gyre in the North
Pacific Ocean, and the central and western North Atlantic Oceans. Over the western
tropical Pacific Ocean, the interannual SSS variabilities from LOCEAN, BEC, and ECA CCI
play the leading role, agreeing with the results from EN4, JASMTEC, IAP, IPRC, SIO, BOA,
and CMEMS (Figure 14). Over some areas in the eastern tropical and subtropical South
Pacific Ocean and the tropical Indian and Atlantic (excluding regions near 0◦S) Oceans, the
annual SSS plays the primary role in the SSS variance, which is also consistent with the
results from the other products in Figure 14.
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3.6. The Statistical Summary

Based on the previous analysis, we summarize the intercomparison of SSS products
using a Taylor diagram (Figure 15). The global mean ECA CCI SSS maps most closely
resemble the ensemble mean fields on the original, sub-annual, and interannual time
scales. On the annual time scale, SIO, BOA, and CMEMS show a better match with the
ensemble mean fields than the other products. On all of the time scales, the global mean
SSS variations from LOCEAN show the smallest resemblance with those from the ensemble
mean fields.

The global mean STD of the ensemble mean SSS variations is 0.18 g/kg (Figure 15a).
LOCEAN shows larger global mean STDs than the other products on most of the time
scales, except for the annual cycle. The global mean total SSS variations from LOCEAN
are over 0.3 g/kg, and those from the other products are between 0.15 and 0.25 g/kg. The
largest STD of the decomposed SSS signal for the ensemble mean over the period between
2011 and 2018 occurs on the annual time scale (Figure 15c), with a magnitude of 0.11 g/kg.
The global mean STD of the interannual SSS for the ensemble mean is 0.1 g/kg, and the
STD of the sub-annual variability is 0.07 g/kg. At subannual, annual and interannual time
scales, the STDs of SSS variations from most of the products (except for LOCEAN) are
generally between 0.05 and 0.15 g/kg.

The correlation coefficients for the sub-annual time scale between each product and
ensemble mean are generally small, with magnitudes of 0.3~0.7 (satisfying the 90% con-
fidence level). On the annual time scale, the correlation coefficients are significant, and
the magnitude is between 0.6 and 0.95. On the interannual time scale, the correlation
coefficients are between 0.7 and 0.9, also satisfying the 90% confidence level. Therefore,
the annual and interannual SSS variations are more consistent among products than the
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sub-annual SSS variations. Thus, the patterns of the sub-annual SSS variations are more
likely to vary depending on different products.
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Figure 15. Taylor diagrams comparing ten SSS products on different time scales averaged over the global ocean. The black
circle denotes the ensemble mean, dark blue denotes EN4, blue represents JAMSTEC, light blue represents IAP, green
represents IPRC, yellow represents SIO, orange represents BOA, red represents LOCEAN, purple represents BEC, dark
green denotes ECA CCI and bright green denotes CMEMS.

4. Discussion

In this analysis, the time series of SSS is decomposed into three components. To
evaluate the performance of the decomposition, we analyze the residuals derived from
subtracting the time series of SSS from the sum of the sub-annual, annual and interannual
signals. We use the ratio of the residual variation to the total SSS variance as a measurement
of the uncertainty due to the decomposition in our analysis. From the global mean SSS
perspective, the residual SSS accounts for less than 4% of the total variance (Figure A4). At
each grid point over the global ocean, the ratio of the residual SSS variance to the total SSS
variance is generally less than 10% (Figure A5). Thus, the residual is small compared to the
original signal, and our methods of decomposition can capture most of the SSS variance.

This analysis applies the 12th-order Hanning filter to SSS data to derive variations on
different time scales. The same filter has also been applied in the eastern tropical Pacific to
derive spatial patterns in SSS variability [63]. Other filters, such as Butterworth, are also
commonly used in research on SSS changes. For example, Subrahmanyam et al. [64] and
Trott et al. [65] applied the fourth Butterworth filter to SSS in the Bay of Bengal to analyze
the high-frequency SSS variability. Hasson et al. [66] applied the fourth Butterworth filter
to SSS to analyze the link between SSS variability and mesoscale eddies. The running mean
is also broadly applied in the analysis to derive low-frequency variability [28]. For example,
an 18-month running mean was applied by Durack and Wijffels [3] to analyze the decadal
variability in SSS over the globe. To assess the sensitivity of our results to the different
methods applied, we calculate the STDs of SSS from the ensemble mean on different time
scales (Table 2). We use the 12th-order Hanning/Butterworth filter to calculate the SSS
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variability on different time scales. For the comparison of the low-frequency SSS variability,
we also calculate the STD by using the 13-month running mean. The SSS variabilities on
different time scales by different methods agree with each other. The temporal coverage in
this analysis is relatively short. To assess the method reliability of the temporal coverage,
we also apply the EOF method to the SSS over the 2005–2018 from EN4, JAMSTEC, IAP,
IPRC, SIO, and BOA. We find consistent spatial and temporal patterns of the leading mode
on three different time scale with results in the previous section. Thus, the derivations
of SSS variabilities on different time scales are robust. Furthermore, the salinity at 10m
from EN4, JAMSTEC, IAP, IPRC, SIO, and BOA are also examined in this analysis. The
temporal and spatial variabilities of dominant mode of salinity on sub-annual, annual and
interannual time scales show consistent results with salinity at 0m. Hence, results here will
not change if 10m from in situ-based products are used.

Table 2. The STDs of SSS on different time scales using different methods averaged over the globe.

Methods Sub-Annual (g/kg) Interannual (g/kg)

Hanning 0.068 ± 0.029 0.098 ± 0.022
Butterworth 0.078 ± 0.031 0.109 ± 0.025

Running Mean none 0.095 ± 0.022

Notably, the results in this analysis are sensitive to the calculation procedures. This
analysis derives the SSS variations by subtracting the annual cycle of SSS as the first step
and applying the filters to Sresidual as the second step. If the first step is eliminated and only
the second step is applied to the series to derive the high/low-frequency variability, there
would be some signal leaked from the annual cycle, which would contaminate the results.

Although multiple efforts have been made in previous research to increase the repre-
sentation of the spatiotemporal variability in the SSS, a large discrepancy still exists among
different products. The difference could be caused by the differences in sampling [21,22]
and mapping methods [29] and systematic errors when retrieving salinity data [24,34].
The possibility of identifying the “true value” of the SSS fields is low due to the large
discrepancy among products over certain regions. Further effort should be made to im-
prove the estimation of the observed SSS variations. Such efforts should include salinity
budget analysis using satellite-based variables on multiple time scales, identification of the
difference in skin SSS and near-surface SSS over the global ocean, and a comprehensive
analysis combining satellite retrieval and in situ-based analysis.

5. Conclusions

In this study, we provide a comprehensive and detailed intercomparison of SSS
variability on multiple time scales between ten SSS products over 2011–2018. First, we
calculate the STDs of the total SSS variations over 2011–2018 from the ensemble mean
fields and each product. By comparison of individual products to the ensemble mean SSS
maps, we found that the global mean ECA CCI SSS maps show the best resemblance to the
ensemble mean fields on the sub-annual and interannual time scales. On the annual time
scale, SIO, LOCEAN, and CMEMS show a better match with the ensemble mean fields
than the other products. The global mean SSS variations from LOCEAN show the least
resemblance with the ensemble mean fields at all frequencies.

Details of the findings on each time scale are summarized as follows.
On the sub-annual time scale, STDs from LOCEAN show larger values than the

ensemble means over most of the global ocean. The sub-annual variability can generally
explain 0~40% of the total variance over most of the global ocean among the ten products.
JAMSTEC, LOCEAN, BEC, and ECA CCI generally show a higher percentage of sub-annual
variability in the total variances than those in the six other products. The leading mode of
the sub-annual SSS signal from most of the products is the semiannual mode, which shows
two peaks/troughs in one year. However, the leading mode can account for less than 20%
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of the total sub-annual variances for all products, indicating that other variances also play
a role in regulating the sub-annual SSS.

The uncertainties in the annual cycle of SSS among the ten products are mainly
associated with the two SMOS-based products. LOCEAN shows stronger variability than
the ensemble mean fields over most of the tropical Atlantic and North Pacific, and BEC
shows weaker variability than the ensemble means over subtropical and tropical oceans.
Most SSS products show a ratio of the annual SSS variance to the total variance with a
magnitude of 0~0.4 over the Pacific Ocean. However, in other ocean basins, a ratio of >0.6
is observed in most of the products. The temporal and spatial distributions of the leading
mode for the annual SSS show consistency among the ten products. The maximum SSS
occurs in September, and the minimum SSS occurs in March for the leading mode.

The percentage of interannual changes to the total SSS variance is larger from in situ-
based products (40~90%) than those observed from only satellite-based products (20~80%,
LOCEAN, BEC, and ECA CCI). Good agreement in the temporospatial variability in the
dominant mode for interannual SSS is reached among the ten products.

In summary, our results offer a detailed intercomparison of the variability on different
time scales from ten products. High correlation coefficients (0.6~0.95) are found in the global
mean annual and interannual SSSs between individual products and the ensemble mean.
Furthermore, this study shows good agreement among the ten datasets in representing the
dominant mode of SSS on the annual and interannual time scales. The results enhance our
confidence in using in situ-based and satellite-based SSS products for low-frequency and
climate-related research.
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Figure A4. Time series of global mean SSS anomalies (solid lines) and the residual of the decomposed SSS signal (dotted
lines) derived from ten SSS products. The ratio of the residual SSS variance to the total SSS variance is listed in the
northeastern corner of each plot. The units for SSS anomalies are g/kg.
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