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Abstract: Machine learning has been successfully used for object recognition within images. Due
to the complexity of the spectrum and texture of construction and demolition waste (C&DW), it
is difficult to construct an automatic identification method for C&DW based on machine learning
and remote sensing data sources. Machine learning includes many types of algorithms; however,
different algorithms and parameters have different identification effects on C&DW. Exploring the
optimal method for automatic remote sensing identification of C&DW is an important approach
for the intelligent supervision of C&DW. This study investigates the megacity of Beijing, which is
facing high risk of C&DW pollution. To improve the classification accuracy of C&DW, buildings,
vegetation, water, and crops were selected as comparative training samples based on the Google
Earth Engine (GEE), and Sentinel-2 was used as the data source. Three classification methods of
typical machine learning algorithms (classification and regression trees (CART), random forest (RF),
and support vector machine (SVM)) were selected to classify the C&DW from remote sensing images.
Using empirical methods, the experimental trial method, and the grid search method, the optimal
parameterization scheme of the three classification methods was studied to determine the optimal
method of remote sensing identification of C&DW based on machine learning. Through accuracy
evaluation and ground verification, the overall recognition accuracies of CART, RF, and SVM for
C&DW were 73.12%, 98.05%, and 85.62%, respectively, under the optimal parameterization scheme
determined in this study. Among these algorithms, RF was a better C&DW identification method
than were CART and SVM when the number of decision trees was 50. This study explores the robust
machine learning method for automatic remote sensing identification of C&DW and provides a
scientific basis for intelligent supervision and resource utilization of C&DW.

Keywords: C&DW; Google Earth Engine; machine learning

1. Introduction

Construction and demolition waste (C&DW) refers to all types of solid waste gener-
ated during construction, transformation, decoration, demolition, and laying of various
buildings and structures and their auxiliary facilities, primarily including residue soil,
waste concrete, broken bricks and tiles, waste asphalt, waste pipe materials, and waste
wood [1]. China will inevitably produce more C&DW in the future due to its rapid eco-
nomic development. Based on the available statistics, the output of solid domestic waste
has reached 7 billion tons, C&DW contributes 30–40% of the total urban waste [2], and
the newly produced C&DW will reach 300 million tons per year [3]. If C&DW is not
treated and used appropriately, it will cause serious effects on society, the environment,
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and resources [4,5]. However, random stacking and a large amount of C&DW lead to
management difficulties. Therefore, quick and accurate identification of C&DW is a critical
issue of C&DW management.

Many studies have investigated C&DW, most of which focused on the relationship
between environmental quality and C&DW [6–8], the treatment methods of C&DW [9,10],
and the location selection for C&DW [11,12]. A few studies have used GIS tools to predict
existing C&DW areas [13]. However, studies of C&DW identification using satellite images
are rare. Currently, the identification methods of C&DW primarily include artificial field in-
vestigation and remote sensing monitoring. Due to the broad geographical distribution and
large number of C&DW stacking sites [14], manual field investigations must be performed,
requiring large human and material resources, yielding a low work efficiency. Based on
remote sensing data sources, researchers have studied the spatial distribution of garbage
dumps and solid waste by visual interpretation [15,16]. Because C&DW is often mixed with
domestic and kitchen waste, and its surfaces may be covered by weeds or green nets, the
spectral and textural characteristics of C&DW are relatively complex [17], which increases
the difficulty of visually interpreting C&DW [18]. Therefore, a classification method based
on mathematical statistics and visual interpretation cannot meet the efficiency and accuracy
requirements of C&DW classification in remote sensing images [19].

It is difficult to identify C&DW using remote sensing images simply by constructing a
remote sensing monitoring index. Existing studies showed that RF can identify the trend
feature of C&DW, while the extreme learning machine (ELM) can identify the amplitude
characteristics of C&DW [20]. Related studies have demonstrated the identifiability of
C&DW using machine learning methods, providing a new method for remote sensing
identification of C&DW. Other studies have used spectral analysis and machine learning
methods to identify C&DW [17], and others have used machine learning to identify and
classify C&DW based on spatial and spectral features [21]. However, machine learning
algorithms can have different recognition effects for the same class of objects [22]. Different
algorithms contain multiple parameters, and the sensitivity of an algorithm to its model
parameters is different [23]. A model’s core parameters determine its recognition ability
for classified objects. For example, the core parameter of classification and regression trees
(CART) is the node, the core parameter of random forest (RF) is the number of trees, and
the core parameters of support vector machine (SVM) include kernel types, gamma, and
cost [24]. Simply relying on default parameters for classification will affect the classification
performance of machine learning methods. Better recognition and classification results can
be obtained by optimizing parameters of the machine learning algorithm [25]. Therefore, it
is important to study the optimal parameterization scheme of machine learning to improve
the intelligent C&DW identification of machine learning methods.

Machine learning algorithms have certain advantages in object recognition; however,
they consume considerable data storage and computing resources, and their application
on ordinary computers is limited. However, Google Earth Engine (GEE) can solve these
problems. Studies have shown that GEE stores many remote sensing image datasets and
can compute quickly [26]. GEE integrates rich machine learning algorithms [27], making it
a powerful tool for analyzing land surface data [28]. There are an increasing number of
studies of object recognition and classification using machine learning methods based on
GEE such as identifying agricultural greenhouses [29], extracting urban boundaries [30],
monitoring cultivated land and pasture ranges [31,32], and classifying land cover [33].
However, there are only a few studies on the identification of C&DW due to its complexity.
Additionally, the acquisition and processing of many remote sensing images is a major
difficulty in the study of C&DW classification. GEE has abundant high-quality data
sources, and can obtain many C&DW samples, which provides the basis for long-term
and large-scale remote sensing analysis of C&DW. Additionally, GEE supports parameter
optimization for specific algorithms to determine the optimal machine learning method
and parameter scheme for objects to be identified.
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Therefore, considering the megacity of Beijing, this study explores the feasibility of
identifying C&DW with complex features based on the GEE platform and machine learning
algorithm. The specific problems to be solved in this study include: (1) determining the
optimal parameter scheme of each algorithm by optimizing the core parameters (e.g., mini-
mum leaf population, number of trees, kernel type, gamma, cost for CART, RF, and SVM);
(2) clarifying the intelligent recognition ability of each algorithm after determining the opti-
mal parameter scheme of each algorithm; and (3) selecting the most robust remote sensing
identification method of C&DW by field survey and accuracy evaluation. This study can
reduce the monitoring and control costs of C&DW and provide the basis for research on
the spatial and temporal distribution of C&DW, resource utilization, and environmental
pollution risk reduction in megacities.

2. Study Areas and Datasets
2.1. Study Area

Beijing is located in the northern part of China with a central location at 116◦20′E and
39◦56′N. The city has 16 districts with a total area of 16,410.54 km2 (Figure 1). Based on the
available statistics, the annual output of C&DW in Beijing is approximately 92,852,400 tons,
while the annual transportation volume is more than 45 million tons [34]. C&DW occupies
land resources, and causes air, soil, and water pollution without timely management. Most
C&DW in urban areas is piled up in waste consumption farms that have been transformed
from historical pit sites and kiln sites located outside the Fifth Ring Road in Beijing [35].
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Figure 1. Location of Beijing and the Sentinel-2 remote sensing image of Beijing.

2.2. Data Source

A large amount of geospatial remote sensing data is derived from GEE. The dataset
consists of remote sensing images of Earth observations, including those from Landsat,
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MODIS, Sentinel-1, and Sentinel-2. The Sentinel-2 mission collects high-resolution multi-
spectral imagery, which is useful for a broad range of applications, including monitoring
vegetation, soil and water cover, land cover change, and humanitarian and disaster risks.
According to the Earth Engine Data Catalog in GEE, this product is a Level-2A product, and
the surface reflection product has been preprocessed, namely for radiation, geometry, and
atmospheric correction (https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR, accessed on 21 January 2021). The product details are shown in
Table 1. In this study, the sentinel image data of the whole year were selected for research,
and Quality Assessment 60 (QA60) wave code was used as a pre-filter to reduce turbid
particles and eliminate the influence of clouds.

Table 1. The waveband parameters of Sentinel-2. The assets contain 12 UINT16 spectral bands repre-
senting surface reflectance (SR) scaled by 10,000. There are several more L2-specific bands. In addition,
three QA bands are present where one (QA60) is a bitmask band with cloud mask information.

Name Scale Pixel Size Description

B1 0.0001 60 m Aerosols
B2 0.0001 10 m Blue
B3 0.0001 10 m Green
B4 0.0001 10 m Red
B5 0.0001 20 m Red Edge 1
B6 0.0001 20 m Red Edge 2
B7 0.0001 20 m Red Edge 3
B8 0.0001 10 m NIR

QA10 - 10 m Always empty
QA20 - 20 m Always empty
QA60 - 60 m Cloud mask

3. Methods

Remote sensing data covering Beijing are quickly acquired and processed by GEE. The
C&DW sample dataset was constructed based on the spectral, textural, and topographic
features of construction waste, and the CART, RF, and SVM algorithms were optimized
by adjusting the parameters. The optimal identification method of construction waste
was finally determined by evaluating the classification accuracy and analyzing ground
verification results. A technical flow chart of the GEE process is shown in Figure 2.

3.1. Sampling

This study used Sentinel-2 images of Beijing from GEE, and all data sets were pre-
processed (e.g., cloud removal). Based on the spectral and textural characteristics of the
satellite data, this study focused on five categories, buildings, vegetation, water bodies,
crops, and C&DW, to perform target recognition. Five types of sample points were selected
in the study area based on the principle of uniform selection and prior knowledge. Visual
interpretation was used to build a training dataset, which ensured the accuracy of the
feature subset. In addition, different regions and shapes of C&DW samples were selected
to avoid redundant and highly correlated features. The sample size of each feature type is
shown in Table 2. All sample points had to be merged in the same layer to form a sample
set, and the selected samples were divided into two parts (training and testing), where 70%
of the samples were randomly selected for training and the other 30% of the samples were
used to verify and evaluate the accuracy of the algorithm. The random column function
of GEE was used to assign a random number (with the random values ranging from 0 to
1) for all sample points. Therefore, all the sample data had an extra random value. The
samples with a random number ≥0.7 were used for validation, while the samples with a
random number <0.7 were taken as training samples.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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Table 2. Sample data selected in this study. A total number of 520 samples were generated as the training dataset for the
machine learning methods. C&DW: construction and demolition waste.

Code Type of Objects Feature Extraction Sample Size

0 Building Land for construction, such as for houses and roads 120
1 Vegetation Urban greening and other evergreen vegetation 100
2 Water Water bodies such as rivers, lakes, and swamps 100
3 C&DW Bare or strained-covered construction and demolition waste 100
4 Crops Non-green crops 100

Total 520

3.2. Machine Learning
3.2.1. CART and Parametric Optimization Scheme

The CART algorithm is a supervised machine learning algorithm [36] that uses train-
ing samples to identify and construct trees to solve the problem of “same object with
different spectrum, foreign object with same spectrum” in remote sensing recognition and
classification [37]. Therefore, CART is widely used for remote sensing classification.

The CART algorithm divides n-dimensional space into non-overlapping rectangles
by recursion. Firstly, an independent variable xi is selected, and then a value ui of xi is
selected. The n-dimensional space is divided into two parts. Certain points satisfy xi ≤ ui,
and the others satisfy xi > ui. For a discontinuous variable, there are only two values for
the attribute value: equal or not equal. During recursive processing, these two parts based
on the first step to reselect an attribute continue to partition until the entire n-dimensional
space is divided. Attributes with minimum GINI coefficient values are used as partition
indexes. For a dataset D, the GINI coefficient is defined as follows:

GINI ∗ (D) =
k

∑
i=1

pi ∗ (1− pi) = 1−
k

∑
i=1

p2
i (1)

where k is the number of categories of samples and p(i) represents the probability that a
sample is classified into category i. The smaller the GINI value, the higher is the “purity”
of the sample, and the better is the division effect [38].

The decision tree is composed of multilevel and multi-leaf nodes. Therefore, the
decision tree can be pruned by controlling the parameters or thresholds of the new branch
(Figure 3). Max nodes refers to the maximum number of leaves per tree, and min leaf
population is the minimum number of nodes that are created only for the training set. To
construct a suitable tree, sufficient nodes and branches must be created. The max node
value is unlimited if it is not specified in GEE. The empirical method is used to select the
optimal Min leaf population.

3.2.2. RF and Parametric Optimization Scheme

RF is an integrated learning algorithm that can integrate many decision trees and
then form a forest (Figure 4). The algorithm combines random features or a combination
of random features to generate a tree. The bagging method is used to generate training
samples, and each selected feature is randomly drawn by replacing N (the size of the
original training set) samples. Then, the prediction of multiple decision trees is combined,
and the final prediction result is obtained by voting [39]. The final classification decision is
as follows:

H(x) = argmax
Y

k

∑
i=1

I(hi(x) = Y) (2)
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where H(x) is the combination model, hi is a single decision tree’s classification model, Y
is the output variable (or target variable), and I(·) is the indicator function. The formula
shows that the RF uses the majority of voting decisions to determine the final classification.
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Figure 4. Example of the trees ensemble in the random forest (RF).

RF has a good tolerance for outliers and noise and is not easy to over fit (i.e., is
stable) [40]. The adjustable parameter of the RF algorithm is the number of trees, and the
number of trees is selected empirically.

3.2.3. SVM and Parametric Optimization Scheme

SVM is a supervised machine learning algorithm that can manage sample scarcity, is
robust, and typically yields good results during classification and regression. SVM uses
hyperplanes to divide support vectors to classify log data points clearly [41] with the goal
of finding the two types of independent support vectors with the largest margin (maximum
distance) (Figure 5).
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The SVM algorithm is based on the kernel method, and the selection of the kernel
type has a strong effect on the classification results [42]. Currently, there are three types of
kernels commonly used:

• Polynomial kernel:
K
(

x, x′
)
=
(
γ
(

x · x′
)
+ c
)q (3)

where q is the polynomial order and c and q are artificially defined parameters.
• Radial basis function (RBF) kernel:

K
(
x, x′

)
= exp

(
−γ
‖x− x′‖2

σ2

)
(4)

where γ is greater than 0 and defined manually.
• SIGmoID kernel.

K
(

x, x′
)
= tanh

(
υ
(

x · x′
)
+ c
)

(5)

where c is the upsilon, a manually defined parameter.

In GEE, the SVM algorithm is described by the kernel type, gamma, and cost pa-
rameters [24]. The kernel type can be polynomial, SIGmoID, or RBF. Gamma represents
a parameter of the function after selecting the RBF function and implicitly determines
the distribution of the data mapped to the new eigenspace. The larger the gamma is, the
smaller is the support vector, and vice versa. The number of support vectors affects the
speed of training and prediction. Cost represents the regularization parameter C of the
error term.

Currently, SVM parameter selection methods primarily include empirical method,
experimental trial method, gradient descent method, cross validation method, Bayesian
method, etc. [43,44]. Among the three kernel functions, the RBF kernel function is relatively
stable, while the polynomial kernel function and sigmoid kernel function have relatively
low stability [43]. Therefore, the RBF kernel type was used in this study. The values of
gamma and cost were selected by a combination of the experimental trial method and the
grid search method.

3.3. Verification Methods

The confusion matrix is the core method of accuracy evaluation, which can describe
the classification accuracy and show the confusion between categories. The basic statistics
for the confusion matrix include the overall accuracy (OA), consumer accuracy (CA),
producer accuracy (PA), and Kappa coefficient. In this study, 156 sample points were taken
to make the confusion matrix.
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To verify the classification results, the ground verification method was used to visually
interpret the optimized classification results of each algorithm. Different classification
algorithms for C&DW based on satellite images were compared and analyzed. Based on
accuracy assessment and ground verification, the optimal scheme of CART, RF, and SVM
for C&DW identification was determined.

4. Results and Analysis
4.1. Accuracy Assessment

The detail codes are accessible from Code links (see Supplementary Materials). From
the algorithm optimization study, the statistics of each algorithm’s precision index are as
follows:

For optimizing the CART algorithm, the min leaf population was between 0 and 10.
As shown in Figure 6a, the OA, CA, PA and kappa coefficient remained unchanged as the
number of nodes increased, with values of 73.13%, 65.22%, 50%, and 65.22%, respectively.
The CART algorithm yielded relatively low classification accuracy for C&DW, and the
change in parameters had little influence on the classification. When optimizing the RF
algorithm, as shown in Figure 6b, the OA, CA, PA and kappa coefficient all increased
rapidly as the number of trees increased from 1 to 20. The OA and PA tended to decrease
and then increase slowly when the number of trees was approximately 40. Classification
precisions reachede their highest values and remadin stable when the number of trees was
50. The highest values of OA, CA, PA, and the kappa coefficients for RF were 98.05%, 100%,
96.67%, and 98.38%, respectively.

For SVM optimization, the optimal gamma parameter was determined first, followed
by the optimal cost parameter. The empirical method was used to set the cost value to
10. Then, the experimental trial method and grid search method were used to obtain
and compare the statistical values of each precision index in the cases of the gamma
and cost parameters. As shown in Figure 6c, the OA, CA, PA and kappa coefficient rose
markedly and then increased slowly when gamma changed between 0.2 and 0.6. The
OA, CA, PA, e and kappa coefficient reached a small wave peak when gamma was 5.
Additionally, the classification accuracy was good. As shown in Figure 6d, the classification
precision tended to be stable when gamma ≥ 10. The highest levels of the OA, CA, PA, and
the kappa coefficients were 84.68%, 81.82%, 60%, and 75.6%, respectively, when gamma
was 16. The cost parameter was studied and compared when gamma was 5 and 16 for
experimental rigor. As shown in Figure 6e, OA and CA increased with increasing cost
when gamma was 5, while PA and the kappa coefficient fluctuated marginally from 1 to
20. The classification precision reached its highest value and remained stable when the
cost was 40. The highest values of OA, CA, PA, and the kappa coefficients were 84.38%,
85.71%, 60%, and 76.37%, respectively. As shown in Figure 6f, the OA, CA, and kappa
coefficient increased with increasing cost when gamma was 5, except for cost near 14. The
PA increased first and then decreased, and finally tended to be stable with increasing cost.
The highest values of OA, CA, PA, and the kappa coefficient were 85.62%, 85.71%, 60%,
and 78.78%, respectively, when cost was 34. For the SVM algorithm, the combination of
gamma = 16 and cost = 34 yielded better accuracy than when gamma = 5 and cost = 40.

This study selected certain experimental results of C&DW identification, and drew
a distribution comparison map of C&DW in Beijing, as shown in Figure 7. The detected
C&DW distribution results were less affected by CART parameters, followed by RF param-
eters, and then the SVM parameters.
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Figure 6. Accuracy index statistics of each algorithm. (a) The result of CART; (b) the result of RF; (c) the result of SVM when
cost is 10 and gamma changes between 0.2 and 0.6; (d) the result of SVM when cost is 10 and gamma changes between 0.2
and 20; (e) the result of SVM when gamma is 5; (f) the result of SVM when gamma is 16.

Statistical analyses of each accuracy index described an optimal parameterization
scheme of CART, RF, SVM and the corresponding precision. The results of this process are
shown in Table 3.

4.2. Ground Verification

This study verified the classification results using ground truth data to compare the
classification effect and the reliability of various algorithms for C&DW detection. In certain
areas of Beijing, the real state and primary characteristics in C&DW were examined using
remote sensing images at construction waste dumps on 15 December 2020, including formal
consumption sites and informal construction waste dump areas. As shown in Figure 8,
C&DW was classified and absorbed into a regular consumption area. The C&DW was
piled in an orderly manner based on brick size and covered with green grids to prevent air
pollution. However, certain informal C&DW dumps have existed for a long time. After
many years of weathering, weeds grow on the surface of the C&DW accumulation, making
it difficult to identify that area as a C&DW dump.
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Table 3. Statistics of optimal parameters and accuracy of various algorithms. OA: overall accuracy;
CA: consumer accuracy; PA: producer accuracy; RBF: radial basis function.

Parameters OA CA PA Kappa

CART Min leaf population: 6 73.12% 65.22% 50% 65.22%
RF Number of trees: 50 98.05% 100% 96.67% 98.38%

SVM
Kernel type: RBF

Gamma: 16
Cost: 34

85.62% 85.71% 60% 78.78%
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C&DW is scattered and irregular in shape. To analyze the prediction results of
each algorithm in more detail, certain C&DW areas with concentrated accumulation and
relatively regular shapes were selected for visual interpretation and comparison. Based on
the distribution map of C&DW under the optimal parameterization scheme, the details of
C&DW identification in different areas were analyzed, as shown from Figure 9. Typically,
each algorithm can identify C&DW; however, the recognition results were marginally
different. In regions A and D, compared to SVM and RF, the classification ability of CART
was inferior. In regions B and C, CART could not completely identify C&DW, and SVM
incorrectly classified ground objects that were not C&DW as C&DW. Additionally, RF was
shown to be more accurate in classifying C&DW. The analysis of four different regions
shows that RF yielded the best recognition results compared to that of CART and SVM.
However, SVM had good recognition results along edges of C&DW, such as in regions B
and C.

The numbers of pixels identified as C&DW in the four areas are shown in Table 4. The
number of C&DW areas identified by SVM was typically higher than those identified by
CART and RF. Combined with the visual results shown in Figure 9, the SVM algorithm
may have experienced overfitting.

Based on the accuracy assessment indices and ground verification of C&DW, the RF
algorithm was shown to yield better recognition results for C&DW detection among the
tested algorithms. Identification was best when RF had 50 decision trees.
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Table 4. Number of pixels identified as C&DW by each algorithm in the four study areas.

CART RF SVM

A 326 336 339
B 256 247 283
C 118 114 145
D 316 331 332

5. Discussion and Conclusions

In recent years, due to the serious threat of construction and demolition waste (C&DW)
to society, the economy, and the environment, C&DW management has received increasing
attention. Intelligent identification of C&DW is an important method of waste supervision
and resource utilization. This study attempted to determine a method suitable for C&DW
identification and classification by optimizing parameters based on Google Earth Engine
(GEE) and machine learning algorithms. The results of this study provide a method for
C&DW remote sensing identification. The types of ground objects were divided into
buildings, vegetation, water, C&DW, and crops. The parameter optimization studies of
machine learning found that the overall classification accuracy of each algorithm was
optimal when 6 nodes were used with the classification and regression trees (CART)
algorithm, 50 trees are used with the random forest (RF) algorithm, and gamma = 16
and cost = 34 with the support vector machine (SVM) algorithm. Ground verification
results of C&DW distribution points in Beijing show that the results of this study are
reliable. The results showed that CART, RF, and SVM have different recognition abilities
for C&DW in Beijing. Compared to CART and SVM, RF performed better in terms of
the overall accuracy (OA) and identification ability of C&DW. In some other studies, four
methods (characteristic reflectivity and extreme learning machine; first-order derivative of
characteristic reflectivity and extreme learning machine; grey level co-occurrence matrix
and extreme learning machine; and convolutional neural network) were proposed for
the automatic identification of C&DW. The given correct rate was around 80% in these
studies [20]. Our results were consistent with previous studies. They further prove the
effectiveness of the machine learning method in the intelligent identification of C&DW
based on remote sensing images.

This study confirmed the feasibility of intelligent identification of C&DW based on
GEE and machine learning algorithms. A parameter optimization scheme of the machine
learning algorithm was proposed to improve the remote sensing recognition ability for
C&DW. Based on a field-based accuracy assessment, the best machine learning method and
its parameterization scheme for remote sensing identification of C&DW were determined.
This study could provide the basis for research on the spatial and temporal distribution
of C&DW, resource utilization, and environmental pollution risk reduction in megacities.
The results of this study are helpful for the treatment and management of C&DW and
associated cost reductions, which are beneficial for saving land resources and promoting
energy conservation and emission reduction [45]. Additionally, the distribution map
of C&DW in Beijing provides a scientific basis for intelligent supervision and resource
utilization of C&DW.

However, the proposed method still has certain limitations, which should be further
explored in future research. For example, during identification and classification, failure
to consider the elevation of C&DW may lead to the classification of construction waste
as buildings, and C&DW covered with green grids may be misclassified as vegetation
or crops. In addition to the influence of algorithm parameters, the source of the sample
data, the number of samples, and the partition ratio of the training/validation set will
affect the final classification performance [46]. What is more, deep learning methods also
have great potential in the intelligent identification of C&DW, and we will undertake
more studies on deep learning identification methods of C&DW identification based on
TensorFlow. In addition, we will make further in-depth comparisons with other methods
to find the optimal method of intelligent identification of C&DW. The accuracy validation
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of C&DW remote sensing identification results is also an important aspect of our future
research. Based on the existing data, this study discussed the influence of algorithm
parameter combinations on the performance of C&DW identification and classification,
and preliminarily determined an optimal scheme. This paper focused on the new method
of intelligent identification of C&DW based on machine learning and remote sensing data.
The uncertain factors should be investigated in future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
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uploaded with supplementary file.
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