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Abstract: In this study, we used Landsat Earth observations and gridded weather data along with
global soil datasets available in Google Earth Engine (GEE) to estimate crop yield at 30 m resolution.
We implemented a remote sensing and evapotranspiration-based light use efficiency model glob-
ally and integrated abiotic environmental stressors (temperature, soil moisture, and vapor deficit
stressors). The operational model (Global Yield Mapper in Earth Engine (GYMEE)) was validated
against actual yield data for three agricultural schemes with different climatic, soil, and management
conditions located in Lebanon, Brazil, and Spain. Field-level crop yield data on wheat, potato,
and corn for 2015–2020 were used for assessment. The performance of GYMEE was statistically
evaluated through root-mean-square error (RMSE), mean absolute error (MAE), mean bias error
(MBE), relative error (RE), and index of agreement (d). The results showed that the absolute differ-
ence between the modeled and predicted field-level yield was within ±16% for the analyzed crops
in both Brazil and Lebanon study sites and within ±15% in the Spain site (except for two fields).
GYMEE performed best for wheat crop in Lebanon with a low RMSE (0.6 t/ha), MAE (0.5 t/ha), MBE
(−0.06 t/ha), and RE (0.83%). A very good agreement was observed for all analyzed crop yields, with
an index of agreement (d) averaging at 0.8 in all studied sites. GYMEE shows potential in providing
yield estimates for potato, wheat, and corn yields at a relative error of ±6%. We also quantified
and spatialized the soil moisture stress constraint and its impact on reducing biomass production.
A showcasing of moisture stress impact on two emphasized fields from the Lebanon site revealed
that a 12% difference in soil moisture stress can decrease yield by 17%. A comparison between the
2017 and 2018 seasons for the potato culture of Lebanon showed that the 2017 season with lower
abiotic stresses had higher light use efficiency, above-ground biomass, and yield by 5%, 10%, and 9%,
respectively. The results show that the model is of high value for assessing global food production.

Keywords: crop yield modeling; biomass; small-scale agriculture; Google Earth Engine; global;
OpenET; SEBAL

1. Introduction

Crop yield modeling and prediction have broad implications on global food security
and food production monitoring. Decision makers depend on yield information to deter-
mine the potential reduction in crop yield, to deliberate food prices, and to make timely
import and export decisions [1]. Farmers can benefit from crop yield modeling tools to mon-
itor crop development throughout the growing season [2] and assess the need for fertilizer
applications [3], irrigation [4], and disease control [5]. Many yield forecast approaches have
been discussed in the literature, and each has its advantages and limitations. Examples are
farmers’ reports [6], crop simulation models [7], remote sensing [8], and, recently, artificial
intelligence techniques [9]. Crop yield prediction has long been founded on conventional
methods, where ground-based crop and yield data are collected from field reports [10].
Nevertheless, this method is costly, and the data collected are not open access. This method
is limited in scale, and it can have significant sources of errors as farmers may overestimate
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their yields. The collected yield data might be available too late for appropriate actions in
some countries [6]. Crop models have been developed to overcome the limitations of the
technique [11]. The crop models estimate crop yield based on daily crop growth simulators
for a wide range of environments under the condition that the input data are accurate and
sufficient [12]. Crop models can be based on either light use efficiency (LUE) or water use
efficiency (WUE). Both variables are hard to estimate with certainty because they rely on
many other parameters that are difficult to measure on a large scale. The LUE approach
relies on the efficiency of the crop to convert the light absorbed or the water transpired
into biomass [13,14]. The fraction of the absorbed photosynthetic active radiation (FPAR)
is used as a key parameter for these models such as crop-environment resource synthesis
(CERES) [15], Environmental Policy Integrated Climate (EPIC) [16], and Decision Support
System for Agro-technology Transfer (DSSAT) [17]. The WUE approach relies on estimat-
ing the crop transpiration as a key parameter for crop yield modeling. Examples of such
models are AquaCrop [18] and CropSyst [19].

Although crop yield models can be applied on different scales ranging from a point
on a field to a region, they inherit some limitations [11,20]. The difficulty lies in charac-
terizing the large spatial variability across crops, soils, water, nutrient applications, stress
factors, and initial system conditions, which hinder the use of several crop yield models.
An additional limitation is the need for the local calibration of these models. To improve
yield prediction, numerous approaches based on the assimilation of satellite observations
into the crop models have been used. The integration of the remotely sensed leaf area
index (LAI) has increased the performance of growth models [21–23]. The advantage of
this approach is that the LAI partially reduces the need to characterize the crop growth
conditions, but not the need for model calibration and determination of the initial system
conditions, as reported by Khan [11]. Other approaches rely on correlating the modeled
yield with vegetation spectral indices (VIs) derived from satellite images [24]. The major
drawback of using this method is that this correlation exhibits an empirical character and
that the correlation coefficient is usually moderate to low [25,26].

Many researchers suggest that the radiation or light use efficiency (LUE)-based
biomass model proposed by Monteith [27] has significant potential for estimating the
crop yield when combined with satellite data [28,29]. The LUE model was implemented
using medium-resolution sensors like Moderate Resolution Imaging Spectroradiometer
(MODIS) [30,31] and Advanced Very-High-Resolution Radiometer(AVHRR) [32] to moni-
tor biomass production over a regional scale at high temporal resolution. However, the
disadvantage of the application of medium-resolution data is that they cannot be applied
to small fields due to large pixels. Pan et al. [33] applied the LUE model using higher data
like Landsat but relied on a few images. Campos et al. [34] used the water productivity
model to estimate crop yield and suggested considering the effect of the incoming radi-
ation as a limitation for biomass production of wheat fields but without considering the
environmental stresses.

In the present work, we developed the backend of a Google Earth Engine (GEE)-
based operational model to estimate the global crop yield at 30 m resolution based on
remote sensing. The Global Yield and Evaporation Mapper in Earth Engine (GYMEE) was
validated herein in three countries, Lebanon, Brazil, and Spain, during 2015–2020. GYMEE
was used to model yields of potato (Solanum tuberosum), wheat (Triticum aestivum) in Bekaa
Valley (Lebanon), corn (Zea mays L.) in São Desidério, Brazil, and wheat (T. aestivum) in
Albacete, Spain. The analyzed crops are of strategic importance in the study sites, and the
availability of field-level, ground-based yield data for these crops presents an opportunity
to test our estimates. Wheat culture is one of the most dominant in the Mediterranean
region (Lebanon and Spain). The analyzed wheat fields from the southeast of Spain cover
an extensive range of average yields (1.2–10.3 t/ha). The range of obtained wheat yield in
Spain represents the maximum and minimum wheat production in the area. On the other
hand, the wheat culture in Lebanon is commonly planted in West Bekaa on farms between
0.2 and 300 ha in size [35]. Both west and center Bekaa have the highest production of wheat
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(44% of the national total). The average wheat yield reported in 2019 was 4.58 t/ha [35],
ranging between 1 t/ha (for rain-fed) and 8 t/ha (with supplementary irrigation). Potato is
considered a major cash crop in Bekaa Valley, where more than 19,000 ha are planted every
year [36,37]. The potato yield in Bekaa varies between 20 and 50 t/ha, with an average of
23 t/ha [38]. Additionally, Lebanon produces around 400,000 tons of potato [38], more than
two-thirds of which is grown in the Bekaa plain. Corn is considered the third-most valuable
crop in the western region of the state of Bahia, Brazil, conquering an area corresponding
to 180,000ha in 2016–2017, with a total production of 1,404,000tons and an average yield
of 7.8t/ha [39]. The primary objectives of this analysis were to (1) assess the validity of
integrating remotely sensed energy balance evapotranspiration modeling with the derived,
modified Monteith model in obtaining crop yield, (2) evaluate the potential application of
the operational model under different climatic and management conditions, (3) analyze
the temporal and spatial variations in above-ground biomass and yield, and (4) investigate
the effect of the inclusion of environmental stresses (vapor, temperature, and moisture) on
the crop yield modeling process through showcasing examples from the study sites.

2. Basis of the Model for Above-Ground Biomass (AGB) and Crop Yield Estimation

The above-ground biomass (AGB) is calculated as a product of the absorbed photo-
synthetic active radiation (APAR, MJ/m2/day) [27] and light use efficiency (LUE) [40].
The model considers the impact of the environmental conditions affecting biomass produc-
tion, notably for the impact of temperature stress (TS), vapor stress (VS), and soil moisture
stress (SMS). The relationship between the factors is given as:

AGB = APAR×LUEmax × TS×VS× SMS× 0.864 (1)

where AGB (kg/ha) is the dry above-ground biomass production for the day of the satellite
overpass; APAR is the absorbed photon flux by the canopy photosynthetic elements;
LUEmax is the maximum light use efficiency (g/MJ); TS, VS, and SMS are the temperature,
vapor, and soil moisture stressors, respectively; and 0.864 is a unit conversion factor [41].
The actual LUE (LUEmax multiplied by the stresses) is a relatively constant property of the
crop, with a distinction between C3 and C4 crops [27]. There are several studies on the
determination of the LUEmax for crops, varying between 1.44 and 3.22 for C3 crops [42–45]
and between 3.27 and 4.26 for C4 crops [46,47]. Still, there is no consensus in the scientific
community on the LUEmax for crops. An annual global crop map is still not available.
Here, we use a constant value of LUEmax (2.5 for C3 crops—wheat and potato) and 3.5 for
C4 crops (corn) [32]. Values of LUEmax can be linked to a global crop map as it becomes
available in GEE. The stress factors are expressed as fractions, with 0 indicating extreme
stress and 1 indicating no stress. Details on the estimation of APAR and the stresses are
provided in Sections 2.1 and 2.2.

To derive crop yields, the mean dry biomass production for each field at each date of
the satellite overpass needs to be accumulated over the growing season of each crop by
interpolating between satellite imagery dates to fill in the missing dates. The accumulated
biomass is converted into yield through crop harvest indices and the percentage moisture
content of the crop at harvest [48]. Crop yield (t/ha) is calculated as:

EYi =
AGDBi ×HIi

1−%Moisture
(2)

where EYi is referred to as the metric tons of economic yield per hectare of crop i, AGDB is
the accumulated above-ground dry biomass, and HIi is the harvest index of crop i, which
is the ratio of yield to above-ground biomass.
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2.1. Remote Sensing of Active Photosynthetic Radiation (APAR)

APAR is approximated directly from photosynthetic active radiation (PAR) and frac-
tion of photosynthetic active radiation (fPAR; intercepted by the leaves and used in the
carbon dioxide assimilation process).

APAR = fPAR× PARdaily (3)

The link between fPAR and LAI and the normalized difference vegetation index (NDVI)
have been thoroughly documented in the literature as useful indicators of crop growth in
yield models [49,50]. fPAR can be calculated using the NDVI [51,52] as:

fPAR =

{
−0.161 + 1.257×NDVI for NDVI ≥ 0.125

0 Otherwise
(4)

where an NDVI value of 0.125 indicates bare soil [52].
The photosynthetic active radiation (PAR, MJ/m2/day) represents the spectral range

from 400 to 700 nm used by the canopy’s photosynthetic elements [53]. PAR is a fraction
of the incident shortwave solar radiation (Rs) [54]. Rs can be obtained from climatic data
(National Oceanic and Atmospheric Administration’s (NOAA) climate forecast CFSv2 or
Copernicus ECMWF models, both of which are available in GEE), or it can be estimated
as a function of daily extraterrestrial radiation Ra and atmospheric transmissivity τw as
follows (our choice):

PARdaily = 0.48× Ra × τw (5)

where atmospheric transmissivity can be calculated from water vapor and extraterrestrial
solar radiation (Ra) can be calculated from the solar constant, solar declination, and day of
the year [55].

2.2. Calculations of Yield Stressors
2.2.1. Vapor Stress (VS)

The vapor stress factor shows how evapotranspiration and photosynthetic processes
are affected by vapor pressure [56]. The VS is estimated from a link with the vapor pressure
deficit (VPD) (for relative humidity less than 100%) [57,58]. The VPD is defined as the
difference between the saturated and the actual vapor pressure. It is considered a critical
driver of the water and carbon demand for crops [59], where increases in the VPD can
reduce the uptake of carbon and water use by the plant [60].

VS = 0.88− 0.183× log(es − ea) (6)

where es and ea are the saturated vapor pressure and the actual vapor pressure (KPa), re-
spectively.

2.2.2. Plant Temperature Constraint (TS)

The temperature stress (TS) was used according to Stewart [61] and Stewart [62].
The author proposed a relationship between the TS and the Jarvis coefficient (Jc) after
Jarvis [63]. The TS is computed as a function of the daily temperature, upper and lower
limit stomatal activity, and optimum conductance temperature of the crop.

TS =
(T − TL)× (TH − T)Jc

(KT − TL)× (TH − KT)
Jc

(7)

where Jc is the Jarvis coefficient calculated according to Equation (8).

Jc =
TH − KT
KT − TL

(8)
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where T is the air temperature (◦C), TH is the upper limit of stomatal activity set equal to
45 (◦C), KT is the optimum conductance temperature (◦C) set equal to 24, and TL is the
lower limit of stomatal activity. It is set equal to 0 ◦C [64]. For mean daily air temperatures
higher than 40 ◦C, the TS is set to 0.001. Values of TH, KT, and TL are obtained from
Maidment [65].

2.2.3. Soil Moisture Stress (SMS)

Surface energy balance retrieval of evapotranspiration (ET) has been used as an
indicator of soil moisture availability and vegetation health [66–68]. In this study, we use
the soil moisture stress factor as an indicator of agricultural drought. The SMS describes
anomalies in the actual-to-potential 24 h transpiration ratio (Tact24/Tpot24) [69] via the
energy balance. An overview of the step-by-step procedure for calculating the SMS is given
in Figure 1.

2.2.4. Daily Actual ET Modeling Scheme

The energy balance scheme incorporates key meteorological variables proven to
provide early warning of declining crop moisture conditions [70–72]. Many models can
be utilized to estimate evapotranspiration (ET) as a residual of the energy balance, such
as DisAlexi and Two-Source Energy Balance (TSEB) [70], Mapping Evapotranspiration
at High Resolution with Internalized Calibration (METRIC) [73], Surface Energy Balance
Algorithm for Land (SEBAL) [74], Surface Energy Balance (SEB), or Simplified Surface
Energy Balance (SSEB) [75]. In this work, we estimated ET based on the latest version of
the single-source Surface Energy Balance for Land (pySEBAL) model described thoroughly
in Jaafar and Ahmad [76]. We coded pySEBAL in Google Earth Engine, and it can be
applied globally to any Landsat 7 or 8 collection and to Sentinel-2–MODIS–VIIRS (Visible
Infrared Imaging Radiometer Suite) combination. Briefly, pySEBAL is an improved and
automated version of SEBAL [74]. We refer to the GEE version of pySEBAL we developed
as G-SEBAL. G-SEBAL performs energy balance at the satellite (Landsat 7 or 8 or Sentinel-2)
overpass time to obtain the latent heat flux (λE, W.m−2) as the residual of the surface
energy equation (λE = Rn − G− H). Net radiation (Rn) is composed of net shortwave
radiation and net longwave radiation. The former depends on the surface albedo and solar
irradiation, while the latter depends on emissivity and surface and air temperatures. Rn is
computed as an average of the Food and Agriculture Organization (FAO) equation [77]
and the Slob equation [78]. The soil heat flux (G) is calculated from a semi-empirical
approach as a function of the NDVI, surface temperature, and albedo [79]. The sensible
heat flux (H) is computed via a single-source resistance scheme using an iterative process
through relating the air density (ρair), the specific heat of air at constant pressure (Cp),
and the near-surface temperature difference (dT) to aerodynamic resistance (rah) [80]. dT
is estimated as a linear function of the corrected surface temperature [79]. Aerodynamic
resistance rah is calculated iteratively based on Monin–Obukhov similarity theory until
a stable value is reached to calculate the near-surface temperature difference dT at the
hot pixel where the ET is assumed to be zero. dT at the cold pixel is then calculated,
and the relationship is used to derive dT and therefore H at all pixels in the image. We
sharpen the surface temperature using a combination of a T-sHARP thermal sharpening
approach and a bilinear moving window interpolation approach to identify an ensemble
of hot and cold pixels automatically in GEE [81]. Afterward, we convert the instantaneous
ET (derived from the instantaneous latent heat) to daily observations by utilizing the
constant evaporative fraction (EF) assumption (EF = LE/[Rn − G]) [82], multiplied by
an advection factor Ω [Ω = 1 + 0.985× EF× (exp[(VPD)× 0.08]− 1.0)] (a function of the
vapor pressure deficit (VPD)) to account for the increase in the ET during the afternoon
period [83]. Daily grass-reference evapotranspiration ETref is calculated from the Penman–
Monteith evapotranspiration equation [65]. The potential ET (ETP24) is set equal to ET24
if the latter is higher than ETref or to ETref otherwise. A digital elevation model (DEM)
is used to calculate the slope, the aspect of terrain, and solar angles (latitude, declination,
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solar zenith angle, and solar incidence angle), to adjust land surface temperature (LST) and
to correct ETref in the sloped terrains.
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include (1) obtaining the energy fluxes (net radiation (Rn), soil heat (G), and evapotranspiration (ET) fluxes needed for
calculating the evaporative fraction (EFi)), along with the soil water properties inferred from soil physical properties;
(2) estimating the total soil moisture content (θv) using inputs from step 1; and (3) calculating the first estimate of the
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2.2.5. Soil Water Properties

To determine the soil moisture stress, it is essential to derive an estimate of soil
moisture. Remote-sensing-based field-scale estimation of root zone soil moisture is still
a challenging task. We utilize the Open Land Map Earth Engine dataset to derive soil
texture and other properties. Field capacity, permanent wilting point, top, and subsoil
saturated moisture content, and subsoil residual moisture content are all inferred from the
soil physical properties. The soil texture and organic matter content are used to estimate the
soil water properties, as explained in Saxton and Rawls [84], and the equations are coded
in Google Earth Engine. We use the Open Land Map Earth Engine dataset [85] available in
GEE to determine the soil texture of the different soil layers. The dataset uses a compilation
of published point data coming from various national and international soil point-data
providers, such as the FAOs soil profile databases, among many others for mapping
soil properties and classes. The dataset is one of the products of OpenLandMap.org,
which provides global gridded environmental layers based on ensemble machine learning.
The soil data used herein are the organic carbon, clay, and sand content at six standard
depths (0, 10, 30, 60, 100, and 200 cm) at 250 m spatial resolution. We then apply Saxton
equations [84] to derive the potential water content at the field capacity and the permanent
wilting point so as to calculate the plants’ available water in the top (0–60) and subsoil
layers (60–100). We restrict the analysis to 1 m to account for areas where the bedrock
is limiting.

2.2.6. Total Soil Moisture Content (θv)

We calculate the soil moisture content (θv) as a function of the instantaneous evapora-
tion fraction and the saturated soil moisture level in the subsoil (θSMssub) (see Equation (9)):

θv = θSMssub × exp
(

EFi − a
b

)
(9)

where a and b are curve-fitting parameters, 1 and 0.421, respectively [86]. The evaporative
fraction describes the segregation of the net radiation into latent heat flux. It is intrinsically
restrained by the soil moisture in the root zone [87].

2.2.7. A First Estimate of the Root Zone Soil Moisture (θVRZ1)

The root zone soil moisture’s first estimate (θVRZ1) is calculated as a function of the
fraction of vegetation cover (fc), with an initial assumption that the topsoil moisture as well
as the root zone soil moisture (θVRZ) is equal to the total soil moisture (θv) [65]. The mean
and the standard deviation of the topsoil moisture (θSMtopmean and θSMtopstd ), as well as the
maximum and mean root zone soil moisture (θVRZmax and θVRZmean), are computed from
the total soil moisture (see Equation (10)). The first estimate of the root zone soil moisture
is constrained between the residual subsoil moisture (θSMrsub ) and the maximum moisture
content MaxθVRZmax (i.e., if the first estimate θVRZ1 is less than or equal to the residual
subsoil moisture (θSMrsub ), it is then set to the residual subsoil moisture, and if θVRZ1 is
greater than or equal to MaxθVRZ, it is set equal to MaxθVRZ).

θVRZ1 =
θV −

(
θSMtopmean + θSMtopstd

)
× (1− fc)

fc
(10)

MaxθVRZ = fc × (θVRZmax − θVRZmean) + θVRZmean (11)

2.2.8. Soil Moisture Stress Trigger (θVstress−trigger) and a First Estimate of Moisture Stress
Biomass (Ψθ)

The soil moisture stress trigger
(
θVstress−trigger

)
is the critical value under which plants

get stressed [88] computed as a function of the soil moisture at field capacity (θFC), soil
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moisture at permanent wilting point (θPWP), and the fraction of the total available water
that can be depleted from the root zone before moisture stress (p-factor) [65]:

θVstress−trigger = θFC − p factor× (θFC − θPWP) (12)

p factor = DF + 0.04× (5.0− ET24) (13)

where ET24 is the daily actual evapotranspiration derived from the energy balance
(Section 2.2.4) and DF is a crop-dependent depletion factor (a user-defined value). The de-
pletion factor differs from one crop to another, and it usually varies from 0.30 for shallow-
rooted plants at higher rates of crop evapotranspiration (>8 mm/d) to 0.70 for deep-rooted
plants at lower rates of crop evapotranspiration (<3 mm/d). A value of 0.4 was used herein
(potatoes are stressed at 0.3, while wheat and corn at 0.5). It is better, of course, to derive a
map of the allowable depletion from crop maps, when available.

The first estimate of the root zone soil moisture (Section 2.2.7) along with the stress
trigger (Equation (12)) are used to calculate the normalized stress trigger (θVnormalized−trigger)
representing the effective fraction of available soil moisture [87] (Equation (14)). The first esti-
mate of the moisture stress on the biomass (Ψθ) is estimated as a function of θVnormalized−trigger
(Equation (15)):

θVnormalized−trigger =
θRZ1 − θPWP

θVstress−trigger + 0.02− θPWP
(14)

Ψθ =

{
θVnormalized−trigger −

sin(2π×θVnormalized−trigger)
2π

0.5× FPAR for Ψθ < 0.5× FPAR
(15)

where Ψθ is limited between 0 and 1.

2.2.9. Splitting the ET into Evaporation and Transpiration

To calculate the SMS factor, ETP24 (Section 2.2.4) is split into its component of potential
transpiration using an LAI-derived vegetation cover fraction light use extinction factor
(ε) [89,90]:

Tpot24 =
(

1− e((ε×LAI))
)
× ETP24 (16)

Alternatively, the LAI can be calculated from a remotely sensed estimate of f c derived
from the NDVI [91,92]:

LAI = ln
[−( fc − 1)]
−0.45

(17)

The LAI is restricted to the range of 0.001–8.

fc = 1−
(

0.8−NDVI
0.8− 0.125

)0.7
(18)

where fc is set equal to 0 when the NDVI is less or equal to 0.125 (representing bare soil)
and equivalent to 0.99 for an NDVI greater than 0.8.

Having calculated Tpot24, the actual evaporation (Eact24) component can be estimated
using the topsoil saturation degree (SEtop) calculated from the topsoil water properties [93].
As presented in Equation (19), Eact2 is calculated from the difference between ETP24 and
Tpot24 and either 1 or 1/(SEtop + 0.1)−2:

Eact24 = Min

(
1,

1(
SEtop + 0.1

)−2

)
×
(
ETP24 − Tpot24

)
(19)

where SEtop is the degree of soil saturation of the topsoil, scaled between 0 and 1:

SEtop =
θSMtop − θSMrtop

θSMstop − θSMrtop

(20)
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where θSMtop is the topsoil moisture and θSMrtop and θSMstop are the residual and the saturated
topsoil moisture, respectively, and are constants for a specific soil type.

The product of the first estimate of moisture stress biomass (Ψθ) (Section 2.2.8) and
Tpot24 provides the first estimate of daily actual transpiration (T′act24) [94]:

T′act24 = Ψθ × Tpot24 (21)

where T′act24 is set to zero when there is no vegetation cover.
The relative value of T′act24 and Eact24 are used to break down the ET24 flux into the

second and final estimations of actual daily transpiration (Tact24). The corrected T flux
becomes [88,93]:

Tact24 =

(
Tact24′

Tact24′ + Eact24

)
× ET24 (22)

Finally, the final estimate of soil moisture stress (SMS) is calculated as the ratio of
actual daily transpiration to potential daily transpiration (transpiration efficiency) [69]:

SMS =
Tact24

Tpot24
(23)

3. Data and Analyses
3.1. Model Overview

Figure 2 represents a summary of the overall methodological approach followed to
estimate AGB and crop yield. This study presents the crop yield estimate at a field scale
generated by modifying and applying light use efficiency (LUE) and APAR models via
the integration of environmental stresses: vapor stress (VS), plant temperature stress (TS),
and soil moisture stress (SMS). A particular focus is placed on evaluating the impact of
the SMS estimated through surface energy balance retrieval of evapotranspiration (ET),
where ETflux is segregated into its components of actual and potential transpiration.
The estimated crop yield is evaluated against the actual crop yield observations collected
specific to each study site.

3.2. Study Sites and Field Data

The proposed crop yield modeling approach was tested at four sites in three countries,
namely Skaff (West Bekaa, Lebanon) for three consecutive growing seasons (winter 2017–2018,
summer 2017, and summer 2018) and the Agricultural Research and Education Center (AREC,
Bekaa, Lebanon) for summer 2020; São Desidério, Brazil, for 2015 and 2016; and Albacete
(Spain) for 2017 and 2018. Details on the minimum and maximum crop yield for each site,
the number of observations, and the average size of the monitored fields are illustrated in
Table 1. A total of 89 observations of field-scale yield were used for model validation.

Table 1. Information on the number of observations used for validation, and field-specific minimum and maximum yield
from each site.

Study Site Crop Actual Yield (t/ha) Number of
Observations Average Field Size Data Reference

Min. Max. (ha)
Skaff, Bekaa (Lebanon) Potato 34 52 31 23

Recall methodWheat 5 8 21 24
Desidério (Brazil) Corn 10.5 13.5 27 89 [95]
Albacete (Spain) Wheat 1.2 8.7 9 24 [96]

Agricultural Research and
Education Center (AREC),

Bekaa (Lebanon)
Potato Value: 68.75 1 0.95 Measured
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Figure 2. Schematic overview of the methodology used for estimating the crop yield; components of analysis include:
(1) obtaining estimates of land surface temperature (LST), surface albedo, and normalized difference vegetation index (NDVI)
applied to Landsat data as inputs to the Surface Energy Balance for Land (SEBAL) evapotranspiration (ET) modeling scheme;
(2 and 3) translating the gridded weather variables obtained from the CFSV2 product within the Google Earth Engine
(GEE) platform into ET; (4) incorporating the soil moisture stress (SMS), vapor stress (VS), and plant temperature stress
(TS) into the light use efficiency (LUE) model; (5) reducing the LUEmax to the actual LUE by accounting for environmental
stresses; (6) remote sensing of absorbed photon flux (absorbed photosynthetic active radiation (APAR)), which is a product
of photosynthetic active radiation (PAR) and the fraction of photosynthetic active radiation (fPAR); (7) estimating crop yield
as the ratio of the accumulated above-ground biomass (AGB) multiplied by the harvest index (HI) to the % moisture content
of the crop at harvest; and (8) comparing the ground-observed and modeled crop yield.

3.2.1. Skaff (Bekaa, Lebanon) Site

The analyzed crops include 21 wheat (T. aestivum) and 31 potato (S. tuberosum) experi-
mental fields located in the west of Bekaa Valley, Lebanon, with an average elevation of
862 m above sea level (Figure 3). According to Köppen’s climatic classification, the climate
of the region is Mediterranean (Csa). The predominant soil of the region is fertile clay
soil. All fields monitored are irrigated using sprinkler irrigation systems. Management
practices follow local practices. Traditional tillage is common. Herbicides are applied once
per season for wheat culture and between six and eight times for potato culture. Pesticide
spray is carried out at one to two sprays per season, and the fertilizers in the form of
urea (43% nitrogen) are applied once, at a rate of minimum 120 kg/ha to a maximum of
800 kg/ha or 336 kg of net N/ha/season for wheat culture, while potato uses 230 kg/ha
of nitrogen fertilizer. Potato rotation is widely practiced in West Bekaa (Skaff farms) with
wheat, vegetables, and legumes.
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Figure 3. Location of Skaff (West Bekaa) and AREC (Lebanon) sites. Parcel boundaries for the studied Skaff farms are
shown in red, and one analyzed potato crop at the AREC site is shown in black. All experimental fields are labeled by field
ID (the count of field and a letter of P/W corresponding to potato/wheat). DEM is the digital elevation model from the
Shuttle Radar Topography Mission (SRTM) with a 30 m spatial. NDVI is the normalized difference vegetation index (30 m)
derived from Landsat 8 (satellite overpasses (dd/mm/yy: 17/07/18,12/04/18, and 07/07/20)). Köppen–Geiger climate
map calculated from temperature indices and precipitation normals of the period 1986–2010, 5 arc/min resolution [97,98].

The actual yield dataset for the analyzed fields was collected via an interview with
the Skaff farms’ farmer-manager. This approach of data acquisition is referred to as the
recall method [99]. The data records were obtained on crop maps, areas planted, crop type,
and crop yields for three consecutive seasons: summer 2017, summer 2018, and winter 2017–
2018. Agronomic measurements for estimating the harvest index (HI) and crop moisture
content (%) parameters were conducted for Skaff fields (West Bekaa, Lebanon). These
measurements were taken during the late growing season of the crops (May–September
2018) over two potato and three wheat experimental fields located in West Bekaa (Lebanon).
The quadrate was randomly thrown in the field, and the vegetation within the frame of the
quadrate was clipped. Three samples of the biomass were taken from each field, and the
obtained results were averaged. The above-ground plant component was oven-dried at
75 ◦C for 48 h to a constant weight and weighed. The water content of the plants was
determined by subtracting the above-ground dry mass from the fresh above-ground mass.
The crop moisture content (%) was determined by dividing the water content by the fresh
crop weight. The experimental verification of potato moisture content (%) showed that
the percentage moisture content of potato tuber varies between 75% and 78% (Table S1).
As for wheat, the moisture content of grains ranged between 12% and 15% (Table S2). In
this study, we used a value of 0.75 for the potato HI and 0.4 for the wheat HI (Table 2), as
verified by the literature.
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Table 2. Crop parameters obtained from calibration and their ranges as reported in the literature.

Crop Used HI (%) HI (%) Literature HI References
Crop Moisture

Content Used in
This Study (%)

Crop Moisture
Content (%)
Literature

References

Wheat 0.4 0.29–0.48 [100–102] 0.15 0.1–0.18 [103–105]
Potato 0.75 0.5–0.75 [101,102] 0.75 0.70–0.85 [103,104]

Corn 0.45 0.35–0.6 [106–108] 0.28 Min. 0.25
Optimum 0.28–0.30 [103,109]

3.2.2. AREC (Bekaa, Lebanon) Site

The studied experimental field is located at the American University of Beirut’s
Agricultural Research and Education Center (AREC) in Bekaa, Lebanon, a 990 m elevation
above sea level. Potato (Spunta variety) was planted on 12 March 2020 in an area of 9468 m2.
Fertilizers were applied before planting (50 kg of di-ammonium phosphate (DAP) and 25 kg
of potassium sulfate) and during the growing season (50 kg of urea). The field is irrigated
using a micro-sprinkler system. For HI and percentage crop moisture content calibration,
biomass data were collected weekly from 30 April 2020 until 7 July 2020. A summary of
the collected data and calculated parameters is illustrated in Table S3.

3.2.3. São Desidério (Brazil) Site

The field data used for the Brazil site are for 33 center pivots commercial fields located
in the municipality of São Desidério in the western region of the state of Bahia, Brazil.
The rectangular area boundary of the analyzed fields is defined by the coordinate pairs
12◦28′08”S–45◦45′12”W and 12◦25′40”S–45◦34′55”W, with an average altitude of 750 m
above sea level. The predominant soil type of the studied fields is Yellow Latosol [110].
According to Köppen’s climatic classification, the climate of the region is tropical (Aw)
characterized by a rainy season in summer and a dry winter, with an annual precipitation
of 1003.4 mm (Figure 4). Crop-specific parameters used for yield conversion are given in
Table 2.
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3.2.4. Albacete (Spain) Site

The studied fields are located in the province of Albacete (southeast of Spain). The study
site lies at 689 m above sea level, with a prevailing climate considered as BSk according
to the Köppen–Geiger climate classification. The annual temperature and precipitation of
the study site are 13.6 ◦C and 340 mm, respectively [96]. The yield data are obtained from
commercial wheat fields under irrigated (fields 26W and 27W) and rain-fed conditions
for the rest of the analyzed fields (Figure 5). All irrigated fields use center pivot systems.
Crop yield data for Fields 22W through 27W were for the 2017 growing season, and 28W
through 29W were for the 2018 season. Specific ground measurements of the HI for each
field were used, varying from 0.38 to 0.45 [96].
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Figure 5. Location of the Spain (Albacete) site. Albacete is outlined in red. Parcel boundaries for the analyzed fields are
shown in black, labeled by the count of fields and the letter W corresponding to wheat. The NDVI is derived from Landsat 8
(satellite overpasses (dd/mm/yy: 16/04/17)).

3.3. Datasets
3.3.1. Landsat Surface Reflectance Data

Georeferenced and atmospherically corrected Landsat 7 ETM+ and Landsat 8 OLI/TIRS
imagery data were mosaicked, gap-filled (Landsat 7), masked for clouds, and composited
within the Google Earth Engine (GEE) platform [111]. For the Skaff (Bekaa, Lebanon) study
site, Landsat data with Path 174 Row 37 images for the period 2017–2018 were processed.
A total of 27 and 23 nearly cloud-free scenes were used for the 2017 and 2018 growing
seasons, respectively. For the AREC (Bekaa, Lebanon) study site, a total of 11 scenes
were used to cover the 2020 growing season. For the Brazil site, Landsat WRS-2 Path
220, Row 069 scenes for the corn season (April–October) for 2015 and 2016 each were
used. We acquired 40 images of the Brazil study site, including images from both OLI and
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ETM+sensors for both years. As for the Spain site, a total of 44 images were used for the
2017 growing season and 39 for the 2018 season. The images were selected to cover the
full growing season for each culture, with at least four images per field, with an image
close to the beginning, middle, and end of the crop cycle to amply define it. The dates with
available images are shown in Table S4 (Supplementary Material). Table 3 shows the major
data input fed to the tested model with their respective spatial and temporal resolutions,
and possible uncertainties.

Table 3. Major data inputs used in this study, with the respective spatial and temporal resolutions, and uncertainties.

Model Inputs Spatial
Resolution

Temporal
Resolution Possible Uncertainties

CFSv2 (used to
derive weather

variables)
∼0.2◦ 6 hr

In complex topography–plain interfaces, pixels might not be reflective of local
conditions; could be overcome by downscaling weather data using Machine

Learning (ML) techniques/adiabatic lapse rate.
Landsat 7 ETM+
and Landsat 8

OLI/TIRS
imagery data

30 m Weekly Uncertainty due to the presence of clouds, leading to limited
observations/uncertainty due to scanline corrector gap filling.

Soils’ Open Land
Map Earth

Engine dataset
250 m

Resolution might not be enough when soils are heterogeneous at a larger scale;
percentage clay, sand, and silt might differ from field conditions, leading to
different estimates of soil moisture when the available soil water capacity is

different than what is calculated.

Harvest index
(HI) _ _

Venancio [95] showed that the use of specific HI values could decrease the
difference between the predicted and the measured yield from ±10% (with the
use of a single HI value) to ±5% (with the use of a specific HI value); the used
HI in this study falls within the reported range, indicating less uncertainty in

crop yield estimation.

LUEmax _ _
Dong et al. [112] showed significant improvements in biomass estimation
accuracy when using the derived variable LUEmax (by about 15.0% for the

normalized root-mean-square error (nRMSE)) compared to the fixed LUEmax.

3.3.2. Weather Data

We use the 6 hr CFSV2 gridded (0.2 arc degrees) weather dataset available in GEE
generated by the National Centers for Environmental Prediction (NCEP) of the National
Oceanic and Atmospheric Administration (NOAA) [113]. CFSV2 version 2 was developed
at the Environmental Modeling Center at the NCEP. CFSV2 is a fully coupled model repre-
senting the interaction between Earth’s atmosphere, oceans, land, and sea ice. Currently,
CFSV2 is the global weather reanalysis and forecast tool that has the highest temporal and
spatial resolution to allow for real-time reference evapotranspiration calculations and fore-
casts in GEE. Other available datasets or systems (e.g., GLDAS, NASA-POWER, ECMWF)
are either not available in near real time in GEE or have a lower resolution. Each grid of
the CFSV2 file covers an approximate area of 490 km2. The variables used in the model to
calculate ETref and consequently ETact and transpiration are presented in Table 4.

Table 4. Agrometeorological data from CFSV2, used for estimating the potential evapotranspiration (PET) with the
standardized American Society of Civil Engineers (ASCE)–Penman–Monteith equation.

Agrometeorological Data Description Unit

Temp Temperature 2 m above ground ◦K

U-wind U-component of wind 10 m above
ground m/s

V-wind V-component of wind 10 m above ground m/s
Relative Humidity (RH) spec Specific humidity 2 m above ground Kg/kg

Pressure surface Pressure at surface Pa
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3.4. Definition of the Growing Season

The NDVI time-series images are used to define the crop phenology of each field at
pixel scale. An NDVI value of 0.2 is used as an indication of the beginning and the end of
the season [114].

3.5. Statistical Indicators

To assess the accuracy of the yield estimations, the statistical indicators root-mean-
square error (RMSE), mean absolute error (MAE), mean bias error (MBE), relative error (RE),
and index of agreement (d) between the estimated and actual yield values are calculated:

Root-mean-square error (RMSE):

RMSE =

√
∑n

i=1(Estimated Yieldi − Reported Yieldi)
2

n
(24)

Mean absolute error (MAE):

MAE =
∑n

i=1
∣∣Estimated Yieldi − Reported Yieldi

∣∣
n

(25)

Mean bias error (MBE):

MBE =
∑n

i=1(Estimated Yieldi − Reported Yieldi)

n
(26)

Relative error (%RE):

RE =
∑n

i=1(Estimated Yieldi − Reported Yieldi)

∑n
i=1 Reported Yieldi

(27)

Index of agreement (d):

d = 1− ∑n
i=1(Reported Yieldi − Estimated Yieldi)

2

∑n
i=1

(∣∣∣Estimated Yieldi − Reported Yieldi

∣∣∣+ ∣∣∣Reported Yieldi − Reported Yieldi

∣∣∣)2 (28)

4. Results and Discussion
4.1. Model Performance

Figure 6 shows the measured versus estimated corn, wheat, and potato yields for the
growing seasons of 2015 and 2016 for corn and 2017 and 2018 for wheat and potato. Potato
yield was estimated with a good agreement (d = 0.89, RMSE = 4.1 t/ha, MAE = 3.5 t/ha,
MBE = −0.96 t/ha, and RE = only 2.3%). We believe that this difference is within the
measurement uncertainty. A comparison of the accuracy of the yield estimation of potato
shows that the model performed slightly better in summer 2017 than in summer 2018,
with lower RMSE and MAE values (Table 5). The modeled potato yield for the analyzed
field in the 2020 growing season at AREC, Bekaa (Lebanon) showed a low deviation from
the reported yield, quantified at 8.2%. A better agreement was observed in the wheat
crop, and the RMSE (RE) between the measured and simulated values were low (0.6 t/ha
(0.83%)), and d was high (0.8), with a slight underestimate of −0.06 t/ha. The accuracy
of estimation of the corn grain yields was not as good as that of potato and wheat, but it
was acceptable. The index of agreement value (0.5) for the 2015 and 2016 growing season
was acceptable, with an RMSE greater than 1 (1.3 t/ha). The RE was −3.4%, with a slight
overestimate of 0.4 t/ha, which is considered subtle, and the MAE was equal to 1 t/ha.
These values are very satisfactory. The 2016 growing season had six different sown hybrids,
which may have contributed to this slight variation due to the use of a single HI (HI = 0.45)
for all hybrids. The 2015 growing season had lower values of the RMSE, MAE, MBE,
and RE. Additionally, the obtained RMSE in the present study is considered very good in
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comparison to the results of Sibley [24], where the authors reported RMSE values above
2 t/ha for the verified approach to be promising. Regarding the wheat grain yield at the
Albacete study site, the RMSE between the modeled and actual values was 0.28 t/ha, with
a slight overestimate of 0.22 t/ha. Additionally, a good agreement existed between the
modeled and actual values, with a value of 0.99. Both RMSE and d values were better than
those obtained by Campos et al. [115] for their tested approach on wheat fields located in
the southeast of Spain, where they showed RMSE values varying between and 0.27 and
1.65 t/ha and the highest d of 0.83.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 34 
 

 

 

Figure 6. Measured versus estimated potato, corn, and wheat yields for the growing seasons of 2017–2018 and 2020 for 

wheat and potato (Lebanon), 2015–2016 for corn (Brazil), and 2017–2018 for wheat (Spain) with the respective statistical 

parameters. The dashed line represents the 1:1 line. The red circle outlined with blue for potato (Lebanon) fit plot corre-

sponds to the one analyzed field at AREC, Bekaa (Lebanon). 

Table 5. Comparison between modeled and actual crop yields for the different studied crops. 

 Skaff, Bekaa (Lebanon) São Desidério (Brazil) Albacete (Spain) 

Crop 
Potato 

(n = 31) 

Wheat 

(n = 21) 

Corn  

(n = 27) 

Wheat  

(n = 9) 

Season 

Summer  

2017  

(n = 16) 

Summer  

2018  

(n = 15) 

Winter  

2017–2018 

(n = 21) 

2015 

(n = 13) 
2016 (n = 14) 

2017 

(n = 6) 
2018 (n = 3) 

Average reported yield (t/ha) 40 43 6.9 12.10 12.47 4.1 2.3 

Average modeled yield (t/ha) 38 42 6.8 12.25 13.12 4.3 2.6 

Root-mean-square error (RMSE) (t/ha) 3.74 4.25 0.64 1.06 1.5 0.29 0.26 

Mean absolute error (MAE) (t/ha) 3.1 3.8 0.5 0.8 1.2 0.22 0.25 

Mean bias error (MBE) (t/ha) −1 −0.6 −0.05 0.15 0.66 0.20 0.30 

Index of agreement, d 0.6 0.6 0.8 0.5 0.4 0.99 0.8 

Relative error (RE) 2.50% 0.83% 1.4% −1.22% −5% −5% −11% 
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The dashed line represents the 1:1 line. The red circle outlined with blue for potato (Lebanon) fit plot corresponds to the one
analyzed field at AREC, Bekaa (Lebanon).
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Table 5. Comparison between modeled and actual crop yields for the different studied crops.

Skaff, Bekaa (Lebanon) São Desidério (Brazil) Albacete (Spain)

Crop Potato
(n = 31)

Wheat
(n = 21)

Corn
(n = 27)

Wheat
(n = 9)

Season
Summer

2017
(n = 16)

Summer
2018

(n = 15)

Winter
2017–2018

(n = 21)

2015
(n = 13)

2016
(n = 14)

2017
(n = 6)

2018
(n = 3)

Average reported yield (t/ha) 40 43 6.9 12.10 12.47 4.1 2.3
Average modeled yield (t/ha) 38 42 6.8 12.25 13.12 4.3 2.6

Root-mean-square error (RMSE) (t/ha) 3.74 4.25 0.64 1.06 1.5 0.29 0.26
Mean absolute error (MAE) (t/ha) 3.1 3.8 0.5 0.8 1.2 0.22 0.25

Mean bias error (MBE) (t/ha) −1 −0.6 −0.05 0.15 0.66 0.20 0.30
Index of agreement, d 0.6 0.6 0.8 0.5 0.4 0.99 0.8

Relative error (RE) 2.50% 0.83% 1.4% −1.22% −5% −5% −11%

Figure S3 shows the absolute difference in percentage between estimated and actual
yield values for the analyzed crops at a field level. Both wheat and potato at the West
Bekaa study site had a percentage difference range of ±16%. Still, most of the percent-
age differences ranged between ±10%. For corn, the percentage difference in the grain
yield ranged between −22.4% and 14.2%. The 2016 growing season had the largest error.
The highest difference was observed in 2016 (Pivot 13B), with a value of −22.4%, followed
by −18.8% in Field 16B. The 2015growing season had only one value greater than 16%.
The Brazil site had more clouds than the other sites, and interpolation between non-cloudy
Landsat overpasses will bring more uncertainty for crops with a shorter growing season
(corn matures in 90 days). Excluding the fields that had the highest percentage difference,
the percentage difference of the remaining fields was within ±16% for both Brazil and
Lebanon sites. On the contrary, the modeled yield deviated by an average of −10.9% from
the reported yield in only two fields 25W and 22W, having a difference of greater than
±15% at the Albacete (Spain) study site. This can be attributed to the small size of both
fields (average area of 11.5 ha) compared to the average combined field sizes of 24 ha
(Table 1).

4.2. Within-Field Spatial Variability in Above-Ground Biomass (AGB), Soil Moisture Stress (SMS),
and Crop Yield
4.2.1. Potato: Skaff (Bekaa, Lebanon) Site

The variations of the AGDB and the soil moisture stress (SMS) scalar at satellite
overpasses of the two emphasized potato fields during 2018 result in prominent differences
in terms of the accumulated above-ground biomass and yield (Figure 7). A deficit in
soil moisture can influence the length of the crop development stages through early crop
senescence and thereby reduce the yield. Compared to some studies that neglect the impact
of moisture stress when irrigation water is available [116], our analysis indicates that
moisture stress represents a major limiting factor for LUEact and crop yields in irrigated
fields. Results show that Field 31P had low moisture stress (in the neighborhood of one)
throughout the days of the satellite overpass as compared to Field 30P, which experienced
some incidents of soil moisture stress (in the neighborhood of zero) during two satellite
overpasses (dates 11/03 and 12/04). Some patches of high moisture stress were noticed
in Field 31P. Both fields experienced high moisture stress on the day nearest the harvest
date (18/08). The high moisture stress observed during the satellite overpass in Field 30P
is possibly due to a difference in irrigation time (farmers could have been irrigation past
the Landsat overpass time at 10:00 a.m. local time).
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Figure 7. Spatiotemporal distribution of the potato above-ground dry biomass (AGDB, t/ha), soil moisture stress (SMS),
accumulated above-ground dry biomass (sum AGDB, t/ha), and yield (t/ha) values as a function of the dates of Landsat
satellite overpass (dd/mm: 11/03,12/04,14/05,15/06,01/07, and 18/08) during the 2018 growing season in the Skaff (Bekaa,
Lebanon) site; emphasis on two fields: 30P and 31P.

An interpretation of the light use efficiency, accumulated AGDB, and the reported
and modeled yields between the two selected fields shows significant differences. With
the same vapor and temperature stresses over the two fields, we noticed that the mean
value of the LUE in Field 30P (1.23 g/MJ) was 12% lower than that in Field 31P. The mean
value of the combined stresses was higher in Field 30P (Table 6). The stresses showed up
better in the reported yields, with an 11% difference in stress resulting in a 17% difference
in yield. The modeled yield was only 3% less, possibly due to the assumption of the
linearity in the interpolation between satellite overpasses. Other factors affecting the
variation in the AGB and yield estimation are the crop’s susceptibility to unfavorable
growth conditions, differences in planting and harvest dates, weed control, and irrigation
management. For instance, the presence of abundant weeds in the monitored fields could
lead to overestimating biomass production and inaccurate estimation of crop yield.
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Table 6. Mean values of moisture, vapor, temperature, and combined stresses over two emphasized potato fields (30P and
31P) during summer 2018.

Variable Field ID 30P Field ID 31P % Difference (25–24)

Average moisture stress (SMS) 0.665 0.754 12%
Average vapor stress (VS) 0.841 0.841 0%

Average temperature stress (TS) 0.886 0.886 0%
Average combined stress 0.5 0.56 11%

Average modeled yield (t/ha) 39 40 3%
Average reported yield (t/ha) 35 42 17%

4.2.2. Corn: São Desidério (Brazil) Site

Figure 8 shows the spatiotemporal distribution of the AGDB and soil moisture stress
(SMS) over the corn-growing season (2016). Low biomass values were found in the initial
stages (date 11/05) accompanied by high moisture stress due to the large area of uncovered
soil in this period. Generally, the SMS values at the satellite overpass for four emphasized
center pivots were close to unity, except at the beginning of the growing season after
sowing and in the late season. SMS values started to decrease on 08/09 when the irrigation
intervals became longer during the physiological maturity phase of corn. Consequently,
based on SMS values that remained close to unity, it is evident that cultivated fields did
not suffer from water stress and thus obtained high yields. These results are consistent
with previous work, showing an average value of the water stress coefficient (0.94) for
four selected center pivots monitored in 2016, indicating the low impact of water stress
on biomass production [95]. The visual inspection of yield maps reveals that vegetation
conditions were slightly variable between the four emphasized fields over the growing
season. This could be due to the use of different corn cultivars.

4.2.3. Wheat: Albacete (Spain) Site

The biomass production dynamically changes during the growing cycle due to factors
related to meteorological conditions and crop physiology and management [115]. Grown
under different management conditions, and with different lengths of the growth cycle,
irrigated Field 26W produced a higher accumulated AGDB and yield than rain-fed Field
24W, possibly due to severe water-limited conditions in Field 24W. The growing cycle in
irrigated varieties spans from January to the end of June and in rain-fed varieties from
November to the end of May. Selected images from the growing cycle over the emphasized
fields are displayed in Figure 9. An increase in the AGDB during the development phase
of both Fields 24W and 26W was noted, which can be confirmed by the difference between
the selected first and last images (dates 07/03 and 20/06 for Field 24W and 08/03 and
26/05 for Field 26W). During the mid-season (dates 24/03 and 24/04 for Field 24W and
18/05 for Field 26W), high values of the AGDB are observed because of the good crop
establishment. High soil moisture stress is visible at the initial stages of the growth cycle
for both fields (dates 07/03 for Field 24W and 08/03 for Field 26W). Figure 10 shows the
possible detection of high soil moisture stress (SMS) within-field variability at Landsat
overpasses, evident on 16/04 and 18/05 for Field 26W and 08/04 for Field 24W. This
approach can be advantageous for precision irrigation, providing accurate information
about irrigation practices, such as water application uniformity and areas with surface
runoff or irrigation deficits near the outside borderline of the central pivot systems, which
was confirmed in Field 26W on 20/06, suffering from high moisture stress (~0.5) near its
outer boundary.
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Figure 8. Spatiotemporal distribution of the corn above-ground dry biomass (AGDB, t/ha), soil moisture stress (SMS),
accumulated above-ground dry biomass (sum AGDB, t/ha), and yield (t/ha) values as a function of the dates of Landsat
satellite overpass (dd/mm:11/05,20/06,17/07,07/08,31/08, and 08/09) during the 2016 growing season in the São Desidério
(Brazil) site; emphasis on four fields: 08A through 11A.
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Figure 9. Spatiotemporal distribution of the wheat above-ground dry biomass (AGDB, t/ha), soil moisture stress (SMS),
accumulated above-ground dry biomass (sum AGDB, t/ha), and yield (t/ha) values as a function of the dates of Landsat
satellite overpass (dd/mm:07/03,08/03,15/03,24/03,08/04,16/04,24/04,18/05,26/05,12/06,and 20/06) during the 2017
growing season in the Albacete (Spain) site; emphasis on two fields with different management conditions: (a) center pivot:
Field 26W, (b) rain-fed: Field 24W.
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Figure 10. Modeled monthly above-ground dry biomass (AGDB) (t/ha) for the monitored crops at the Skaff (Bekaa,
Lebanon) site; box plots show the distribution and range of the AGDB averaged over the studied fields for each growing
season separately; the spline line joins the means of the AGDB during the growing seasons.

4.3. Seasonal Co-Variability in Above-Ground Dry Biomass (AGDB), Environmental Stressors,
and Yield: Examples from Lebanon

Understanding patterns of the AGB is essential for guiding farming practices and
helps farmers in decision making. Figure 10 shows the time development of the monthly
AGDB. The variability across the months is considerable, reflecting differences in potato
and wheat crop phenology. It is possible to detect very similar behaviors for both wheat
and potato, with a fast increase in biomass at the start of the growing cycle, stability during
the mid-season, and a decrease at the end. The AGDB started to increase in March, and it
peaked in May (middle of the season) at ~0.2 t/ha. A decrease in the monthly AGDB was
noticed at the end of the growing season in August. As for wheat, the monthly biomass
reached its maximum in March–April, at ~0.12 t/ha, and then decreased toward the end of
the growing season (June–July).

The potato crop in the Bekaa site diverged in its AGDB temporal profile in the 2017 and
2018 growing seasons. These deviations can be attributed to the variation of environmental
stressors among the seasons of the same crops. To study the impact of the environmental
stressors, an inter-comparison between seasons was performed. Our analysis shows that
the soil moisture, temperature, and combined stresses were higher in summer 2017 as
compared to 2018 (Table 7). This was notable in terms of the maximum actual LUE and
the AGDB for potato in summer 2018, which were, respectively, 5% and 10% higher than
those in 2017 (due to higher moisture and temperature stress). Furthermore, the average
modeled and reported yields for potato in 2018 were 9% and 6% higher than those in
2017, respectively. In contrast to potato crop, wheat crop studied during winter 2017–2018
experienced lower environmental stresses (with values approaching unity, indicating low
stress). This is evident in terms of a higher average combined stress factor and lower
moisture stress (Table 7).
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Table 7. Descriptive statistics of LUE (g/MJ); moisture, vapor, temperature, and combined
stress scalars; and reported and modeled yields for potato and wheat crops in the AREC (Bekaa,
Lebanon) site.

Parameter Season Average Min. Max. Standard
Deviation

LUE 2017 0.8 0 2.1 0.7
(g/MJ) 2018 1 0.1 2.2 0.5

2017–2018 1.2 0 3 0.6

Reported yield 2017 39.5 34 46 3.7
(t/ha) 2018 42.7 35 52 4.3

2017–2018 6.86 5 8 0.7

Modeled yield 2017 38.5 35 42 2.7
(t/ha) 2018 42 37 49 3.7

2017–2018 6.81 5 8 0.8

Moisture stress 2017 0.4 0 1 0.4
2018 0.5 0 1 0.3

2017–2018 0.5 0 1 0.3

Vapor stress 2017 0.9 0.7 1 0.1
2018 0.8 0.7 1 0.1

2017–2018 0.9 0.7 1 0.1

Temperature stress 2017 0.8 0.3 1 0.2
2018 0.9 0.5 1 0.1

201–2018 0.9 0.5 1 0.1

Combined stresses 2017 0.288 0 1 0.008
2018 0.36 0 1 0.003

2017–2018 0.405 0 1 0.003

4.4. Assessment of the Operational Model: Strengths and Weaknesses

Our work’s breakthrough is that it is the first to provide 30 m crop biomass with
relatively high spatial and temporal resolution using soil and weather data along with
ET data generated in the same model. GYMEE is highly adaptable, and it can ingest
Sentinel-2 multispectral imagery and the VIIRS-375 m I-5 thermal band, allowing even
for higher spatial (10 m) and temporal (2–3 days) resolution. It can also adapt to various
single- and dual-source energy balance ET models, such SSEB, SEBS, and TSEB. A crop-
specific LUEmax should be utilized whenever crop data are known. Given that there is no
consensus in the scientific community on the maximum LUE for even the same crop (see,
for example, Chen et al. [117] and Zhu et al. [118]) and given that GYMEE performed very
well with these average values, we believe that the two values (2.5 for C3 and 3.5 for C4)
provide good enough estimates for modeling the biomass using the Monteith equation.
The LUEmax parameterization might introduce some uncertainty, but we believe that it is
a strength of the model that it performed very well with the average values of LUEmax.
It would be straightforward to update GYMEE with a LUEmax map derived from a crop
map when such a map becomes available. At present, many global products for land-cover
classification are available, which only provide information for broad classes, such as forest,
cropland, and grassland, but not crop types. The dynamic nature of cropping patterns and
within-year variations needs to be considered since this is a field-scale model. The analyses
performed consider different physical soil properties by using global gridded soil data
from an Open Land Map Earth Engine dataset Hengl and MacMillan [85] available in GEE.
Additionally, the proposed operational model considers the variations in environmental
conditions by incorporating environmental stresses (temperature, vapor, and soil moisture
constraints) computed from agrometeorological data of the global 6 h CFSV2 gridded
weather dataset available in GEE. The proposed model’s major operational advantage is
the spatial quantification of the soil moisture stress constraint and its impact on reducing
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biomass production. This approach can be alternatively used for areas with limited ground
data availability.

There are a few uncertainties for simulating the AGB as well as crop yield, including
uncertainties of satellite data and model parameters. We use multispectral VIs to determine
the length of the growing cycle. However, this approach is limited under cloudy conditions.
Future implementations could harness NDVI-S1 radar data relationships to fill in long
gaps over cloudy regions. In addition, if a scene is missed due to clouds, the small
temporal resolution (say 16 days) under water deficit conditions could lead to inaccurate
biomass values [119]. In these situations, the use of different thermal times like growing-
degree-days and accumulated reference evapotranspiration (ETref) with the temporal
evolution of VIs to monitor phenology could be an alternative [120]. The parameterization
of the LAI and the fPAR would also bring some uncertainty as there is no consensus in
the literature on a physical method to derive the LAI from remote sensing [121]. Even
though the percentage difference between the modeled and actual yields is considered
low (Figure 7), the prediction may be improved by using crop-specific parameters (harvest
index and percentage moisture content of produce) instead of single values. It is vital to
use different HIs when considering different hybrids and years under various weather
environments [95]. Crop yield varies with the crop’s moisture content (percentage moisture)
at harvest and with the HI. The HI varies with the variety of the crop and the cultural
practices, and therefore a range should be provided. Careful estimation of the HI and
the percentage moisture is necessary to derive accurate yields from biomass calculations.
For example, a high-yielding variety of the same crop would have a higher HI. GYMEE
does not predict the HI or the percentage moisture, both of which should be specified by
the user to derive the yield from the biomass. Other uncertainties could arise from the
constants in the heat stress equation. A sensitivity analysis of the response of the heat
stress to changes in the parameters is presented in Figure S4 (Supplementary Material).
With the simulated results, it can be deduced that both values of optimal conductance
temperature and temperature stress scalar would have had a low uncertainty for the crop
yield estimation. Of course, model performance could be better with optimized TH and KT
values specific to each crop type.

Some uncertainty, which is not due to the model itself, might arise from actual crop
yield data acquisition. For example, we used the recall method for the Skaff (Bekaa,
Lebanon) site. Although this approach produced good results, it may include uncertainty
if farmers over- or under-report their crop yields or when farmers do not account for
within-field variability as they provide values on a whole-plot basis [99,122]. Other sources
of error, not directly attributable to the model, are issues due to the size and shape of the
fields. Overall, the poorest performance was obtained in small fields (Fields 25W and 22W
from the Spain study site), with an average size less than 12 ha. The accuracy of the yield
estimation is affected in small fields [123], and here Sentinel-2 can be used. The model
is also sensitive to landscape evaporation. Using an ET model other than the modified
pySEBAL might yield is a different transpiration component that would influence the soil
moisture stress scalar of the yield. An ensemble of ET models may be a better approach. In
fact, we have already started implementing GYMEE using a harmonized Landsat–Sentinel-
2 product and sharpened thermal bands of MODIS and VIIRS, along with a more stable
energy balance model.

5. Conclusions

In this study, a newly proposed GYMEE model for predicting yield at the farm level,
based on the integration of ET and abiotic stressors into the light use efficiency and Monteith
model, was presented and evaluated using surface reflectance images from Landsat 7 and
8 satellites. GYMEE shows promising results in running within the GEE platform. GYMEE
was validated at different sites (Lebanon, Spain, and Brazil) for wheat, potato, and corn.
The results obtained in the present work endorse the use of remote sensing as a helpful tool
for the operational estimation of crop yield at a field scale under a wide range of ecology,
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management systems, and soil types. Compared to the literature, this research focuses
on the following aspects: (i) spatio-temporal crop yield modeling at the small field scale
under a wide range of management conditions, (ii) an operational framework for crop
yield modeling, and (iii) integration of global weather data (CFSV2) and global soil data
into actual evapotranspiration and abiotic stressor calculations for biomass calculations.
Because it is implemented in GEE, GYMME can be used to estimate the ET at the global scale
and improve the understanding of water use by crops as well as improve estimates of the
ET as a major component of the hydrologic cycle. As more soil moisture products become,
available either via further analysis of radar data, such as Sentinel-1, or via downscaling
of existing soil moisture missions such as Soil Moisture Active Passive (SMAP), a more
comprehensive sensitivity analysis becomes possible for validating the model in other areas
of the world where yield data are available. We conclude that the suggested method can
be a useful tool for estimating the yield of the studied crops in Mediterranean, semi-arid,
and tropical climates.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/773/s1: Table S1: Agronomic measurements for potato crop at Skaff (West Bekaa, Lebanon)
(average of three samples for each date), Table S2: Agronomic measurements for wheat at Skaff (West
Bekaa, Lebanon) (average of three samples for each date), Table S3: Agronomic measurements for
potato at AREC (Bekaa, Lebanon), Table S4: At-site cloud-free Landsat imagery used in this study,
with respective dates; L7 (Landsat 7) and L8 (Landsat 8); Figure S1: Wheat-fields NDVI time series
Plots for winter 2017–2018 season, Figure S2: Potato fields NDVI time series plots for the summer
2018 season, Figure S3: Percentage deviation (%) of modeled yield from the actual yield for the
analyzed crops at each of the studied sites, Figure S4: Simulations of temperature stress (TS) at a
fixed daily air temperature of (28 °C) as a function of: (a) the upper limit of stomatal activity (°C)
(TH) and (b) the optimum conductance temperature (°C) (KT).
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