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Abstract: Recently, hyperspectral image (HSI) classification has attracted increasing attention in
the remote sensing field. Plenty of CNN-based methods with diverse attention mechanisms (AMs)
have been proposed for HSI classification due to AMs being able to improve the quality of feature
representations. However, some of the previous AMs squeeze global spatial or channel informa-
tion directly by pooling operations to yield feature descriptors, which inadequately utilize global
contextual information. Besides, some AMs cannot exploit the interactions among channels or posi-
tions with the aid of nonlinear transformation well. In this article, a spectral-spatial network with
channel and position global context (GC) attention (SSGCA) is proposed to capture discriminative
spectral and spatial features. Firstly, a spectral-spatial network is designed to extract spectral and
spatial features. Secondly, two novel GC attentions are proposed to optimize the spectral and spatial
features respectively for feature enhancement. The channel GC attention is used to capture channel
dependencies to emphasize informative features while the position GC attention focuses on position
dependencies. Both GC attentions aggregate global contextual features of positions or channels
adequately, following a nonlinear transformation. Experimental results on several public HSI datasets
demonstrate that the spectral-spatial network with GC attentions outperforms other related methods.

Keywords: hyperspectral image classification; convolutional neural network; spectral-spatial net-
work; channel global context attention; position global context attention

1. Introduction

Compared with traditional panchromatic and multispectral remote sensing images,
hyperspectral images (HSIs) contain rich spectral information owing to the hundreds
of narrow contiguous wavelength bands. In addition, some spatial information from
homogeneous areas is also incorporated into HSIs. Recently, HSIs have been widely used
in various kinds of fields, such as land cover mapping [1], change detection [2], object
detection [3], vegetation analysis [4], etc. With the rapid development of HSI technology,
HSI classification has become a hot and valuable topic, which aims at assigning each pixel
vector to a specific land cover class [5,6]. Due to the curse of dimensionality and the Hughes
phenomenon [7,8], how to explore the plentiful spectral and spatial information of HSIs
remains extremely challenging.

To take advantage of abundant spectral information, traditional HSI classification
methods tend to take an original pixel vector as the input, such as κ-nearest neighbors
(KNNs) [9], multinomial logistic regression (MLR) [10], and linear discriminant analysis
(LDA) [11]. These methods mainly focus on two steps: feature engineering and classifier
training. Feature engineering reduces the high dimensionality of the spectral pixel vector
to capture effective features. Then, the extracted features are fed into a general-purpose
classifier to yield the classification results. However, these spectral-based classifiers only
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concern spectral information while ignoring the spatial correlation and local consistency of
HSI. Later, some spectral-spatial classifiers appeared for HSI classification, such as DMP-
SVM [12], Gabor-SVM [13], and SVM-MRF [14]. These methods improve the classification
performance to a certain extent, such as approximately 10% overall accuracy on the popular
Pavia University dataset. However, the aforementioned methods belong to shallow layer
models, which have limited representation capacity to fully utilize the abundant spectral
and spatial information of HSIs. Specifically, these models usually utilize handcrafted fea-
tures, which cannot effectively reflect the characteristics of different objects. Consequently,
they have poor adaptability to the spatial environment.

Recently, deep learning (DL) methods have achieved considerable breakthroughs
in the field of computer vision [15–17]. Along with the improvement of DL, many DL-
based methods have been proposed for HSI classification. DL-based models usually
have multiple hidden layers, which can combine low-level features to form abstract high-
level feature representations. These features are closer to the intrinsic properties of the
identified object compared to shallow features, which are more conducive for classification.
Similar to the traditional methods exemplified above, DL-based methods can also be
divided into two categories: spectral-based methods and spectral-spatial-based methods.
The spectral-based methods primarily concern the rich spectral information from HSIs.
For example, Hu et al. [18] proposed a 1D CNN to classify HSIs directly in the spectral
domain. Mou et al. [19] exploited a novel RNN model for HSI classification for the first
time to deal with hyperspectral pixels as sequential data and determined categories by
network reasoning. Li et al. [20] designed a novel pixel-pair method to reorganize training
samples and used deep pixel-pair features for HSI classification. Zhan et al. [21] proposed a
novel generative adversarial network (GAN) to handle the problem of insufficient labeled
HSI pixels. However, the spectral-based methods infer pixel labels by only using spectral
signatures, which in the actual imaging process are easily disturbed by the atmospheric
effects, instrument noises, and incident illumination [22,23]. Consequently, the results
generated by these models are also unsatisfactory.

Different from spectral-based methods, spectral-spatial-based methods extract both
spectral and spatial information for classification. For example, Chen et al. [24] used the
stacked autoencoder (SAE) to extract spectral and spatial features and then used logistic
regression as the classifier. Chen et al. [25] adopted a novel 3D-CNN model combined
with regularization to extract spectral-spatial features for classification. Roy et al. [26]
proposed a model named HybridSN, which includes a spectral-spatial 3D-CNN followed
by spatial 2D-CNN to facilitate the joint spectral-spatial feature representations and spatial
feature representations. Inspired by the residual network [27], Zhong et al. [28] proposed
a spectral–spatial residual network (SSRN), which extracts spectral features and spatial
features sequentially. Based on SSRN and DenseNet [29], Wang et al. [30] proposed a fast
densely-connected spectral–spatial convolution network (FDSSC) for HSI classification.
Although the CNN-based methods mentioned above can extract abundant spectral and
spatial signals from HSI cubes, the spectral responses of these signals may vary from band
to band; likewise, the importance of spatial information may also vary from location to
location. In other words, different spectral channels or spatial positions of feature maps
may have different contributions to the classification. It is desired to recalibrate the feature
responses of spectral channels or spatial positions adaptively, emphasizing informative
features and suppressing less useful ones.

The attention mechanism (AM) is proposed as an analogy to the processing mecha-
nism of human vision, which enables models to focus on key pieces of the feature space
and differentiate irrelevant information. With the rapid progress of AMs, more and more
HSI classification models combined with AMs appeared. For example, Ma et al. [31] pro-
posed a double-branch multi-attention mechanism network (DBMA) for HSI classification.
The DBMA applies both the channel-wise attention and spatial-wise attention in the HSI
classification task to emphasize informative features. However, the AMs in the DBMA
have two drawbacks. On the one hand, they aggregate features by directly squeezing
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global spectral or spatial information, which inadequately utilizes global contextual infor-
mation. On the other hand, they recalibrate the importance of channels and positions by
the rescaling operation, which cannot effectively capture long-range feature dependencies.
Then, Li et al. [32] proposed a double-branch dual-attention mechanism network (DBDA)
for HSI classification based on the DBMA and the DANet [33]. The AMs in the DBDA
consume considerable computing resources because of matrix multiplication operations
when obtaining attention maps. The interactions among enhanced channels or positions
are not well exploited.

In order to alleviate the problems of AMs in the DBMA and the DBDA, we devel-
oped two novel AMs known as channel global context (GC) attention and position GC
attention inspired by the GC block [34]. The proposed channel GC attention and position
GC attention can make full use of global contextual information with less time consump-
tion. In addition, the interactions among enhanced channels or positions are modeled to
learn high-level semantic feature representations. Concretely, our channel and position
GC attentions can be abstracted into three procedures: (a) feature aggregation, which
aggregates the features of all positions or channels via weighted summation under the aid
of the channel or position attention map to yield global contextual features; (b) feature
transformation, which learns the adaptive channel-wise or position-wise non-linear rela-
tionships by a bottleneck transform module consisting of two 1× 1 convolutions, the ReLU
activation function, and layer normalization; (c) feature enhancement, which merges the
transformed global contextual information into features of all positions or channels by
element-wise summation to capture long-range dependencies and obtain more powerful
feature representations. To sum up, the main contributions of this paper are the following:

• An end-to-end spectral-spatial framework with channel and position global context
(GC) attention (SSGCA) is proposed for HSI classification. The SSGCA has two
branches: the spectral branch with channel GC attention is used to capture spectral
features, while the spatial branch with position GC attention is used to obtain spatial
features. At the end of the network, spectral and spatial features are combined for HSI
classification.

• A channel GC attention and a position GC attention are proposed for feature enhance-
ment in the spectral branch and the spatial branch, respectively. The channel GC
attention is designed to capture interactions among channels, while the position GC
attention is invented to explore interactions among positions. Both GC attentions can
make full use of global contextual information with less time consumption and model
long-range dependencies to obtain more powerful feature representations.

• The SSGCA network is applied to three well-known public HSI datasets. Experimental
results demonstrate that our network achieves the best performance compared with
other well-known networks.

The remainder of this article is organized as follows. Section 2 introduces the related
work, and Section 3 describes the proposed methodology in detail. Next, the experimen-
tal results and comprehensive analysis are reported in Sections 4 and 5. Finally, some
conclusions of this article are drawn in Section 6.

2. Related Work

In this section, we introduce the related work that plays a significant role in our work,
including 3D convolution operation, CNN-based methods for HSI classification, the dense
connection block, and the attention mechanism (AM).

2.1. 3D Convolution Operation

The 3D convolution operation was first proposed in [35] to compute features from
both spatial and temporal dimensions for human action recognition. Later, various 3D
CNN networks based on the 3D convolution operation were designed for HSI classification.
For example, Chen et al. [25] proposed a deep 3D CNN model, which employed several
3D convolutional and pooling layers to extract deep spectral-spatial feature maps for
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classification. Different from [25], Li et al. [36] designed a 3D CNN network, which
stacks 3D convolutional layers without the pooling layer to extract deep spectral-spatial-
combined features effectively. Furthermore, Roy et al. [26] proposed a hybrid model named
HybridSN which consists of 3D CNN based on 3D convolution and 2D CNN based on
2D convolution to facilitate the joint spectral-spatial feature representations and spatial
feature representations. To sum up, 1D convolution extracts spectral features, whereas 2D
convolution extracts local spatial features; unlike 1D and 2D convolution, 3D convolution
allows extracting spatial and spectral information simultaneously.

In this paper, 3D convolution is employed as a fundamental element playing a crucial
role in the feature extraction stage. At the same time, BN [37] and the ReLU activation
function are attached to each 3D convolution operation in our network, which can accel-
erate the learning rate of DL models and assist the network to learn non-linear feature
relationships, respectively. The 3D convolution operation can be formulated as [35]:

vxyz
li = g(∑

j

Hl−1

∑
h=0

Wl−1

∑
w=0

Rl−1

∑
r=0

khwr
lij v(x+h)(y+w)(z+r)

(l−1)j + bli), (1)

where l indicates the layer that is discussed, i is the number of feature maps in this layer,
vxyz

li represents the output at position (x, y, z) on the ith feature maps of the lth layer, Hl ,
Wl , and Rl stand for the height, width, and channel number of the 3D convolution kernel,
respectively, j indexes the feature maps in the (l − 1)th layer connected to the current
feature maps, khwr

lij is the value at position (h, w, r) of the kernel corresponding to the jth
feature maps, g is the activation function, and b is the bias.

2.2. Cube-Based Methods for HSI Classification

Different from traditional pixel-based classification methods [18–20] that only utilize
spectral information, cube-based methods explore both spectral and spatial information
from HSIs. Recently, many cube-based methods were proposed for HSI classification,
such as DRCNN [38], CDCNN [39], DCPN [40], and SSAN [41]; these methods have
attracted increasing attention and made considerable achievements. In the remainder
of this section, we will briefly introduce the process of HSI classification with the aid of
cube-based methods.

For a specific pixel of an HSI, a square HSI data cube is cropped, centered on this pixel,
which is taken as the input data of the cube-based network, and the land cover label of
the HSI cube is determined by its central pixel. Let xi ∈ Rh×w×c represent the ith HSI data
cube and yi ∈ {1, 2, . . . , m} represent the corresponding land cover label, where h× w is
the spatial size, c is the number of channels, and m is the number of land cover categories.
Consequently, the ith sample can be denoted as (xi, yi), and all samples will be divided
into three sets. To be specific, a certain number of samples are randomly selected as the
training set; another certain number of samples are randomly assigned as the validation
set; and the remaining samples are used as the testing set. The training set is fed into
the network in batches to adjust the trainable parameters; the validation set acts as the
monitor to observe the optimization process of the network, while the testing set serves
to evaluate the classification performance of the network. In this article, the designed
network is also cube-based, but the difference is that we introduce AMs into our network
to enhance the extracted features and thus obtain more powerful feature representations
for HSI classification.

2.3. Dense Connection Block

In order to alleviate the vanishing gradient problem, strengthen feature propagation,
and encourage feature reuse, Gao et al. [29] designed DenseNet, which introduces direct
connections from any layer to all subsequent layers. Inspired by SSRN [28] and DenseNet,
Wang et al. [30] proposed the FDSSC network for HSI classification to learn discriminative
spectral and spatial features separately. The FDSSC consists of a spectral dense block,
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a reducing dimension block, and a spatial dense block. In the DBMA [31] and DBDA [32],
the capability to extract features of dense connection blocks from the FDSSC was demon-
strated once again. For this article, we also use the spectral dense block and spatial dense
block from the FDSSC as the baseline network for feature extraction, and the difference
is that the spectral and spatial branches are connected in parallel, the same as the DBMA
and DBDA, rather than in a cascaded manner. These two dense connection blocks can
reduce the high dimensionality and automatically learn more effective spatial and spectral
features separately with little depletion of the computing resources.

As shown in Figures 1 and 2, the spectral and spatial dense blocks consist of several
sets of feature maps, direct connections, and 3D convolution operations. The BN operation
and the ReLU activation function are also included. In the spectral dense block, the size
of the 3D convolution kernels is (1× 1× d, k), the stride is (1, 1, 1), and the manner of
padding is “same”, which can ensure the output shape is the same as the input shape.
The feature maps of the lth layer receive feature maps from all previous outputs and the
initial input. Consequently, if we set xl as the lth feature maps, we can calculate it by the
previous (l − 1) feature maps, as shown in the following equation:

xl = Hl [x0, x1, . . . , xl−1], (2)

where [x0, x1, . . . , xl−1] refers to the concatenation of the previous feature maps. Hl(·)
includes batch normalization (BN), the ReLU activation function, and 3D convolution
operations. Furthermore, the number of lth input feature maps kl can be calculated
as follows:

kl = k0 + (l − 1)× k, (3)

where k0 is the number of initial feature maps and k is the kernel number of the 3D
convolution operation. In this paper, the spectral dense block consists of four layers; if the
input shape is (p× p× b, k0), after the above analysis, we can know that the shape of the
output remains (p× p× b), and the channel number will change to k0 + 3× k.

Spectral  Dense block

𝐱𝟏: 𝐩×𝐩×𝐛, 𝐤𝟎

𝟏×𝟏×𝐝, 𝐤 𝟏×𝟏×𝐝, 𝐤 𝟏×𝟏×𝐝, 𝐤

𝐱𝟐: 𝐩×𝐩×𝐛, 𝐤𝟎 +𝐤 𝐱𝟒: 𝐩×𝐩×𝐛, 𝐤𝟎 +𝟑×𝐤𝐱𝟑: 𝐩×𝐩×𝐛, 𝐤𝟎 +𝟐×𝐤

𝐁𝐍 + 𝐑𝐞𝐋𝐔 𝐁𝐍 + 𝐑𝐞𝐋𝐔 𝐁𝐍 + 𝐑𝐞𝐋𝐔

Figure 1. The structure of the spectral dense block.

In the spatial dense block, the kernel size of 3D convolution is (r× r× 1, k), the manner
of padding is “same”, and the stride is (1, 1, 1). Same as spectral dense block, the feature
maps of current layer have been linked to previous feature maps and back feature maps,
and the final output is merged by all previous outputs and the initial input. As shown
in Figure 2, if the input shape is (q× q×m, k0), the shape of output feature maps remain
(q× q×m) and the channel number will change into k0 + 3× k after spatial dense block.



Remote Sens. 2021, 13, 771 6 of 24

Spatial  Dense block

𝐱𝟏: 𝐪×𝐪×𝐦, 𝐤𝟎

𝐫×𝐫×𝟏, 𝐤 𝐫×𝐫×𝟏, 𝐤 𝐫×𝐫×𝟏, 𝐤

𝐱𝟐: 𝐪×𝐪×𝐦,𝐤𝟎 +𝐤 𝐱𝟒: 𝐪×𝐪×𝐦,𝐤𝟎 +𝟑×𝐤𝐱𝟑: 𝐪×𝐪×𝐦,𝐤𝟎 +𝟐×𝐤

𝐁𝐍+𝐑𝐞𝐋𝐔 𝐁𝐍 +𝐑𝐞𝐋𝐔 𝐁𝐍 + 𝐑𝐞𝐋𝐔

Figure 2. The structure of spatial dense block.

2.4. Attention Mechanism

Different spectral channel and spatial position features acquired by the DL-based
network may provide different contributions to classification. Therefore, how to make
models focus on the most informative part and differentiate low-correlation information
is essential for classification. The AM was firstly presented in language translation [42].
Immediately afterwards, it developed rapidly and acquired incredible breakthroughs in
the field of computer vision. For example, Hu et al. [43] invented a squeeze-and-excitation
network (SENet) to adaptively refine the channel-wise feature response by modeling inter-
dependencies among channels, which brings significant improvements to the performance
of CNNs. Different from SENet, Woo et al. [44] proposed a convolutional block attention
module (CBAM), which exploits attention in both the channel and position dimensions to
learn what and where to emphasize or suppress, aiming at refining intermediate features
effectively. With the purpose of capturing long-range dependencies, Wang et al. [45] pre-
sented non-local operations as a generic family of building blocks for capturing long-range
dependencies, which compute the response at a position as a weighted sum of the features
at all positions. Inspired by the non-local block from [45] and the SE block from [43], Yue
Cao et al. [34] proposed a global context (GC) block, which is lightweight and can model
the global context more effectively.

Recently, AMs have received increasing attention in the field of remote sensing. Since
HSIs contain more abundant information, especially in the spectral dimension, it is critical
to avoid the impact of redundant information while utilizing useful information efficiently.
Therefore, plenty of DL-based methods combined with various kinds of AMs have been
designed for HSI classification, such as SSAN [41], the DBMA [31], the DBDA [32], and so
on. These networks further improved the classification performance with the assistance
of AMs; however, previous AMs attached to CNN-based networks for HSI classification
have some insufficiencies. For example, they inadequately utilize global contextual in-
formation and cannot model long-range dependencies effectively; in addition, they are
time-consuming and cannot learn non-linear feature relationships. To tackle these issues,
the GC block [34] employed in the field of general images seems to work. However, the GC
block only focuses on the channel dimension, and in the HSI data cube, the position charac-
teristics also play a crucial role in classification. Therefore, we invented a position-wise
framework resembling the GC block, aiming at processing the position information of HSIs.
These two frameworks called channel GC attention and position GC attention are attached
to the spectral and spatial branch to optimize the features, avoiding the disadvantages of
previous AMs. The implementation details of our channel GC attention and position GC
attention are described in Sections 3.1 and 3.2.

3. Methodology

In this Section, we introduce the general architecture of the proposed channel global
context (GC) attention and position GC attention. We describe the implementation details
of our spectral-spatial network with channel and position GC attention (SSGCA) in three
specific stages.
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3.1. Channel Global Context Attention

As illustrated in Figure 3, the channel GC attention is abstracted into three procedures:
(a) feature aggregation, which performs a weighted summation on the features of all
positions to yield global contextual features; (b) feature transformation, which learns
nonlinear channel-wise inner relationships by a bottleneck transform module; (c) feature
enhancement, which merges the transformed channel features into each position to utilize
long-range dependencies, optimizing the feature representations. Specifically, for the
input feature maps A ∈ Rh×w×c, we first feed it into a 1× 1 convolutional layer of which
the kernel number is 1, and a new feature map B ∈ Rh×w×1 is obtained. Then, B is
reshaped to R1×1×n, and a softmax operation is applied to it to obtain the attention map
D ∈ R1×1×n, where n = h× w. Meanwhile, A is reshaped to C ∈ Rn×c. After that, we
conduct a matrix multiplication between C and the attention map D to obtain channel
features that contain global contextual position information. Next, the channel features are
fed into a bottleneck transform module to learn nonlinear interactions between channels.
The bottleneck transform module consists of two 1× 1 convolutional layers, a ReLU
activation function between them, and a layer normalization operation (LN) [46] before
the ReLU to benefit optimization. The bottleneck ratio r is selected from {8, 12, 16, 20}
(this parameter is discussed in Section 5.2) to reduce the computational cost and prevent
overfitting. Finally, we perform an element-wise sum operation between transformed
features and initial input features A to get the final output E ∈ Rh×w×c.

Softmax

Matrix multiplication

1×1,1

A: h×w×c

B: h×w×1

D: 1×1×n

Element-wise sum

E: h×w×c

1×1×c

1×1×c/r

1×1×c

Channel Global Context Attention

Reshape

LayerNorm

ReLU 

1×1,c/r

Conv 1×1 n = h × w

1×1,c

(a) feature aggregation

(b) feature transformation

(c) feature enhancement

C: n×c

Reshape

Figure 3. The details of the channel global context attention in our network.

Above all, our channel GC attention can be defined as:

p
′
i = pi + f (

Np

∑
j=1

αj·pj), (4)

where p and p′ are the input and output feature maps of the channel GC attention, re-
spectively, i ∈ {1, 2, . . . , Np} is the index of the positions, and Np = h× w is the number

of positions. ∑
Np
j=1 αj · pj represents the global contextual features aggregated from all

positions via weighted summation with weight αj. The weight αj is calculated according to:

αj =
exp(Wu pj)

∑
Np
m=1 exp(Wu pm)

, (5)

where Wu denotes the linear transformation matrix. f (·) denotes the feature transformation
operations in the bottleneck transform module, shown as:

f (·) = Wv2ReLU(LN(Wv1(·))), (6)
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which includes two linear transformation matrices Wv1 and Wv2, a layer normalization,
and a ReLU activation function.

3.2. Position Global Context Attention

As illustrated in Figure 4, the position GC attention is also described as three proce-
dures: (a) feature aggregation, which applies a weighted summation among features of all
channels to generate global contextual features; (b) feature transformation, which aims to
learn the nonlinear inner relationships between position features by a bottleneck transform
module; (c) feature enhancement, which captures long-range dependencies to form better
feature representations by merging the transformed position features into each channel.
Concretely, as shown in Figure 4, the input feature maps is A ∈ Rh×w×c. First, a global
average pooling is applied on A to squeeze global spatial information into a feature vector
B ∈ R1×1×c; meanwhile, A is reshaped to C ∈ Rc×n. Then, B is fed into a softmax layer
to obtain attention map D ∈ R1×1×c. After that, a matrix multiplication is performed on
attention map D and matrix C, where the result is the position features, which include
global contextual channel information. The same as the channel GC attention, the posi-
tion features are fed into a bottleneck transform module to learn nonlinear position-wise
interactions, and the value of bottleneck ratio r is the same as that of the channel GC
attention. Finally, we reshape the output of transform module to E ∈ Rh×w×1 and execute
an element-wise sum operation between A and E to obtain the final output F ∈ Rh×w×c.

Reshape

Softmax

Element-wise sum

A: h×w×c

Global 

AvgPooling

F: h×w×c

B:1×1×c

C: c×n

1×1×n/r

1×1×n

Position Global Context Attention

1×1×n

Reshape

E: h×w×1

1×1,n/r 1×1,n

LayerNorm

ReLU  

Matrix multiplicationConv 1×1

D: 1×1×c

n = h × w

(a) feature aggregation

(b) feature transformation

(c) feature enhancement

Figure 4. The details of the position global context attention in our network.

Likewise, our position GC attention can be defined as:

c
′
i = ci + δ(

Nc

∑
j=1

bj · cj), (7)

where c and c′ denote the input and output feature maps of the position GC attention,
respectively, i ∈ {1, 2, . . . , Nc} is the index of channels, and Nc is the number of channels.
∑Nc

j=1 bj · cj represents the global contextual features aggregated from all channels via
weighted summation with weight bj. The weight bj is calculated from Equation (8), in which
Favg represents a global average pooling operation. δ(·) denotes the operations of the
bottleneck transform module formulated as Equation (9), where Wk1 and Wk2 are also
linear transformation matrices.

bj =
exp(Favg(cj))

∑Nc
m=1 exp(Favg(cm))

, (8)

δ(·) = Wk2ReLU(LN(Wk1(·))). (9)
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3.3. Spectral-Spatial Network with Global Context Attention

The proposed SSGCA consists of three parts: feature extraction, feature enhancement,
and feature fusion classification. Feature extraction focuses on collecting discriminative
spectral and spatial features based on dense connection blocks. Feature enhancement
pays close attention to obtaining more powerful feature representations via GC attentions.
Feature fusion classification concatenates spectral and spatial features directly to determine
the final land cover categories. Next, we take the Indian Pines dataset as an example to
introduce the network structure of these three stages.

3.3.1. Feature Extraction

As shown in Figure 5, this part consists of two parallel stages: spectral feature extrac-
tion stage and spatial feature extraction stage. The former stage aims to extract spectral
features, while the latter is to explore spatial information. For each pixel to be classified,
a corresponding HSI data cube of size (9× 9× 200) is cropped for both the spectral and
spatial branches. In the spectral branch, a 3D convolution is first applied to reduce the
number of bands. The kernel size is (1× 1× 7, 24); the stride is (1, 1, 2); and the padding is
“valid”. After that, the feature maps with the shape of (9× 9× 97, 24) are generated. Then,
they are fed into the spectral dense block, in which the kernel size, padding, and stride
of 3D convolution are all (1× 1× 7, 12), “same”, and (1, 1, 1). As a result, the shape of
feature maps changes into (9× 9× 97, 60), and they are re-imported to a 3D convolution
layer with a kernel size of (1× 1× 97, 60) and a padding manner of “valid” to reduce the
number of channels again. Consequently, the final feature maps of the spectral feature
extraction stage can be obtained, and the shape is (9× 9× 1, 60). Similar to the spectral
branch, in the spatial branch, the input data cube is first fed into a 3D convolution layer,
and the kernel size, stride, and padding are (1× 1× 200, 24), (1, 1, 1), and “valid”. Then,
the output feature maps are fed into the spatial dense block, in which the kernel size, stride,
and padding of 3D convolution are all (3× 3× 1, 12), (1, 1, 1), and “same”. After that,
the final output of the spatial feature extraction stage with the size of (9× 9× 1, 60) is
acquired. The use of the ReLU activation function and the BN operation can be seen in
Figure 5. In addition, the detailed descriptions of the spectral dense block and the spatial
dense block are shown in Section 2.3, and the implementation details of feature extraction
are described in Tables 1 and 2.

Table 1. The implementation details of the spectral feature extraction stage.

Input Size Layer Operations Output Size

(9× 9× 200) Conv3D(1× 1× 7, 24) (9× 9× 97, 24)
(9× 9× 97, 24) BN-ReLU-Conv3D(1× 1× 7, 12) (9× 9× 97, 12)

(9× 9× 97, 24)/(9× 9× 97, 12) Concatenate (9× 9× 97, 36)
(9× 9× 97, 36) BN-ReLU-Conv3D(1× 1× 7, 12) (9× 9× 97, 12)

(9× 9× 97, 24)/(9× 9× 97, 12)/(9× 9× 97, 12) Concatenate (9× 9× 97, 48)
(9× 9× 97, 48) BN-ReLU-Conv3D(1× 1× 7, 12) (9× 9× 97, 12)

(9× 9× 97, 24)/(9× 9× 97, 12)/(9× 9× 97, 12)/(9× 9× 97, 12) Concatenate (9× 9× 97, 60)
(9× 9× 97, 60) BN-ReLU-Conv3D(1× 1× 97, 60) (9× 9× 1, 60)

Table 2. The implementation details of the spatial feature extraction stage.

Input Size Layer Operations Output Size

(9× 9× 200) Conv3D(1× 1× 200, 24) (9× 9× 1, 24)
(9× 9× 1, 24) BN-ReLU-Conv3D(3× 3× 1, 12) (9× 9× 1, 12)

(9× 9× 1, 24)/(9× 9× 1, 12) Concatenate (9× 9× 1, 36)
(9× 9× 1, 36) BN-ReLU-Conv3D(3× 3× 1, 12) (9× 9× 1, 12)

(9× 9× 1, 24)/(9× 9× 1, 12)/(9× 9× 1, 12) Concatenate (9× 9× 1, 48)
(9× 9× 1, 48) BN-ReLU-Conv3D(3× 3× 1, 12) (9× 9× 1, 12)

(9× 9× 1, 24)/(9× 9× 1, 12)/(9× 9× 1, 12)/(9× 9× 1, 12) Concatenate (9× 9× 1, 60)
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Figure 5. An overview of the spectral-spatial network with channel and position global context attention (SSGCA). This
model can be divided into five parts: spectral feature extraction, spectral feature enhancement, spatial feature extraction,
spatial feature enhancement, and feature fusion classification.

3.3.2. Feature Enhancement

After the feature extraction stage, spectral feature maps with abundant spectral signa-
tures and spatial feature maps with plentiful spatial information can be acquired. Then,
these two type of features will be fed into spectral and spatial feature enhancement stage,
as shown in Figure 5, respectively. The spectral feature enhancement stage serves to cap-
ture interactions between channels via the channel GC attention, while the spatial feature
enhancement stage aims to explore position relationships by the position GC attention.
Both GC attentions can make full use of global contextual information, learn nonlinear
feature interrelationships, and adequately capture long-range dependencies. As described
in Figure 5, the extracted spectral and spatial feature maps are first reshaped to (9× 9× 60)
and then separately fed into the GC attention module. Both the input size and output
size of the channel GC attention and the position GC attention are (9× 9× 60). Detailed
descriptions of GC attentions are displayed in Sections 3.1 and 3.2, and the implementation
details of the feature enhancement stage are reported in Tables 3 and 4.
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Table 3. The implementation details of the spectral feature enhancement stage.

Input Size Layer Operations Output Size

(9× 9× 60) Conv2D(1× 1, 1) (9× 9× 1)
(9× 9× 1) Reshape (1× 1× 81)
(1× 1× 81) Softmax (1× 1× 81)
(9× 9× 60) Reshape (81× 60)

(1× 1× 81)/(81× 60) Matrix Multiplication (1× 1× 60)
(1× 1× 60) Conv2D(1× 1, 60/r) (1× 1× 60/r)

(1× 1× 60/r) LayerNorm/ReLU (1× 1× 60/r)
(1× 1× 60/r) Conv2D(1× 1, 60) (1× 1× 60)

(1× 1× 60)/(9× 9× 60) Element-wise Sum (9× 9× 60)

Table 4. The implementation details of the spatial feature enhancement stage.

Input Size Layer Operations Output Size

(9× 9× 60) Global Average Pooling (1× 1× 60)
(1× 1× 60) Softmax (1× 1× 60)
(9× 9× 60) Reshape (60× 81)

(1× 1× 60)/(60× 81) Matrix Multiplication (1× 1× 81)
(1× 1× 81) Conv2D(1× 1× 81/r) (1× 1× 81/r)

(1× 1× 81/r) LayerNorm/ReLU (1× 1× 81/r)
(1× 1× 81/r) Conv2D(1× 1, 81) (1× 1× 81)
(1× 1× 81) Reshape (9× 9× 1)

(9× 9× 1)/(9× 9× 60) Element-wise Sum (9× 9× 60)

3.3.3. Feature Fusion Classification

The transformed spectral and spatial features yielded by the feature enhancement
stages are separately fed into a global average pooling layer and a reshape layer to aggregate
information in each channel, and as a result, both the size of the spectral and spatial feature
maps are from (9× 9× 60) to (1× 60). Finally, we perform a concatenation between these
two feature maps and feed the result to a fully-connected layer with the softmax activation
function to obtain the certain land cover label. The implementation details of the feature
fusion classification stage are shown in Table 5.

Table 5. The implementation details of the feature fusion classification stage.

Input Size Layer Operations Output Size

(9× 9× 60) Global Average Pooling/Reshape (1× 60)
(9× 9× 60) Global Average Pooling/Reshape (1× 60)

(1× 60)/(1× 60) Concatenate (1× 120)
(1× 120) FC with Softmax (1× ClassNum)

4. Experiments
4.1. Datasets

In this paper, we selected three well-known HSI datasets to evaluate the effectiveness
of our network compared with other widely used methods proposed before. The se-
lected datasets include Indian Pines (IN), University of Pavia (UP), and the Salinas Valley
(SV) dataset.

The IN dataset was captured by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over the Indian Pines test site in northwestern Indiana in 1992, and the image
contains 16 vegetation classes and has (145× 145) pixels with a spatial resolution of 20 m
per pixel. After removing 20 water absorption bands, this dataset includes 200 spectral
bands for analysis ranging from 400 to 2500 nm.
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The UP dataset was acquired over the city of Pavia, Italy, in 2002 by an airborne
instrument—the Reflective Optics Spectrographic Imaging System (ROSIS). This dataset
consists of (640× 340) pixels with a 1.3 m per pixel spatial resolution and 103 spectral
bands ranging from 430 to 860 nm after removing 12 noisy bands. The dataset contains a
large number of background pixels, so the total number of pixels including the features is
only 42,776. There are 9 types of features, including asphalt roads, bricks, pastures, trees,
bare soil, etc.

The SV dataset was also gathered by the AVIRIS sensor over the region of Salinas
Valley, CA, USA, with a 3.7 m per pixel spatial resolution. The same as the IN dataset,
twenty water absorption bands of the SV dataset were discarded. After that, the SV dataset
consisted of 204 spectral bands and (512× 217) pixels for analysis from 400 to 2500 nm.
The dataset presents 16 classes related to vegetables, vineyard fields, and bare soil.

In this paper, we randomly selected a few samples of each dataset for training and
validation. To be specific, from the IN dataset, we selected 5% of the samples for training
and 5% for validation. For the UP dataset, we selected 1% of the samples for training
and 1% for validation. In addition, we also selected 1% as training samples and 1% as
validation samples from the SV dataset. Tables 6–8 list the sample numbers for the training,
validation, and testing for the three datasets.

Table 6. The samples for each category of training, validation, and testing for the Indian Pines (IN) dataset.

Number Class Total Train Val Test

1 Alfalfa 46 3 3 40
2 Corn-notill 1428 71 71 1286
3 Corn-mintill 830 41 41 748
4 Corn 237 11 11 215
5 Grass-pasture 483 24 24 435
6 Grass-trees 730 36 36 658
7 Grass-pasture-mowed 28 3 3 22
8 Hay-windrowed 478 23 23 432
9 Oats 20 3 3 14

10 Soybean-notill 972 48 48 876
11 Soybean-mintill 2455 122 122 2211
12 Soybean-clean 593 29 29 535
13 Wheat 205 10 10 185
14 Woods 1265 63 63 1139
15 Buildings-Grass-Trees-Drives 386 19 19 348
16 Stone-Steel-Towers 93 4 4 85

Total 10,249 510 510 9229

Table 7. The samples for each category of training, validation, and testing for the University of Pavia
(UP) dataset.

Number Class Total Train Val Test

1 Asphalt 6631 66 66 6499
2 Meadows 18,649 186 186 18,277
3 Gravel 2099 20 20 2059
4 Trees 3064 30 30 3004
5 Painted metal sheets 1345 13 13 1319
6 Bare Soil 5029 50 50 4929
7 Bitumen 1330 13 13 1304
8 Self-Blocking Bricks 3682 36 36 3610
9 Shadows 947 9 9 929

Total 42,776 423 423 41,930
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Table 8. The samples for each category of training, validation and testing for the Salinas Valley
(SV) dataset.

Number Class Total Train Val Test

1 Broccoli_green_weeds_1 2009 20 20 1969
2 Broccoli_green_weeds_2 3726 37 37 3652
3 Fallow 1976 19 19 1938
4 Fallow_rough_plow 1394 13 13 1368
5 Fallow_smooth 2678 26 26 2626
6 Stubble 3959 39 39 3881
7 Celery 3579 35 35 3509
8 Grapes_untrained 11,271 112 112 11,047
9 Soil_vineyard_develop 6203 62 62 6079

10 Corn_senesced_green_weeds 3278 32 32 3214
11 Lettuce_romaine_4wk 1068 10 10 1048
12 Lettuce_romaine_5wk 1927 19 19 1889
13 Lettuce_romaine_6wk 916 9 9 898
14 Lettuce_romaine_7wk 1070 10 10 1050
15 Vineyard_untrained 7268 72 72 7124
16 Vineyard_vertical_trellis 1807 18 18 1771

Total 54,129 533 533 53,063

4.2. Evaluation Measures

In order to quantify the performance of the proposed method, four evaluation metrics
were selected: the accuracy of each class, the overall accuracy (OA), the average accuracy
(AA), and the kappa coefficient. The OA is the ratio of the number of correctly classified
HSI pixels to the total number of HSI pixels in the testing samples. The AA is the mean of
the accuracies for different land cover categories. Kappa measures the consistency between
the classification results and the ground truth. Let M ∈ R(m×n) represent the confusion
matrix of the classification results, where m denotes the number of land cover categories.
The values of the OA, AA, and kappa can be calculated as follows [47]:

OA = sum(diag(M))/sum(M), (10)

AA = mean((diag(M)./(sum(M, 2)), (11)

Kappa =
OA− (sum(M, 1)× sum(M, 2))/(sum(M))2

1− (sum(M, 1)× sum(M, 2))/(sum(M))2 , (12)

where diag(M) ∈ Rm×1 is a vector of the diagonal elements of M, sum(·) ∈ R1 represents
the sum of all elements of the matrix, sum(·, 1) ∈ R1×m represents the sum of the elements
in each column, sum(·, 2) ∈ Rm×1 represents the sum of the elements in each row, mean(·) ∈
R1 represents the mean of all elements, and ./ represents the element-wise division.

4.3. Experimental Setting

In this paper, SVM with the RBF kernel [48] and several well-known DL-based meth-
ods were selected for comparison, including SSRN [28], the FDSSC [30], the DBMA [31],
and the DBDA [32]. To ensure the fairness of the comparative experiments, we adopted the
same hyperparameter settings for these methods, and all experiments were executed on
an NVIDIA GeForce GTX 2070 SUPER GPU with a memory of 32 GB. For the DL-based
methods, the spatial size of the HSI cubes was set to 9× 9, the batch size was 64, and the
number of training epochs was set to 200. Besides, a cross-entropy loss function was
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exploited to measure the difference between the predicted value and the real value to train
the parameters of the networks, which can be formulated as follows:

Loss = −
m

∑
j=1

yjlog(pj), (13)

where m is the number of land cover categories, yj denotes the land cover label (if the
category is j, yj is 1; otherwise, yj equals to 0), and pj represents the probability that the
category is j, which is calculated by the softmax function. To prevent overfitting, the early
stopping strategy was adopted. If the loss value of the validation dataset no longer
decreases for 20 epochs, the training process will be stopped. Furthermore, the optimizer
was set to Adam with a 0.001 learning rate, and we used the cosine annealing [49] method
to dynamically adjust the learning rate, which can prevent the model from falling into local
minima. The learning rate was adjusted according to the following equation [32,49]:

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)), (14)

where ηt is the learning rate within the ith run and [ηi
max − ηi

min] is the range of the learning
rate. Tcur represents the count of epochs that were executed, and Ti controls the count of
epochs that will be executed in a cycle of adjustment. Finally, a dropout layer was adopted
in the bottleneck transform module of GC attentions to further avoid overfitting, and the
dropout percentage p was set to 0.5.

4.4. Classification Results

Tables 9–11 show the OAs, AAs, kappa coefficients, and classification accuracies of
each class for the three HSI datasets. Obviously, the proposed method SSGCA achieves
the best OAs, AAs, and kappa coefficients compared with the other methods on the three
HSI datasets, which can demonstrate the effectiveness and generalizability of our method.
For example, when 5% of the samples are randomly selected for training on the IN dataset,
our method achieves the best accuracy with 98.13% OA, improving 1.14% over the DBDA
(96.99%), 1.35% over the DBMA (96.78%), 1.95% over the FDSSC (96.18%), and 2.68%
over SSRN (95.45%). In contrast to SVM (74.74%), our method achieves a considerable
improvement of more than 23% in terms of OA. Besides, from the results, we can learn that
all the DL-based methods achieve higher performance than SVM on three HSI datasets.
For example, the OAs of the DL-based methods obtain more than a 20% increase in contrast
to SVM on the IN dataset and about a 10% increase on the UP and SV dataset. The reason
is that DL-based methods can exploit high-level, abstract, and discriminative feature
representations to improve the classification performance.

Furthermore, the classification results of the FDSSC, DBMA, and DBDA on the three
datasets are higher than those of SSRN with approximately a 1–2% improvement in OA.
These results demonstrate the effectiveness of a dense connection structure, which is
adopted in the FDSSC, DBMA, and DBDA. Moreover, comparing the FDSSC to the three
attention-based methods, we can find that the proposed SSGCA achieves a higher OA than
the FDSSC for all three datasets; however, the results of the DBMA and DBDA are not
always higher than those of the FDSSC. For instance, the OA of the DBDA is lower than
the FDSSC on the UP and SV datasets, and the OA of the DBMA is below the FDSSC on
the UP dataset. This means that our GC attentions can optimize the feature representations
more effectively compared with the AMs in the DBMA and DBDA when these three
methods employ the same feature extraction network. The reason is that our GC attentions
can utilize global contextual information adequately, capture feature interactions well,
and model long-range dependencies effectively. Finally, from the classification accuracies
of each class for the three HSI datasets, we can find that our SSGCA achieves more stable
results, benefiting from the invented GC attentions. Taking the SV dataset as an example,
the best and worst single-category results of the SSGCA are 100% and 95.76%, respectively,
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with a difference of only 4.24%, while the difference is 8.82% for the DBDA (best: 100%;
worst: 91.18%), 8.26% for the DBMA and FDSSC (best: 100%; worst: 91.74%), 12.16% for
SSRN (best: 100%; worst: 87.84%), and 43.19% for SVM (best: 99.62%; worst: 56.43%).

Table 9. The classification results for the IN dataset with 5% training samples.

Number Class SVM SSRN FDSSC DBMA DBDA SSGCA

1 Alfalfa 32.56 100.00 92.50 43.90 97.56 97.62
2 Corn-notill 74.21 96.19 92.29 97.36 95.49 98.37
3 Corn-mintill 57.03 88.96 90.34 99.59 89.71 95.28
4 Corn 24.34 88.68 96.70 86.70 95.77 99.52
5 Grass-pasture 84.31 92.15 99.77 91.82 91.90 98.16
6 Grass-trees 96.83 98.16 99.54 99.85 98.63 99.54
7 Grass-pasture-mowed 88.00 95.83 100.00 100.00 100.00 95.24
8 Hay-windrowed 89.67 97.71 100.00 100.00 100.00 100.00
9 Oats 41.18 100.00 76.47 70.59 100.00 100.00

10 Soybean-notill 66.02 89.23 97.37 96.93 95.46 93.96
11 Soybean-mintill 78.18 97.51 91.37 97.25 99.05 98.69
12 Soybean-clean 50.53 97.32 98.71 95.51 97.96 98.30
13 Wheat 91.28 98.91 100.00 100.00 100.00 100.00
14 Woods 94.01 99.21 100.00 96.21 99.47 99.82

15 Buildings-Grass-Trees-
Drives 45.78 92.90 95.13 100.00 99.43 98.57

16 Stone-Steel-Towers 69.66 91.57 96.47 86.05 89.41 95.24

OA(%) 74.74 95.45 96.18 96.78 96.99 98.13
AA(%) 67.72 95.27 95.79 91.36 96.87 98.02

Kappa×100 70.97 94.81 95.65 96.33 96.57 97.86

Table 10. The classification results for the UP dataset with 1% training samples.

Number Class SVM SSRN FDSSC DBMA DBDA SSGCA

1 Asphalt 91.94 99.22 98.35 98.60 99.43 100.00
2 Meadows 98.49 99.52 99.98 99.99 98.76 99.56
3 Gravel 61.81 47.98 98.39 88.49 99.17 92.65
4 Trees 80.39 97.44 93.55 96.77 96.83 95.97
5 Painted metal sheets 99.02 99.85 100.00 99.62 99.55 100.00
6 Bare Soil 66.38 99.31 99.63 96.43 99.98 100.00
7 Bitumen 69.17 97.02 100.00 86.91 97.62 99.77
8 Self-Blocking Bricks 83.71 99.70 95.74 94.13 88.85 98.97
9 Shadows 99.57 99.35 99.46 95.59 97.84 98.16

OA(%) 88.46 96.72 98.77 97.54 98.00 99.02
AA(%) 83.39 93.26 98.35 95.17 97.56 98.34

Kappa×100 84.38 95.64 98.37 96.73 97.36 98.71

Figures 6–8 show the visualization maps of all methods along with the corresponding
ground truth maps for the three HSI datasets. Firstly, from the visual classification results,
we can intuitively conclude that the proposed SSGCA delivers the most accurate and
smooth classification maps on all datasets, because the SSGCA can obtained more powerful
feature representations with the aid of our GC attentions for classification. Secondly,
compared to DL-based methods, the classification maps of SVM on the three datasets
show plenty of mislabeled areas due to the lack of incorporation of spatial neighborhood
information, and the extracted features are at a low-level. Thirdly, we can find that the
visual classification maps of the attention-based methods are smoother than SSRN and
the FDSSC, especially at the edges of land cover areas, and it can be observed that the
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SSGCA yields better classification maps in contrast to the DBDA and DBMA, because our
GC attentions can adequately utilize global contextual information, learn nonlinear feature
interactions, and model long range dependencies for feature enhancing compared with the
attentions in the DBDA and DBMA.

Figure 6. Classification maps for the IN dataset with 5% training samples. (a) Ground-truth. (b–g) The classification maps
of the corresponding methods.

Figure 7. Classification maps for the UP dataset with 1% training samples. (a) Ground-truth. (b–g) The classification maps
of the corresponding methods.
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Figure 8. Classification maps for the SV dataset with 1% training samples. (a) Ground-truth. (b–g) The classification maps
of the corresponding methods.

Table 11. The classification results for the SV dataset with 1% training samples.

Number Class SVM SSRN FDSSC DBMA DBDA SSGCA

1 Broccoli_green_weeds_1 99.35 99.54 100.00 100.00 100.00 100.00
2 Broccoli_green_weeds_2 99.16 99.12 100.00 100.00 100.00 100.00
3 Fallow 94.17 98.20 100.00 100.00 99.33 99.38
4 Fallow_rough_plow 98.41 87.84 99.71 99.27 99.12 99.56
5 Fallow_smooth 97.02 98.78 99.73 98.70 99.47 98.02
6 Stubble 99.62 100.00 99.56 100.00 100.00 100.00
7 Celery 99.44 99.80 100.00 99.91 99.97 99.97
8 Grapes_untrained 81.41 93.41 98.48 99.52 91.18 95.76
9 Soil_vineyard_develop 99.23 99.80 100.00 100.00 100.00 100.00

10 Corn_senesced_green_weeds 83.30 97.20 95.74 97.29 99.31 98.66
11 Lettuce_romaine_4wk 90.74 99.52 100.00 99.90 100.00 99.81
12 Lettuce_romaine_5wk 99.00 100.00 99.95 99.95 99.79 100.00
13 Lettuce_romaine_6wk 97.24 99.78 99.22 99.11 96.97 100.00
14 Lettuce_romaine_7wk 92.74 99.52 99.05 99.33 98.39 99.14
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Table 11. Cont.

Number Class SVM SSRN FDSSC DBMA DBDA SSGCA

15 Vineyard_untrained 56.43 94.08 91.74 91.74 97.21 99.23
16 Vineyard_vertical_trellis 89.99 96.26 100.00 99.49 99.21 97.47

OA(%) 87.89 96.97 98.23 98.49 97.56 98.69
AA(%) 92.33 97.68 98.95 99.01 98.75 99.19

Kappa×100 86.48 96.63 98.03 98.32 97.28 98.54

5. Other Investigations

In this section, we conduct further investigations in the following three aspects. Firstly,
different proportions of training samples from the three datasets are selected for all methods
to investigate the performance of our method with different training sample numbers.
Secondly, several ablation experiments are designed to investigate the effectiveness of our
channel GC attention and position GC attention; meanwhile, we explore the effectiveness
of different bottleneck ratio values in GC attentions. Thirdly, we report the total trainable
parameter number and running time of all methods to investigate the computational
efficiency of different methods.

5.1. Investigation of the Proportion of Training Samples

In this part, several experiments are designed to explore the robustness and generaliz-
ability of the proposed method with different training proportions. On the one hand, two
percent, 3%, 7%, and 9% training samples were randomly selected from the IN dataset;
on the other hand, zero-point-three percent, 0.5%, 0.7%, and 1.3% training samples were
randomly selected from the UP and SV datasets. Figures 9–11 display the results for the
different training ratios of the six methods on the three datasets.
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Figure 9. Classification results on the IN dataset with different proportions of training samples.

Firstly, it is evident that different numbers of training samples bring about different
classification performances for all methods: as the number of training samples increases,
the classification accuracy increases, and the proposed method SSGCA achieves the best
performance compared with other methods with different numbers of training samples
on the three datasets. Secondly, the performance of the FDSSC is relatively poor when the
training set is quite small compared to the DBMA, DBDA, and SSGCA, but as the training
samples increase, the FDSSC outperforms the DBMA and DBDA, while the classification
accuracy is closer to the best result, especially on the UP and SV datasets. From this
comparison, we can learn that AMs have a more significant effect when lacking training
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samples. Thirdly, we can see that the accuracies of the DL-based methods get closer along
with the increasing of the training samples, particularly on the IN and SV datasets.
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Figure 10. Classification results on the UP dataset with different proportions of training samples.

O
v
er

al
l 

A
cc

u
ra

cy
 (

%
)

75

80

85

90

95

100

0.30% 0.50% 0.70% 1.00% 1.30%

SVM SSRN FDSSC DBMA DBDA SSGCA

Different Proportions of Training Samples

Figure 11. Classification results on the SV dataset with different proportions of training samples.

5.2. Investigation of the Global Context Attentions

In this part, several ablation experiments are executed to demonstrate the effectiveness
of the GC attentions in this article, including experiments only with the channel GC
attention, experiments only with the position GC attention, and experiments without GC
attentions. The training sample proportions of IN, UP, and SV in these experiments were
5%, 1%, and 1%, respectively, and the bottleneck ratio r was set to 16. It can be observed
from Figure 12 that both GC attentions can improve the classification performance on each
dataset. For example, on the IN dataset, the channel GC attention brings an improvement
of 0.37% OA, the position GC attention brings an improvement of 0.55% OA, and using
both GC attentions can improve by 1% OA, which is a considerable advance in the case
of limited training samples and high baseline accuracy. In addition, we can find that
the channel GC attention plays a more significant role compared with the position GC
attention on the IN and SV datasets, and the result is opposite on the UP dataset; however,
the highest results can be achieved when both GC attentions are included in our network
for all three datasets.
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Figure 12. The effectiveness of different GC attentions on different datasets.

The bottleneck ratio r introduced in Sections 3.1 and 3.2 is a hyperparameter, which
aims to reduce the computational cost of our GC attentions. In this part, we also designed
several experiments to explore the effectiveness of different values of the bottleneck ratio.
The training sample proportions of IN, UP, and SV selected in these experiments were
5%, 1%, and 1%, respectively. The classification results reported in Table 12 show that our
SSGCA network acquires the highest performance when the bottleneck ratio r is set to 16
on the three datasets.

Table 12. The classification results at different bottleneck ratios on the three datasets.

Ratio r IN UP SV

8 97.17 98.54 98.44
12 97.88 98.88 97.84
16 98.13 99.02 98.69
20 97.85 98.74 97.46

5.3. Investigation on Running Time

Tables 13–15 report the total number of trainable parameters of the DL-based methods.
From the results, we can find that the SSGCA has fewer trainable parameters than the
FDSSC, DBMA, and DBDA. Meanwhile, Tables 13–15 show the training time and test time
of all methods on the three datasets. Note that all experiments’ results were collected when
the training sample proportions were 5%, 1%, and 1% on IN, UP, and SV, respectively,
and the bottleneck ratio r of the SSGCA was set to 16. From these three tables, we can learn
that SVM consumes less training and testing time than the DL-based methods. Furthermore,
the proposed SSGCA spends the least training time and the second least testing time among
all DL-based methods on the three datasets. Above all, we can conclude that the proposed
SSGCA obtains the best classification performance with little time consumption, which can
prove the high efficiency of our method.
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Table 13. The number of parameters and the running time of different methods on the IN dataset.

Dataset Method Total Params Training (s) Testing (s)

SVM - 48.02 1.39
SSRN 364,168 661.90 3.87

IN FDSSC 1,227,490 1,573.78 4.86
DBMA 610,031 170.32 5.90
DBDA 382,326 128.97 5.56
SSGCA 379,208 104.17 4.25

Table 14. The number of parameters and the running time of different methods on the UP dataset.

Dataset Method Total Params Training (s) Testing (s)

SVM - 9.51 3.36
SSRN 216,537 304.39 9.38

UP FDSSC 651,063 930.75 11.92
DBMA 330,376 73.59 14.22
DBDA 206,351 35.44 13.42
SSGCA 203,233 33.40 10.32

Table 15. The number of parameters and the running time of different methods on the SV dataset.

Dataset Method Total Params Training (s) Testing (s)

SVM - 26.19 6.39
SSRN 370,312 536.83 22.54

SV FDSSC 1,251,490 1,277.54 28.48
DBMA 621,647 408.68 34.59
DBDA 389,622 151.05 32.72
SSGCA 386,504 118.34 24.95

6. Conclusions

In this article, an end-to-end spectral-spatial network with channel and position global
context (GC) attention (SSGCA) is proposed for HSI classification. The proposed SSGCA is
based on the work of many predecessors, including 3D convolution, DenseNet, the FDSSC,
GCNet, the DBDA, and so on. The SSGCA mainly contains three stages: feature extraction,
feature enhancement, and feature fusion classification. Feature extraction is based on
dense connection blocks to acquire discriminative spectral and spatial features in two
separate branches. Feature enhancement aims to optimize spectral and spatial feature
representations to improve the classification performance by the channel GC attention
and the position GC attention, respectively. Compared to the previous AMs used in HSI
classification methods, our GC attentions can make full use of global contextual information
and capture adaptive nonlinear feature relationships in the spectral and spatial dimensions
with less computation consumption. Furthermore, our AMs can adequately model long-
range dependencies. Feature fusion classification concatenates two types of features in
the channel dimension, then the fusion features are fed into an FC layer with the softmax
function to generate the final land cover category. Moreover, we designed a great quantity
of experiments on three public HSI datasets to verify the effectiveness, generalizability,
and robustness of our method. Later, analyses on the experimental results demonstrated
that the proposed method acquired the best performance compared to other well-known
methods. In the future, we will combine our GC attention with other DL-based networks
and apply these novel models on other HSI datasets.
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