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Abstract: The locations and breathing signal of people in disaster areas are significant information
for search and rescue missions in prioritizing operations to save more lives. For detecting the living
people who are lying on the ground and covered with dust, debris or ashes, a motion magnification-
based method has recently been proposed. This current method estimates the locations and breathing
signal of people from a drone video by assuming that only human breathing-related motions exist in
the video. However, in natural disasters, background motions, such as swing trees and grass caused
by wind, are mixed with human breathing, that distort this assumption, resulting in misleading or
even no life signs locations. Therefore, the life signs in disaster areas are challenging to be detected
due to the undesired background motions. Note that human breathing is a natural physiological
phenomenon, and it is a periodic motion with a steady peak frequency; while background motion
always involves complex space-time behaviors, their peak frequencies seem to be variable over time.
Therefore, in this work we analyze and focus on the frequency properties of motions to model a
frequency variability feature used for extracting only human breathing, while eliminating irrelevant
background motions in the video, which would ease the challenge in detection and localization of
life signs. The proposed method was validated with both drone and camera videos recorded in the
wild. The average precision measures of our method for drone and camera videos were 0.94 and 0.92,
which are higher than that of compared methods, demonstrating that our method is more robust and
accurate to background motions. The implications and limitations regarding the frequency variability
feature were discussed.

Keywords: frequency variability feature; breathing detection; human detection; background motions;
search and rescue; drone video

1. Introduction

Natural disasters, such as fire, earthquake and mudslides, threaten the nation’s safety
and security, rendering post-disaster search and rescue (SAR) operations critical [1]. The
locations and breathing signal of people in disaster areas are significant information for
SAR missions in prioritizing operations to save more lives [2]. However, the environment
in disaster areas is always unknown and possibly hostile due to potential poisonous
gases, hazardous materials, radiation, extreme temperatures and dust, which increases the
challenge for rescue workers in the ground search for trapped survivors.

To address these challenges, ground rescue robots have been used in SAR missions as
an assistant technology to reduce both the health and personal risks for rescue workers,
and provide an alternative to access disaster areas that may otherwise be inaccessible to
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workers [3]. The majority of robots require human operators to remotely guide them in
searching for victims, however, this can be a very stressful task, which causes cognitive
and physical fatigue to operators during time-critical situations. Semi-autonomous control
schemes [4–7] for robotic exploration in SAR operations have been proposed to address the
limitations of both teleoperation and constant human supervision, but require demanding
technical supports, such as path planning, autonomous navigation, task allocation, decision-
making and victim identification [8]. Furthermore, implementing ground rescue robots in
hard-to-reach areas is a hard problem due to difficult terrains, such as mountains, rivers
and lakes.

Additionally, the Doppler radar sensor is also a powerful tool used in SAR
missions [9]. An important application of the Doppler radar sensor is to search and
locate an alive person under the rubble of collapsed building or behind a wall by detecting
vital signs, such as heartbeats and breathing [10–12]. The fundamental supporting this
work is that a moving target relative to the radar sensor can induce a frequency shift of
the echo as a result of the well-known Doppler effect; additional movements of smaller
parts of the target will result in additional modulation of the main Doppler frequency shift,
known as the micro-Doppler effect, i.e., the micro-Doppler signature, which reflects the
periodic kinetic characteristics of a moving object and can be used for target or activity
recognition and classification [13–15]. The radar sensor offers advantages in searching for
and locating survivors due to its low cost and capability to work at relatively long distances,
as well as strong robustness to illumination and weather conditions, but there may be
weaknesses in the process to deploy radar networks immediately and appropriately in
disaster zones, especially those which are unknown or hard to reach [16]. In this respect,
drones may be used as a complementary tool to provide additional information for life
detection and localization.

Unmanned aerial vehicles (UAVs), also known as drones, have been recognized as
one of the revolutionary advances in the recent technological evolution, and are now
experiencing new applications also in SAR missions [15,17,18]. This is mainly because: (1)
drones can be put into action immediately without any loss of time, and obtain a rapid
overview of the disaster situation by transferring surveillance and video data in real time;
(2) they are especially suitable for use in the cases of difficult terrains or in hazardous
or life-threatening situations; (3) they perform flexible operations to rapidly approach
target regions where the potential victims are. Al-Kaff et al. [19] proposed a detection
and tracking algorithm for rescuing victims in disaster environments based on color and
depth data obtained from drone videos. This method is efficient for localizing humans
who are lying on the ground in many poses, but fails to detect their life signs. In order
to detect life signs, such as the breathing signal and heart rate, which help to identify
whether the person is alive or not, Al-Naji et al. [20] proposed a remote physiological
measurement system based on the skin color analysis of facial videos. They can detect
human physiological parameters if the subject location is known prior, but limit the subject
standing in front of the drone camera with a single pose. To release the requirement on a
specific pose, in another study, Al-Naji et al. [21] proposed a new life signs detector system
based on analyzing the periodic chest movements of survivors. This method can efficiently
distinguish living and non-living subjects at different poses, but requires one to select a
region of interest (ROI), i.e., the chest region. A body joint estimation approach [22] was
applied in this method to select ROI, however, it performs well only when there are no
occlusions on subjects. In contrast, a motion magnification-based method has recently been
proposed by Perera et al. [2] to estimate the locations and breathing signal of survivors in
natural disasters. This method can successfully work well on clearly visible people and
even those fully covered with dust, debris or ashes, but relies on a special assumption
that only human breathing-related motions exist in the drone video. However, in some
natural disasters, breathing movements of survivors are mixed with undesired motions
in surroundings, such as swing trees and grass caused by wind. Therefore, the current
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method often produces ’contaminated’ breathing signal, and results in misleading or even
no life signs locations.

To overcome this limitation, this paper presents a frequency variability feature-based
method, which is robust to background motions. It is found that human breathing is
a periodic motion with a steady peak frequency that falls within the range of human
breathing rate (i.e., (0.2, 0.33) Hz), while for background motions, their peak frequencies
seem to be variable over time due to that background motions always involve complex
space-time behavior. The peak frequency here means the frequency with largest power in
a local spectrum, which is the spectrum corresponding to a signal segement. Therefore,
we consider that the temporal variability of peak frequencies of motion signals, which is
called frequency variability (FV) feature, enables us to isolate breathing movements from
background motions. In developing our method, we focused on analyzing the properties
of peak frequencies, and modeled the FV feature using the geometric algebra of a 2D
scatter plot. With the estimated FV values, we then designed a binary map that indicates
the life signs locations, and with which the breathing signal of survivor was obtained.
The proposed method was validated on both drone and camera videos, and experimental
results show that our method is more robust and accurate to background motions when
compared with the state-of-the-art method [2].

The contributions of this paper are below. (1) A frequency variability feature-based
method is proposed for detecting and locating life signs in natural disasters. (2) The
proposed frequency variability feature is successfully applied for discerning breathing
movements from background motions. (3) The practical performances that our method
provides were demonstrated, and its potential implications and limitations were discussed.

2. Background
2.1. Extraction of Subtle Motions from Videos

To the best of our knowledge, the research on subtle motions in a video is a main
topic in motion magnification [23], which is used to visualize deformations or vibrations
that would otherwise be invisible. This method followed a Lagrangian perspective to
track and record subtle motions in the video. As such, it depended on accurate motion
estimation, which is expensive and difficult to make artifact-free, especially at regions of
occlusion boundaries and complicated motions [24]. In contrast, motion magnification
methods [24–26] based on the Eulerian perspective do not require explicit motion estima-
tion. Our work for obtaining subtle motions is inspired by the Eulerian video magnification
(EVM) [24] method, where subtle motions are extracted from the temporal variations of
intensity at fixed positions. The details are as follows.

In order to explain the relationship between intensity variation and motion signal, a
simple case of a 1D signal undergoing translational motion was considered. This analysis
generalizes directly to locally translational motion in 2D. Given an 1D image intensity
I(x; t) at position x and time t, the observed intensities with respect to a motion signal δ(t)
are expressed by I(x; t) = f (x + δ(t)) and I(x; 0) = f (x). Based on the first-order Taylor
series expansions common in optical flow analysis [27,28], the image at time t, f (x + δ(t))
can be written approximately as

I(x; t) ≈ f (x) + δ(t)
∂ f (x)

∂x
. (1)

Therefore, the subtle intensity changes B(x; t) at every position x can be picked out by
applying a broadband temporal bandpass filter to I(x; t), that gives

B(x; t) = δ(t)
∂ f (x)

∂x
. (2)

Considering that the motion signal δ(t) is within the passband of temporal filter,
B(x; t) is an approximate expression for the subtle motion. For more details, see [24,29].
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2.2. SAR Operations Using Thermal and Infrared Radiation (IR) Cameras

Here, we discussed some important topics related to drone-based SAR operations by
using thermal and infrared radiation (IR) cameras for human detection. Based on a particle
filter combined with background subtraction, Portmann et al. [30] proposed a tracking
algorithm for people tracking in thermal-infrared images. Kang et al. [31] proposed an
approach for tracking continuously multiple objects across multiple sensors (i.e., electro-
optical (EO) and infra-red (IR) sensors) using a joint probability model, which encodes
the object’s appearance and motion. Rivera et al. [32] produced a modular equipment
consisting of two cameras (i.e., thermal and color cameras) and a geolocation module
mounted on a drone for possible human survivors in areas afflicted by disaster. Addition-
ally, the data implied that optical detection effectively operates during daytime, having a
higher accuracy at daytime deployment in comparison to nighttime. By integrating visible
and thermal images recorded by the drone, Blondel et al. [33] proposed a new detection
pipeline for viewpoint robust and fast human detection in SAR operations.

However, these studies may have limitations with low resolution, short-range de-
tection and motion artefacts caused by camera movement [2], and life signs detection of
humans was not considered in these studies. Furthermore, less thermal difference be-
tween the human body and background would make thermal images to be less contrasted
between living people and warm backgrounds that may increase the challenge to detect hu-
mans. This paper focused on studies using only a RGB camera, but the practical importance
of using a thermal camera in parallel to the RGB camera to enhance the implementation
for real scenarios should be noted. Unless mentioned otherwise, the camera used in the
drone-based methods described in the following text is an RGB camera.

2.3. Detection and Localization of Life Signs from Drone Videos

Drones have mobility and height advantages over humans and ground robots, and
have proven to be a very useful tool for rescuing survivors in SAR missions [17]. However,
in some natural disasters, the survivors may be lying on the ground and covered with dust,
debris or ashes, making them difficult to be detected by video analysis that is tuned to
human poses or shapes [19–21].

Recently, Perera et al. [2] proposed a motion magnification-based method to es-
timate the survivor locations and breathing signal from the drone video by detecting
human breathing movements. A significant advantage of this method is that it can suc-
cessfully detect clearly visible people and those who are fully occluded by dust, debris
or ashes, without additional information that previous methods required [19–21]. First,
the drone videos were stabilized using the key points of adjacent image frames to re-
move the camera or platform movements. Next, by using a sliding window, the stabi-
lized video was decomposed into tiles, which were then further stabilized. Then, motion
magnification [25,34,35] was applied to enhance the potential chest movements in each
tile video, and from which a difference image sequence was obtained; potential breathing
signal was estimated by applying image averaging and temporal filtering on each sequence.
Finally, the estimated breathing rates that fallen inside the range of human breathing rate
were remapped to the first image frame, creating a life signs map that indicates possible
survivor locations.

This method performs well by assuming that only human breathing-related motions
exist in the video. However, in some natural disasters, there may be undesired background
motions in surroundings, such as swing trees and grass caused by wind. Current method
did not discern between breathing and background motions, but averaged them to estimate
the breathing signal. However, the breathing signal may be contaminated by background
motions, and the estimated breathing rate may be wrong or not in the range of human
breathing rate, resulting in misleading or no life signs locations. Another limitation of this
approach is computational complexity, due to the expensive video stabilization and motion
magnification for all tile videos.
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Our method proposed in this paper is more robust to background motions by using
an FV feature to isolate breathing movements from background motions. Additionally, the
proposed method does not need to decompose the original video into tiles, nor magnify
motions, thus runs faster than the current method. A comparison among these drone-based
technologies for life signs detection and localization is summarized in Table 1, with specific
focus on main characteristics, key techniques, main pros and cons, as well as on the distance
between the drone and subject and the number of subjects of each approach.

Table 1. Comparison among different drone-based approaches for life signs detection and localization.

Paper Main Characteristics of the Approach Key Techniques Pros and Cons
Distance

between Drone
and Subject

Number of
Subjects

[19]

Color and depth data obtained from
drone videos are used to detect and

track victims in disaster
environments.

human detection,
multi-object tracking and

semi-autonomous reactive
control

This method: (1) is efficient for
localizing humans who are lying on the
ground in many poses, (2) but fails to

detect their life signs.

1.5 m multiple
subjects

[20]

A remote physiological measurement
system is designed based on the skin

color analysis of facial videos to detect
the vital signs (heart rate and

respiratory rate).

complete ensemble empirical
mode decomposition with
adaptive noise, canonical
correlation analysis and

video magnification

This method: (1) can identify whether
the person is alive or not, based on the

detected vital signs (heart rate and
respiratory rate), (2) but limits the

subject standing in front of the drone
camera with a single pose.

3 m 15 subjects

[21]
A new life signs detector system is
proposed by analyzing the periodic

chest movements of survivors.

color space conversion and
body joint estimation

This method: (1) can efficiently
distinguish living and non-living
subjects at different poses, (2) but

performs well only when there are no
occlusions on subjects.

4–8 m
eight subjects

and one
mannequin

[2]

A novel method is proposed to
estimate the locations of people from

drone video using motion
magnification technique and signal
processing by detecting breathing

movements.

video stabilization and
motion magnification

This method: (1) can successfully work
well on clearly visible people and even
those fully covered with dust, debris or
ashes, (2) but is sensitive to background
motions, such as swing trees and grass

caused by wind.

4–8 m
six subjects

and one
mannequin

Ours

The proposed method analyzes and
focuses on the frequency properties of

motions to model a frequency
variability feature used for extracting

only human breathing while
eliminating irrelevant background

motions in the video, which helps to
detect and localize life signs in

disaster areas.

video stabilization and
frequency variability

analysis (proposed in our
method)

The proposed method: (1) is useful to
isolate human breathing from

background motions, (2) and is more
robust to background motions than

existing method [2] for life signs
detection and localization.

3-4 m
seven subjects

and one
mannequin

3. Method

This study focuses on the detection and localization of life signs in disaster areas
using a frequency variability (FV) feature. First, the drone video is preprocessed by video
stabilization and temporal filtering. Second, we will describe the principal of the FV
feature proposed in this method, and explain why FV is a useful feature to discern human
breathing movements from background motions. Finally, we will show how to detect the
survivor locations and breathing signal using the estimated FV values. The process is
illustrated in Figure 1.
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Figure 1. Overview of the frequency variability feature-based method for detection and localization of life signs in natural
disasters.

3.1. Video Preprocessing

Drone videos often suffer from camera motions caused by the platform movement and
wind [2]. In recent years, video stabilization methods have been developed as a useful tool to
remove camera motions [36,37]. They use the key points of adjacent image frames to stabilize
drone videos. However, the larger the number of key points in the raw video, the more time
it would cost in the stabilization operation. In order to reduce this cost, in this study the
1920 × 1080 raw video was downsampled to 960× 540 with a scale factor β = 0.5, by using
the bicubic interpolation algorithm [38]. Similar to [2], the downsampled video was then
stabilized using the MathWork’s publicly available video stabilization work [39].

After that, the subtle intensity changes B(x; t) at each position x and time t used to de-
scribe the motion signals in drone videos are obtained by referring to EVM
method [24], as described in Section 2.1. Note that the more frequency components
of B(x; t) are preserved, the more frequency information can be used to distinguish be-
tween human breathing movements and background motions. However, we found that
frequencies lower than 0.1 Hz negatively affect our method’s performance for detecting
more location points of life signs. This is because that there are low-frequency camera
movements residual in the stabilized video [2] that always have high amplitudes and
dominate the peak frequencies of B(x; t). Taking these elements into consideration, the
components of B(x; t) lower than the cut off frequency fco = 0.1 Hz were removed by an
ideal bandpass filter (i.e., temporal filtering). For convenient notation, the filtered subtle
motions are still written as B(x; t) when there is no ambiguity.

3.2. Frequency Variability Feature

In order to discern human breathing movements from background motions, we firstly
explain their difference in the frequency property. Note that human breathing is a natural
physiological phenomenon; it is a steady periodic motion and thus can be expressed by

Bbre(x; t) = Abre(x)sin(2π fbret + θ(x)), (3)

where Abre, fbre and θ correspond to the amplitude, breathing rate and initial phase,
respectively, and they are constant over time. While background motions, such as swing
trees and grass caused by wind, always involve complex space-time behavior, they are
defined as

Bbac(x; t) = Abac(x; t)sin(2π fbac(x; t)t + φ(x; t)), (4)
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where Abac, fbac and φ are functions of time for amplitude, frequency and phase. We
focused on the frequency property, and found that the peak frequencies of Bbre(x; t) are
constant over time and fall within the range of human breathing rate; while for Bbac(x; t),
their peak frequencies always vary with time t and may not be in this breathing rate
range. Therefore, we consider that the temporal variability of peak frequencies of motions,
i.e., frequency variability (FV) feature, enables us to isolate breathing movements from
background motions. That is, the human breathing movements can be identified by
assessing two frequency properties: the peak frequencies (1) keep constant over time,
and (2) fall within the frequency band of human breathing. These two properties are key
components of our proposed FV feature. The details are as follows.

For obtaining the temporal peak frequencies of motion signal B(x; t) at 2D pixel
coordinates x in the video, we first took its short-time Fourier transform (STFT) as

STFTB(x; t, f ) =
∫ ∞

−∞
[B(x; u)g(x; u− t)]e−j2π f udu, (5)

where g(x; t) is a Hamming window that divides B(x; t) into segments and performs
windowing, and g denotes the complex conjugate of g(x; t). The number of segments
is N = (len− sample + 5)/5, where len is the signal length of B(x; t), and sample is the
window width denoted by f loor( fs/ fres), where f loor(z) rounds z to integer, fs denotes the
video frame rate, and fres is the frequency resolution that denotes the minimum frequency
interval in a spectrum. Unless mentioned otherwise, fres is set to 0.25 Hz in this paper.
Then, we recorded the peak frequency PFx

i of each local frequency spectrum of B(x; t)
and obtained the temporal peak frequencies

(
PFx

1 , PFx
2 , . . . , PFx

i , . . . , PFx
N
)
, 1 ≤ i ≤ N.

Waves of temporal peak frequencies of three representative motion signals, which are
located respectively at positions A, B and C (see the marked three points in Figure 1a), are
illustrated in Figure 1c. From the wave plot, we can see that the red wave corresponding
to the motion signal at point A (located around chest region) is a constant line, while the
brown and blue waves at point B and C (located in the background) are variable over time.
These waves in turn indicate that there indeed is a difference in the temporal variability of
peak frequencies for human breathing and background motions.

In order to estimate the FV feature of B(x; t) from temporal peak frequencies, the
geometric algebra of a 2D scatter plot is applied in this study. The 2D scatter plot (see
Figure 1d) was drawn with a set of scatter points, and the coordinates of each scatter
point Px

i are consisted by two adjacent peak frequencies PFx
i and PFx

i+1. Then, the FV
feature was modeled by using the geometric distance of these scatter points. That is,
the distance between two contiguous scatter points indicates the variation of two adja-
cent peak frequencies; moreover, since the 1D breathing frequency band (Flow, Fhigh) can
be equivalently expressed by a 2D grid cell in the scatter plot (see the green square in
Figure 1d), the distance between the scatter point Px

i and two vertices (Plow and Phigh) of
the grid cell indicates whether or not a peak frequency is in the breathing frequency band.
These lead to the formulation of the FV feature, defined as

FV(x) =
N−1

∑
i=1

L1(Px
i , Px

i+1) +
N

∑
i=1

(
L1(Pi, Plow) + L1(Pi, Phigh)− L1(Plow, Phigh)

)
, (6)

where L1 denotes the L1 norm distance between two scatter points, Plow and Phigh are two
vertices of the grid cell lying on the line of identity (LI). The coordinates of Plow and Phigh
are (Flow, Flow) and (Fhigh, Fhigh), respectively.

In this formulation, the first term is fidelity term, enforcing the current peak frequency
to be equal to the next adjacent one. The second term is a constraint term, which requires the
peak frequency to be in the breathing frequency band (Flow, Fhigh). These two terms create
a solution which maintains the constant of the temporal peak frequencies and satisfies the
frequency band of human breathing. It can be found from Equation (6) that for a breathing
movement with constant peak frequencies, the FV value is 0; while for background motions
with variable peak frequencies, the corresponding FV values are greater than 0. Thus,
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human breathing movements can be isolated from background motions by identifying
whether the FV feature is 0 or not.

3.3. Detection and Localization of Life Signs

Based on the analysis of the FV feature, we designed a binary location map (LM) that
indicates possible survivor locations. This location map is designed by identifying whether
FV(x) is 0 or not, as

LM(x) =

{
1 FV(x) = 0
0 others.

(7)

This location map has high values (equivalent to 1) only when motion signal having
constant peak frequencies and satisfying the breathing frequency band appears, meaning
that it can detect only locations where human breathing movements appear, and ignores
that where background motions exist. Through this process, our method presents clear
locations of living people, without negative effects of background motions. The false color
rending of LM and the localization result created by mapping LM on the first frame are
shown in Figure 1e,g.

Based on the location map LM(x), we obtained the survivor’s breathing signal as
follows. First, we detected the positions x′ with a pixel value of 1 in LM(x), and extracted
corresponding subtle intensity changes B(x′; t) at x′ from the stabilized video. Then, by
averaging and filtering these intensity changes as done in [2,40], the breathing signal can
be expressed by

BS(t) =

(
1
M ∑

x′
B(x′; t)

)
⊗ BPF(t), (8)

where M is the number of positions x′, ⊗ is a convolution operator, and BPF(t) is an ideal
bandpass filter with band (Flow, Fhigh), specified as (0.2, 0.33) Hz in this paper. Through this
process, our method extracts a pure breathing signal, without contamination by background
motions (see Figure 1f). The algorithm of this study is presented in Algorithm 1.

Algorithm 1 Frequency Variability Feature for Life Signs Detection & Localization in Natural Disasters.

Input: drone video;
Output: location map LM(x); breathing signal BS(t)
Initialization:

video downsampling scale factor β, 0.5;
cut off frequency fco, 0.1 Hz;
frequency resolution fres, 0.25 Hz;
frequency band of human breathing, (0.2, 0.33) Hz;

Video preprocessing:
downsample and stabilize the drone video;
extract and filter motion signals B(x; t) at each position x;

Detection and localization:
for each B(x; t) at position x do

do STFT of B(x; t) using Equation (5);
record temporal peak frequencies;
calculate frequency variability feature FV(x) using Equation (6);
if FV(x) = 0 then

set location map at x to 1, i.e., LM(x) = 1;
record B(x; t);

else
set location map at x to 0, i.e., LM(x) = 0;

end if
end for
average and filter all the recorded B(x; t) to obtain breathing signal BS(t) using Equation (8).
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4. Experimental Results
4.1. Experimental Setup

To evaluate the effectiveness of our method, which detects and locates the life signs
from drone videos under the presence of background motions, we performed experiments
on 20 drone videos. These videos were recorded by a drone, DJI Mavic Air2, at different
angles and places in the wild (simulated disaster scenarios) where background motions
exist, such as swinging trees and grass caused by wind. During video capture, we set fs
at 60 fps, the resolution 1920 × 1080 pixels, the duration 20 s, and the altitude of drone
in hovering state 3–4 m. A total of seven human subjects (five males and two females)
aged from 20 to 53 years and one full-body male mannequin (1.72 m tall, fully clothed)
participated in these experiments. During the data capture, the human subjects were asked
to lie down comfortably and breath naturally. All subjects gave their informed consent for
inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and approved by Hefei University of Technology (Project
identification code: 18-163-21-TS-001-061-01, date of approval: 27 October 2018).

Referring to the simulated scenarios used in previous work [2], the drone videos with
different simulated scenarios in our experiments included (1) three videos of subject(s)
fully covered with a blanket, (2) six videos of a fully visible subject (face up and face
down), (3) two videos of a camouflaged subject and clearly visible subject, (4) one video
of a camouflaged subject, (5) six videos of a mannequin and clearly visible subject, (6)
one video of a mannequin and camouflaged subject and (7) one video of a mannequin
and camouflaged subject partly covered with wood plank. Similar to [2], we drew a red
bounding box enclosing the chest area of human subjects in the first frame of videos as the
ground truth. Figure 2 shows the first frames and ground truth regions for 20 drone videos.
Note that we presented and discussed the experimental results of the first ten drone videos
(i.e., D1 to D10) in the main text, and the experimental results of the last ten drone videos
(i.e., AD1 to AD10) are shown in the appendix (see Table A1 and Figure A1). Either of the
two group results is reliable to indicate the effectiveness of the proposed method. Unless
mentioned otherwise, the ten drone videos examined in the main text are the first ten
videos, i.e., D1 to D10. Additionally, to evaluate the performance of the proposed method
on stable videos, we also did experiments on five camera videos, which were collected in
the wild by using a stationary Canon camera (for details, see Section 4.4.2). All experiments
were implemented in MATLAB, and ran on a computer server with an Intel Xeon Silver
4114 CPU at 2.20 GHz and 128 GB of RAM.

D1: covered (face down) D2: covered (face down & face up) D3: covered (face up) D4: face up

D6: face up D7: camouflaged & face down D9: camouflaged (face down) D10: face up

D5: face down

D8: camouflaged & face up

AD1: face up (male) & mannequin AD2: face down (female) & mannequin AD3: camouflaged & mannequin partly covered AD4: camouflaged & mannequin AD5: face up (female) & mannequin

AD6: face up (female) AD7: face up (female) & mannequin AD8: face up (female) & mannequin AD9: face up (female) & mannequin AD10: face up (female)

Figure 2. The first frames and ground truth regions indicated with red boxes for 20 drone videos. The name and the
simulated scenario of each drone video are shown on the top of every frame image.
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4.2. Evaluation Criteria

To evaluate the performance of our method on the detection of life signs from drone
videos, we focus on five criteria. They are the detection precision DP, the location density
LD, the number of false detected points FP, the computational time CT and the joint
performance JP.

Detection precision is the ability of a classification model to identify only the relevant
data points, that is, the fraction of detected items that are correct [2]. It is defined as

DP =
TP

TP + FP
, (9)

where TP is the number of human locations that are correctly detected and FP is the
number of items that are falsely detected as human locations. In our experiments, if the
pixel positions of detected human breathing are in the ground truth box, they are regarded
as correct localization items, otherwise not.

Location density is to measure the denseness of life signs locations detected correctly,
and is expressed by

LD =
TP
GT

, (10)

where GT is the total pixel number in the ground truth region.
Taking DP, LD, FP and CT into consideration, we defined a new evaluation criterion

JP to evaluate the joint performance of a method on detection precision, location density,
false detection and computational time. Formally, given K drone videos, we tested the
kth video with Q methods and recorded their DP, LD, FP and CT in four vectors respec-
tively as DPVk =

[
DP1

k , . . . , DPq
k , . . . , DPQ

k

]
, LDVk =

[
LD1

k , . . . , LDq
k , . . . , LDQ

k

]
, FPVk =[

FP1
k , . . . , FPq

k , . . . , FPQ
k

]
and CTVk =

[
CT1

k , . . . , CTq
k , . . . , CTQ

k

]
, where DPq

k , LDq
k , FPq

k and

CTq
k are the detection precision, location density, the number of false detections and com-

putational time of the kth drone video tested by the qth method, 1 ≤ k ≤ K, and 1 ≤ q ≤ Q.
Then, we normalized all elements of each vector between 0 and 1, and obtained the nor-
malized vectors as ˜DPVk =

[
˜DP1

k , . . . , ˜DPq
k , . . . , ˜DPQ

k

]
, ˜LDVk =

[
˜LD1

k , . . . , ˜LDq
k , . . . , ˜LDQ

k

]
,

˜FPVk =
[

˜FP1
k , . . . , ˜FPq

k , . . . , ˜FPQ
k

]
and ˜CTVk =

[
˜CT1

k , . . . , ˜CTq
k , . . . , ˜CTQ

k

]
. Finally, the joint

performance JPq of the qth method can be defined as

JPq =
1
K

K

∑
k=1

( ˜DPq
k + ˜LDq

k −
˜FPq

k −
˜CTq

k ). (11)

The JP value is high (close to 2) when a method has good performance with high
detection precision, high location density, small number of false detections and low compu-
tational time, and becomes low (close to−2) when the method has contrasting performance.

4.3. Parameter Analysis

In this subsection, in order to evaluate the effectiveness of the proposed method under
various parameter settings, experiments on ten drone videos were conducted. The default
parameter settings in the proposed method are: (1) do video stabilization as preprocessing,
(2) set the scale factor β to 0.5, (3) set the cut-off frequency fco to 0.1 Hz, and (4) set the
frequency resolution fres to 0.25 Hz. When evaluating the performance of one parameter
(e.g., video stabilization) on our method, we keep other parameters (e.g., β, fco and fres)
unchanged. Experiments contain the following five aspects: (1) video stabilization, (2)
image resolution, (3) temporal filtering, (4) frequency resolution and (5) fidelity term and
constraint term.
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4.3.1. Video Stabilization

To validate the effectiveness of video stabilization, we tested the stabilized and unsta-
bilized drone videos by our method. For convenient notation within the text, the methods
with and without video stabilization are written as wVS and oVS, respectively, when there
is no ambiguity. The histogram results of DP, LD, FP and CT for ten drone videos are
shown in Figure 3. Each histogram axis is quantized into several bins. The horizontal
axis represents the range of DP, LD, FP and CT, and the vertical axis corresponds to the
number of videos in each bin.
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Figure 3. Histogram results of DP, LD, FP and CT of the proposed method with and without video stabilization: (a) DP
histogram, (b) LD histogram, (c) FP histogram and (d) CT histogram.

The DP of wVS ranged from 0.87 to 0.98, while that of oVs ranged from 0.02 to 0.62
(see Figure 3a). The LD of wVS distributed in the interval larger than 14.36‰, while that
of oVs distributed less than 19.94‰(see Figure 3b). Additionally, the FP of wVS mainly
located at regions with false detection less than 194, while that of oVs distributed widely
from 36 to 4495 (see Figure 3c). The CT of wVs were in the range (1827.84, 1942.95) s, and
that of oVs were in (1716.96, 1784.67) s (see Figure 3d).

The CT histogram (Figure 3d) shows that the method wVs costs more time (the
average CT is 1877.56 s) than oVS (the average CT is 1758.88 s). This is because wVs needs
to take time to do the process of video stabilization, while oVS not. However, method
wVs has a better performance on DP, LD and FP than oVS. For example, the average DP
and LD values of wVS are 0.94 and 57.38‰, which are much higher than that of oVS, i.e.,
0.17 and 8.69‰; furthermore, the average FP of wVS is 57, which is much lower than that
of oVS, 1517. This is because the video stabilization in wVS can remove most of camera
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motions in the drone video that helps the resulting stabilized video to meet the first-order
Taylor series expansion [24], therefore, the subtle motions can be extracted effectively at
fixed positions by using Equation (2) that helps to detect the target human breathing;
however, for oVS, the raw drone video without stabilization does not meet this expansion,
resulting in distorted motions caused by camera motions that lead to false detection. The
joint performance values of wVS and oVS are 1 and −1, respectively, indicating that video
stabilization is a useful preprocessing to improve method’s performance.

4.3.2. Image Resolution

Next, we examined the impact of image resolution on reducing the time cost. We set
the scale factor β to 1, 0.5 and 0.25, and write methods under these three factors as IR1,
IR0.5 and IR0.25, respectively. Under the different scale factors, the histogram results of
DP, LD, FP and CT of the proposed method for ten drone videos are shown in Figure 4.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DP

0

1

2

3

4

5

6

Fr
eq

ue
nc

y

Histogram of DP

IR1
IR0.5
IR0.25

0 20 40 60 80 100 120 140 160 180 200
LD 10-3

0

0.5

1

1.5

2

2.5

3

Fr
eq

ue
nc

y

Histogram of LD

IR1
IR0.5
IR0.25

0 1 2 3 4 5 6 7 8 9
FP 102

0

1

2

3

4

5

6

7

8

9

Fr
eq

ue
nc

y

Histogram of FP

IR1
IR0.5
IR0.25

0 10 20 30 40 50 60 70 80 90
CT(s) 102

0

1

2

3

4

5

6

7

8

9

10

Fr
eq

ue
nc

y

Histogram of CT

IR1
IR0.5
IR0.25

(a) (b)

(c) (d)
Figure 4. Histogram results of DP, LD, FP and CT of the proposed method with three different scale factors, 0.25, 0.5 and 1:
(a) DP histogram, (b) LD histogram, (c) FP histogram and (d) CT histogram.

The DP values of IR0.25, IR0.5 and IR1 ranged from 0.72 to 1.0, from 0.87 to 0.98
and from 0.28 to 0.91, respectively (see Figure 4a). For methods IR0.25 and IR0.5, they
had a similar LD distribution in the range (6.35‰, 106.83‰); while IR1 had a wide range
of LD, from 15.36‰to 197.58‰(see Figure 4b). In addition, the FP of IR0.5 was mainly
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located in the range (22, 194), while that of IR0.25 and IR1 ranged from 0 to 456 and 85
to 892, respectively (see Figure 4c). The CT values of IR0.25 and IR0.5 were in the range
(495.31, 536.12) s and (1827.84, 1942.95) s, while that of IR1 was in (7492.91, 8727.41) s (see
Figure 4d).

The CT histogram (Figure 4d) shows that the computational time is significantly
reduced with the decrease of image resolution. For instance, the average CT values of
IR1, IR0.5, and IR0.25 are 8272.06 s, 1877.56 s and 507.28 s respectively. This is because the
number of key points in downsampled image is smaller than that in the raw image, and
therefore improving the computation speed of video stabilization process. However, when
downsampled the raw video further from β = 0.5 to a smaller scale factor β = 0.25, the
performance on DP, LD and FP became a little worse. For instance, the average DP and
LD values decreased from 0.94 to 0.87 and from 57.39‰to 56.01‰, respectively, and the
average FP increased from 57 to 142. There are likely two reasons for this outcome. On the
one hand, videos at small image resolution may have smaller number of target signals than
that of videos at larger ones, therefore resulting in low DP and LD. On the other hand, the
target signals may be distorted when downsampling the raw video from fine resolutions to
coarse ones, thus resulting in high FP. Additionally, results also show that IR1 has poor
performance, not only on CT, but also on DP and FP. For example, IR1 has a lower average
DP (i.e., 0.70) than that of IR0.5 and IR0.25 (i.e., 0.94 and 0.87), and has a higher average
FP (i.e., 347) than that of IR0.5 and IR0.25 (i.e., 57 and 142). This may due to the fact that
in the raw video, some background motions satisfying FV(x) = 0 are falsely detected as
target breathing motions, therefore resulting in low DP and high FP. These background
motions may be removed in the downsampling process, therefore IR0.5 and IR0.25 have
better performance on DP and FP than IR1. Taking all criteria results into consideration,
the joint performance criterion JP of method IR0.5 with β = 0.5 is the highest (i.e., 1.29),
especially compared to that of IR1 and IR0.25 (i.e., −1.27 and 0.74). Therefore, the scale
factor was set to 0.5 in all experiments for obtaining a better performance on detection
precision, location density, false detection and time cost at the same time.

4.3.3. Temporal Filtering

In this part, we analyzed the performance of the proposed method with three different
cut off frequencies fco, i.e., 0, 0.1 and 0.2 Hz (which are not larger than the lower bound of
breathing rate Flow). The corresponding methods are labeled as Fco0, Fco0.1 and Fco0.2
for convenient notation. Since the total computational time does not change much when
adjusting the fco value in temporal filtering, only detection precision DP, location density
LD and false detection FP are evaluated, except for CT. Under different cut off frequencies,
the histogram results of DP, LD and FP of the proposed method for ten drone videos are
shown in Figure 5.

The DP values of Fco0, Fco0.1 and Fco0.2 ranged from 0.96 to 0.99, from 0.87 to 0.98
and from 0.22 to 0.84, respectively (see Figure 5a). The LD of Fco0 was mainly distributed
in the low range (4.29‰, 54.50‰), that of Fco0.1 distributed in the low-middle range
(14.36‰, 100.14‰), and that of Fco0.2 was in the middle-high range (49.36‰, 161.23‰)
(see Figure 5b). In addition, the FP values of Fco0 and Fco0.1 mainly located in the interval
(2, 194), while that of Fco0.2 was in (561, 4737) (see Figure 5c).

Although Fco0 has the highest DP values with an average 0.98, its average LD is
the lowest (28.61‰). This may be due to the fact that there are residual low-frequency
camera movements in the stabilized video that have high amplitude and dominate the peak
frequency of B(x, t); therefore, only few target signals falling inside the range of human
breathing are correctly detected. On the other hand, method Fco0.2 obtains the highest LD
values but has the lowest DP and highest FP, due to many motions, including breathing
signals and background motions, which do not satisfy FV(x) = 0 initially, could in turn
become satisfied after removing frequency components lower than 0.2 Hz. By setting ˜CTq

k
in Equation (11) to zero, the JP values corresponding to Fco0, Fco0.1 and Fco0.2 were 1.00,
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1.36 and −0.009 respectively; it seems to obtain a good compromise between DP, LD and
FP when setting fco to 0.1 Hz.
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Figure 5. Histogram results of DP, LD and FP of the proposed method with three different cut off frequencies 0, 0.1 and 0.2 Hz:
(a) DP histogram, (b) LD histogram and (c) FP histogram.

4.3.4. Frequency Resolution

Then, the impact of various frequency resolutions fres on the performance of the
proposed method was evaluated. The frequency resolution has four potential values: 0.1,
0.2, 0.25 and 0.3 Hz. Similar to the above notations, the corresponding methods are written
as Fres0.1, Fres0.2, Fres0.25 and Fres0.3 if there is no ambiguity. Under four different
frequency resolutions, 0.1, 0.2, 0.25, and 0.3 Hz, the JP and average results of DP, LD, FP
and CT of the proposed method for ten drone videos are presented in Table 2.

Table 2. The JP and average results of DP, LD(‰), FP and CT(s) of the proposed method with four
different frequency resolutions 0.1, 0.2, 0.25 and 0.3 Hz.

Evaluation Criteria Fres0.1 Fres0.2 Fres0.25 Fres0.3

average DP 0.27 0.57 0.94 0.87
average LD 231.71 67.14 57.38 9.01
average FP 12,224 790 57 5
average CT 2569.22 1872.12 1877.56 1869.04
JP −0.98 0.63 1.16 0.89
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As presented in Table 2, by increasing the value of fres, the average DP rises initially,
peaks, and then falls, while the average LD, FP and CT always fall. Additionally, though
Fres0.1 has the highest LD value 231.71‰, its average DP is the lowest (i.e., 0.27), and
its average FP is the largest (i.e., 12,224). This is because of the fact that 0.1 Hz is a fine
frequency resolution, so that some background motions with steady peak frequencies
falling within the breathing frequency band (0.2, 0.33) Hz are falsely detected as life
signals. One may improve the detection precision by increasing fres values. However,
when increasing frequency resolution to be coarser (e.g., 0.3 Hz), which is close to or larger
than the upper bound of breathing rate 0.33 Hz, the DP value falls again. For instance, we
found that there are no life signs been detected when increasing fres higher than 0.5 Hz.
This may be due to the fact that the real breathing rate cannot be detected correctly under
coarser frequency resolutions. Taking DP, LD, FP and CT into consideration, our method
has a better joint performance (i.e., JP = 1.16) when setting fres to 0.25 Hz. This suggests
that a frequency resolution not larger than Flow + 0.5 ∗ (Fhigh − Flow) may be a candidate
for users.

4.3.5. Fidelity Term and Constraint Term

Finally, we estimated the importance of the combination of fidelity term and constraint
term in the model of the frequency variability feature (defined in Equation (6)). For
comparison, we also evaluated the individual impact of fidelity term and constraint term
on the performance of the proposed method. For convenient notation within the text, the
methods when only fidelity term or constraint term works are written as MFt and MCt,
respectively.

Note that a strict constraint, i.e., FV(x) = 0, is used in our method for life detection
and localization (for details, see Sections 3.2 and 3.3, and Equation (7)); while, in this part,
in order to assess and compare the robustness of MFt, MCt and our method for isolating
breathing movements from background motions, we relaxed this strict constraint with a
threshold τ allowing one to detect those motions whose FV value is not larger than τ. Here,
we rewrite Equation (7) with a threshold τ as

LM(x) =

{
1 FV(x) ≤ τ

0 others.
(12)

The threshold τ is set to four different values manually in this experiment, i.e., 0, 0.1, 1
and 1.5. Here, τ = 0 means that Equation (12)) has the same ability with Equation (7)) to
detect only motions that have constant peak frequencies and absolutely satisfy the breathing
frequency band; while, for τ > 0 (e.g., 0.1, 1 or 1.5), it means that Equation (12)) also detects
those background motions that have approximate peak frequencies and approximately
satisfy the breathing frequency band. It means that when τ is 0, the probability of false
detection is the lowest and the greater the τ is, the higher probability the false detection
will be. The average results of DP, LD and FP for ten drone videos are reported in Table 3.
Meanwhile, the CT values were not evaluated, since the total computational time does not
change much under different FV thresholds.

Table 3. Average results of DP, LD(‰) and FP of three methods under four different τ values 0, 0.1, 1 and 1.5.

Methods
Average DP Average LD Average FP

τ = 0 τ = 0.1 τ = 1 τ = 1.5 τ = 0 τ = 0.1 τ = 1 τ = 1.5 τ = 0 τ = 0.1 τ = 1 τ = 1.5

MFt 0.94 0.94 0.90 0.76 57.39 57.39 70.70 103.51 57 57 134 539
MCt 0.94 0.94 0.94 0.93 57.38 57.38 59.98 61.51 57 57 62 65
OURS 0.94 0.94 0.94 0.94 57.38 57.38 58.38 58.97 57 57 58 59

Table 3 reports that these three methods have similar results when threshold τ is
set to 0 or 0.1. This indicates that each of them performs well under a strict threshold
constraint. When adjusting threshold from τ = 0.1 to higher value τ = 1.5, the average
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DP of MFt significantly falls from 0.94 to 0.76, and average LD and FP values rise from
57.39‰to 103.51‰and from 57 to 539, respectively. This is due to that lots of motion
signals (including both breathing and background motions) with slight changes in peak
frequencies are detected as target motions. On the other hand, MCt shows a slight decrease
in average DP and a small increase in average LD and FP values. This is because that MCt
obtained some motions that have variable frequencies close to the breathing frequency
band. In contrast, our method shows almost steady performance for all of the cases. For
instance, the mean and standard deviation values of DP, LD and FP of our method under
different thresholds are (0.94, 0), (58.03‰, 0.79‰) and (57.75, 0.96). This is because under
the same threshold τ, our method using the combination of fidelity term and constraint
term obtains less false detections than MFt and MCt. These results indicate that the
combination of fidelity term and constraint term is important to remain the performance of
frequency variability feature for isolating breathing movements from background motions.
Additionally, note that when performing the proposed method in the practice, we do not
use Equation (12) (which contains parameter τ), but still Equation (7) (i.e., under the strict
constraint FV(x) = 0) for obtaining the highest DP and lowest FP.

From the above parameter analysis, we can conclude as follows. (1) Video stabilization
is a necessary preprocessing to remove the camera motions in drone videos, and helps to
improve method’s performance. (2) A small resolution (e.g., 480 × 270 pixels) is recom-
mended if users want to obtain method results in a short time (about 8.45 min); in addition,
the resolution can be adjusted as users’ requirements change. (3) The temporal filtering
enables us to remove the frequencies of residual low-frequency camera motions in a stabi-
lized video; additionally, the cut off frequency fco can be set with a low value (e.g., 0.1 Hz)
but not lager than Flow. (4) Frequency resolution fres seems to be an important factor; as
finer fres value led to long computational time and large number of false detections, while
coarser fres decreased the detection precision and location density, a frequency resolution
not larger than Flow + 0.5 ∗ (Fhigh − Flow) may be a candidate for users. (5) For reliably
isolating human breathing from background motions, both fidelity and constraint terms
are recommended to be applied in the proposed model of the frequency variability feature.

4.4. Comparison Experiments

In this section, our method was compared with a motion magnification-based method
recently proposed by Perera et al. [2]. Additionally, at the frequency variability feature
we are after, one might ask: is it also valid when using only the main frequency of B(x; t)
rather than temporal peak frequencies to identify the life signs locations? Here, the main
frequency means the frequency with largest power in the Fourier spectrum of B(x; t). To
answer this question, we conducted another method, called MFFT. MFFT marks positions
x as the life signs locations if the main frequency of B(x; t) falls within the range of human
breathing rate. Ten drone videos and five camera videos were tested in this section.

4.4.1. Drone Videos

Based on the parameters analyzed in Section 4.3, experiments on drone videos use
the default parameter settings as follows: β = 0.5, fco = 0.1 Hz, fres = 0.25 Hz. Results
of detection precision DP, location density LD, number of false detected points FP and
computational time CT for ten drone videos are summarized in Table 4.

For the motion magnification-based method [2], the DP, LD and FP values ranged
from 0 to 0.78, from 0 to 0.05‰, and from 0 to 4301, respectively. The potential reason that
accounts for this performance seems to be an overly strong assumption to the drone video,
in which only breathing related motions exist. However, in the wild, background motions,
such as swing trees and grass caused by wind, severely distort this assumption, resulting
in misleading or even no life signs locations. The false color location maps of the motion
magnification-based method [2] for ten drone videos are shown in the second column of
Figure 6. As shown in this figure, due to the negative effect of background motions, only
four of ten location maps indicate the human positions.
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Table 4. Results of detection precision DP, location density LD(‰), number of false detected points FP and computational
time CT(s) of Perera et al.’s work [2], MFFT and ours for ten drone videos.

Video Scenario
Perera et al. [2] MFFT OURS

DP LD FP CT DP LD FP CT DP LD FP CT

D1 covered (face down) 0.07 0.02 4301 10,566.85 0.05 424.66 113,216 276.95 0.96 46.91 27 1887.46
D2 covered (face down & face up) 0.00 0.00 0 10,211.55 0.10 525.70 101,447 276.43 0.90 80.45 194 1827.84
D3 covered (face up) 0.00 0.00 2532 10,360.25 0.03 587.64 184,969 264.58 0.92 68.32 48 1840.20
D4 face up 0.00 0.00 0 12,160.41 0.04 516.68 124,982 267.62 0.87 17.16 26 1853.33
D5 face down 0.00 0.00 0 11,050.18 0.07 491.48 90,832 274.85 0.95 55.98 37 1904.07
D6 face up 0.70 0.02 99 11,258.71 0.07 566.12 105,457 270.02 0.98 100.14 22 1871.13
D7 camouflaged & face down 0.78 0.05 880 11,449.52 0.21 452.83 113,357 290.82 0.95 26.09 86 1942.95
D8 camouflaged & face up 0.75 0.04 885 12,070.78 0.16 310.99 109,060 296.81 0.97 14.36 31 1914.24
D9 camouflaged (face down) 0.00 0.00 0 11,506.77 0.05 716.07 118,449 278.91 0.90 84.44 73 1881.37
D10 face up 0.00 0.00 0 11,474.51 0.04 517.24 112,306 264.08 0.97 79.95 22 1853.03

For method MFFT, the DP ranged from 0.03 to 0.21, while the LD and FP ranged from
310.99‰to 716.07‰and from 90,832 to 184,969, respectively. These results show that MFFT
has low detection precision and high false detection, although it has the highest location
density (the average LD is 510.94‰). Since MFFT identifies life signs locations only by
judging whether the main frequency of B(x; t) falls within the breathing frequency band or
not, it cannot remove those background motions whose main frequencies are also in the
range of human breathing rate. Therefore, MFFT presented many false detected locations
in the background, as shown in the third column of Figure 6.

As reported in Table 4, the average DP value of our method is 0.94, which is higher
than that of Perera et al. [2] and MFFT (i.e., 0.23 and 0.08), and the average FP is 57, which
is less than that of compared methods (i.e., 870 and 117,408). These results indicate that
the proposed method obtained more accurate estimate of life signs locations and less false
detections than compared methods. Such good performance on DP and FP mainly owes to
the proposed FV feature, which is capable of discerning the human breathing movements
from background motions. The reason why DP values did not reach 1 is that a small
number (i.e., the FP value) of background motions satisfying FV(x) = 0 is falsely detected
as breathing signals. However, these outlier points were always distributed sparsely, and
therefore can be removed by using morphological operator of erosion. The false color
location maps and localization results of our method for ten drone videos are presented
in the last two columns of Figure 6. Compared with the results of Perera et al.’s work [2]
and MFFT shown in the second and third columns of Figure 6, the proposed frequency
variability feature-based method can detect and locate only the human breathing signals
around the chest area, and ignores the background motions.

Additionally, the computational times displayed in Table 4 indicate that the pro-
posed method produces results about six times faster than [2], whose average CT value is
11,210.96 s. This is because the proposed method did not need the expensive processes of
video stabilization and motion magnification for tile videos as done in [2]. Meanwhile, our
method has a processing speed lower than that of MFFT. This is due to the fact that the
STFT in the analysis of frequency variability is more expensive than the Fourier transform
in MFFT. However, the JP values of the motion magnification-based method [2], MFFT and
ours are −0.79, 0.03 and 0.96, respectively, demonstrating that when detecting life signs
from drone videos, our method has a better joint performance than compared methods.

4.4.2. Camera Videos

To evaluate the performance of the proposed method on stable videos, we also did
experiments on camera videos, which were collected in the wild by using a stationary
Canon camera. During video capture, we set fs at 50 fps, the resolution 1280 × 720 pixels,
the duration 20 s, and the distance between camera and subject to about 10 m. The
parameter settings in this part are as follows: β = 0.75 (the new resolution is 960 ×
540 pixels), fco = 0.1 Hz, fres = 0.25 Hz. Our method was compared with method MFFT
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and the motion magnification-based method proposed by Perera et al. [2]. Scenarios and
results of detection precision DP, location density LD, number of false detected points FP
and computational time CT for five camera videos are presented in Table 5.

D1: covered (face down)

D2: covered (face down & face up)

D3: covered (face up)

D4: face up

D6: face up

D7: camouflaged & face down

D9: camouflaged (face down)

D10: face up

D5: face down

D8: camouflaged & face up

Perera et al. [2] MFFT OURS OURS 
 (false color LMs)  (false color LMs)  (false color LMs)  (localization results)Ground truth

Figure 6. False color location maps (LMs) of Perera et al.’ work [2], MFFT and ours, and our localization results for ten
drone videos.

As reported in Table 5, the average DP, LD, FP and CT values of Perera et al.’s work [2],
MFFT and ours are (0.11, 263.83‰, 67,413, 94.84 s), (0.04, 339.47‰, 123,428, 83.83 s) and
(0.92, 85.6‰, 116, 1243.37 s), respectively. Our method got the lowest location density
(average: 85.6‰) than compared methods. This may due to the fact that some factors, such
as image noise introduced during the photographic process, affect the peak frequencies of
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breathing movements, leading to larger FV values than zero. These breathing movements
do not satisfy FV(x) = 0 anymore, and therefore cannot be detected by Equation (7).
In addition, the proposed method costs much time than compared methods. This is
because that the STFT in the analysis of frequency variability feature for obtaining the
time-frequency information is time consuming; in contrast, since there are less or no
camera shaking in ground recorded videos, compared methods did not need the expensive
operation of video stabilization, and therefore ran faster than ours. However, our method
obtained the highest DP (average: 0.92) and lowest FP (average: 116), which indicate
that the proposed method still keeps a high detection precision and a small number of
false detections when evaluating on camera videos. The false color location maps and
localization results of three methods for five camera videos are shown in Figure 7. Perera
et al.’s work [2] did not work well due to the background motions (resulting in misleading
life signs locations). MFFT can present the human locations but produces much false
detections in background. In contrast, our proposed method shows clear locations of life
signs without the negative effects of background motions.

Table 5. Results of detection precision DP, location density LD(‰), number of false detected points FP and computational
time CT(s) of Perera et al.’s work [2], MFFT and ours for five camera videos.

Video Scenario
Perera et al. [2] MFFT OURS

DP LD FP CT DP LD FP CT DP LD FP CT

C1 face up 0.44 422.50 11,904 95.12 0.09 413.40 90,935 82.75 0.95 63.05 68 1238.19
C2 face down 0.06 837.34 306,487 93.42 0.06 723.22 259,216 82.39 0.93 147.76 231 1242.19
C3 face up 0.00 0.00 4697 95.02 0.02 156.69 94,501 84.37 0.94 56.35 43 1256.79
C4 camouflaged 0.06 59.31 13,221 96.87 0.03 259.05 106,095 83.53 0.88 107.06 186 1239.40
C5 face down 0.00 0.00 758 93.76 0.02 144.98 66,391 86.12 0.90 53.80 50 1240.28

C1: face up

C2: face down

C3: face up

C4: camouflaged

C5: face down

Perera et al. [2] MFFT OURS OURS 
 (false color LMs)  (false color LMs)  (false color LMs)  (localization results)Ground truth

Figure 7. False color location maps (LMs) of Perera et al.’ work [2], MFFT and ours, and our localization results for five
camera videos.

5. Discussion

This study was proposed to detect and locate life signs of survivors who are lying
on the ground in disaster areas and covered with dust, debris or ashes. As the current
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method [2] assumes only human breathing related motions existing in the video, it did not
work well in challenging conditions when background motions, like swing trees and grass,
exist. In contrast, our method is robust to background motions with the help of frequency
variability (FV) feature, and can be used as an emergency tool for detecting survivors in
SAR missions.

Besides being used in SAR missions for detecting life signs, the proposed FV feature
may be applied in signal analysis for describing the frequency property of a signal. For
instance, as shown in the results in Figures 6 and 7, the FV is indeed an effective feature
for isolating the periodic breathing motions from non-meaningful ones. There may be
several potential applications by using the FV feature. For example, the FV feature may
be used in the cardiac pulse measurement [41] for extracting pure heart pulse, without
the effects of face motions, such as eye blink and mouth motion. This is because heart
pulse is also a periodic signal accompanying blood circulation, while face motions are
not. In contrast, users could also analyze non-periodic signals by focusing on the different
range of FV values, since the peak frequency-to-peak frequency variations may be benefit
to describing the potential properties of signals. For example, the FV feature may have
potential implications in mechanical engineering for extracting the time-varying vibration
mode shapes [42], and in micro-expression recognition for detecting the tiny, sudden and
short-lived subtle emotions [43].

There are some factors that may affect the method’s performance. The proposed FV
feature enables us to discern breathing motions from background motions, but it relies
on the assumption that the extracted breathing motions are periodic signals and fall in
the range of human breathing rate. However, some factors may contaminate these breath-
ing motions and distort this assumption, resulting in misleading or sparse results. (1)
Camera movements. The subtle motions are extracted based on the EVM [24] method,
which requires that the video frames should be approximated by a first-order Taylor series
expansion. However, videos with large camera motions do not hold this requirement.
Video stabilization is a necessary preprocess step to remove most of these camera motions;
in addition, we consider that a method for directly extracting periodic motions mixed
with camera motions can be developed as a subject for future work. (2) Image noise. The
collected videos may be mixed with image noise caused by low light levels, atmospheric
turbulence, high sensor gain, short exposure time, and so on. Therefore, breathing signals
would be contaminated by image noise, and cannot be detected correctly. Denoising meth-
ods, such as principal component analysis, wavelet analysis and fractional anisotropy [44],
may be useful to overcome this problem. (3) Camera distance. The breathing movements
around the chest are the key clue for detecting life signs in this study. However, as the
camera distance increased (e.g., longer than 30 m), the size of the survivor in a image de-
creased. Therefore, it is difficult to detect ideal breathing signals from a small chest region.
To overcome this problem, users can flexibly operate the drone to approach the target
zones where the potential victims are at a close distance (e.g., 5 m). Another limitation
of this approach is computational complexity. It takes about 30 min to process a drone
video with resolution 1920 × 1080 pixels, although it is about six times faster than the
motion magnification-based method [2]; it seems too slow for a real time implementation.
This is because the STFT in the analysis of the frequency variability feature for obtaining
the time-frequency information is time consuming. A simple and principled approach
should be developed as a substitute for using STFT in future work. In addition, weather
conditions, such as heavy wind, rain, dense fog and snow, could affect our approach on
both data collection and video processing. On the one hand, the drone may not work well
in adverse weather conditions; this could alter how the drone perceives its environment
and reacts to it. On the other hand, the motion artifacts and poor image quality introduced
during the photographic process would bring challenge to video processing. In this respect,
the integration of other type of sensors (e.g., radars, thermal and IR cameras) could also
be investigated to provide an additional information for life detection and localization
complementary to drone-based methods.
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6. Conclusions

A frequency variability feature-based method is proposed in this paper for detect-
ing and locating life signs in disaster areas where background motions exist. Motion
magnification-based method [2] has recently been proposed for detecting both clearly
visible survivors and those who are fully occluded by dust, debris or ashes, without the
additional information that previous methods required [19–21]. However, this method can
only work well in controlled environment without background motions, such as swing
trees and grass caused by wind.

To overcome this limitation, on the basis of our observation that human breathing is a
stable periodic motion with constant peak frequency, while that of background motions
are not, we analyzed the temporal variability of peak frequency of subtle motions to
model a frequency variability (FV) feature. It is found that the FV feature can be used
to describe a signal’s frequency properties, and enables us to isolate human breathing
from background motions. Using the estimated FV values, we designed a binary map
that indicates the human locations, and with which the breathing signal of survivor was
obtained. The proposed method was validated on both drone and camera videos, and
the average precision measures of our method for drone and camera videos were 0.94
and 0.92, which are higher than that of Perera et al. [2] (i.e., 0.28 and 0.11) and MFFT
(i.e., 0.08 and 0.04), demonstrating that the proposed method obtained more accurate
results than those obtained with compared methods. Besides being used in SAR missions
for detecting life signs, our method has potential implications in signal analysis and
practical applications, such as cardiac pulse measurement, mechanical engineering and
micro-expression recognition. Possible future directions of this study are target motion
extraction from drone videos without video stabilization and algorithm optimization to
reduce computational complexity.
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Appendix A. Experimental Results of Ten Drone Videos (AD1 to AD10)

Results of detection precision DP, location density LD, number of false detected points
FP and computational time CT for another ten drone videos (AD1 to AD10) are summarized
in Table A1. As reported in Table A1, the average DP value of our method is 0.97, which
is higher than that of Perera et al. [2] and MFFT (i.e., 0.06 and 0.02); the average FP is 4,
which is less than that of compared methods (i.e., 2932 and 134,137), and the average LD is
37.97‰, which is less than that of compared methods (i.e., 33.84‰and 571.98‰). These
results indicate that the proposed method obtained more accurate estimate of life signs
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locations and less false detections than compared methods, but had more sparse target
locations. Additionally, the average CT value of our method is 1845.16 s, indicating that
the computation speed is faster than [2], but slower than MFFT. However, the JP value of
the proposed method is 0.91, which is higher than that of compared method (i.e., −0.89
and 0.02), demonstrating that when detecting life signs from drone videos, our method has
a better joint performance than compared methods.

The false color location maps of Perera et al.’s work [2], MFFT and ours, and our local-
ization results for ten drone videos (AD1 to AD10) are presented in Figure A1, which shows
that the proposed frequency variability feature-based method can detect and locate only the
human breathing signals around the chest area, and ignores the background motions.

AD1: face up (male) & mannequin

AD2: face down (female) & mannequin

AD3: camouflaged & mannequin partly covered

AD4: camouflaged & mannequin

AD5: face up (female) & mannequin

AD6: face up (female)

AD7: face up (female) & mannequin

AD8: face up (female) & mannequin

AD9: face up (female) & mannequin

AD10: face up (female)

Perera et al. [2] MFFT OURS OURS 
 (false color LMs)  (false color LMs)  (false color LMs)  (localization results)Ground truth

Figure A1. False color location maps (LMs) of Perera et al.’ work [2], MFFT and ours, and our localization results for ten
drone videos (AD1 to AD10).
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Table A1. Results of detection precision DP, location density LD(‰), number of false detected points FP and computational
time CT(s) of Perera et al.’s work [2], MFFT and ours for ten drone videos (AD1 to AD10).

Video Scenario
Perera et al. [2] MFFT OURS

DP LD FP CT DP LD FP CT DP LD FP CT

AD1 face up &
mannequin 0 0 5845 10,723.57 0.01 580.03 219,525 335.82 1 26.53 0 1833.49

AD2 face down &
mannequin 0.41 53.31 526 10,513.14 0.03 448.45 11,6748 330.57 1 4.86 0 1607.92

AD3 camouflaged &
mannequin 0 0 0 10,796.60 0.06 671.7 69,264 320.23 1 109.39 0 1741.65

AD4 camouflaged &
mannequin 0 0 0 10,793.80 0.03 581.33 87,600 320.88 1 13.98 0 1727.47

AD5 face up &
mannequin 0 0 5844 11,325.08 0.01 854.26 258,123 360.32 0.76 53.19 31 1900.91

AD6 face up 0 0 642 11,216.90 0.01 347.46 92,758 368.08 0.96 16.95 2 1919.24

AD7 face up &
mannequin 0.2 285.07 2471 9945.68 0.01 430.32 83,093 292.90 1 28.96 0 1805.14

AD8 face up &
mannequin 0 0 2128 10,555.20 0.01 680.07 126,553 331.50 0.98 54.20 2 1942.85

AD9 face up &
mannequin 0 0 3540 11,571.83 0.01 468.53 98,002 391.37 0.98 27.62 2 2040.37

AD10 face up 0 0 8321 11,422.56 0.03 657.65 189,701 365.55 0.98 44.02 7 1932.57
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